TCR Triggering Induces the Formation of Lck-RACK1-Actinin-1 Multiprotein Network Affecting Lck Redistribution
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
27833610
PubMed Central
PMC5081367
DOI
10.3389/fimmu.2016.00449
Knihovny.cz E-zdroje
- Klíčová slova
- Lck, RACK1, TCR triggering, cytoskeleton, lipid rafts, membrane redistribution, α-actinin,
- Publikační typ
- časopisecké články MeSH
The initiation of T-cell signaling is critically dependent on the function of the member of Src family tyrosine kinases, Lck. Upon T-cell antigen receptor (TCR) triggering, Lck kinase activity induces the nucleation of signal-transducing hubs that regulate the formation of complex signaling network and cytoskeletal rearrangement. In addition, the delivery of Lck function requires rapid and targeted membrane redistribution, but the mechanism underpinning this process is largely unknown. To gain insight into this process, we considered previously described proteins that could assist in this process via their capacity to interact with kinases and regulate their intracellular translocations. An adaptor protein, receptor for activated C kinase 1 (RACK1), was chosen as a viable option, and its capacity to bind Lck and aid the process of activation-induced redistribution of Lck was assessed. Our microscopic observation showed that T-cell activation induces a rapid, concomitant, and transient co-redistribution of Lck and RACK1 into the forming immunological synapse. Consistent with this observation, the formation of transient RACK1-Lck complexes were detectable in primary CD4+ T-cells with their maximum levels peaking 10 s after TCR-CD4 co-aggregation. Moreover, RACK1 preferentially binds to a pool of kinase active pY394Lck, which co-purifies with high molecular weight cellular fractions. The formation of RACK1-Lck complexes depends on functional SH2 and SH3 domains of Lck and includes several other signaling and cytoskeletal elements that transiently bind the complex. Notably, the F-actin-crosslinking protein, α-actinin-1, binds to RACK1 only in the presence of kinase active Lck suggesting that the formation of RACK1-pY394Lck-α-actinin-1 complex serves as a signal module coupling actin cytoskeleton bundling with productive TCR/CD4 triggering. In addition, the treatment of CD4+ T-cells with nocodazole, which disrupts the microtubular network, also blocked the formation of RACK1-Lck complexes. Importantly, activation-induced Lck redistribution was diminished in primary CD4+ T-cells by an adenoviral-mediated knockdown of RACK1. These results demonstrate that in T cells, RACK1, as an essential component of the multiprotein complex which upon TCR engagement, links the binding of kinase active Lck to elements of the cytoskeletal network and affects the subcellular redistribution of Lck.
Faculty of Military Health Sciences Institute of Molecular Pathology Hradec Králové Czech Republic
Laboratory of Immunobiology Institute of Molecular Genetics AS CR Prague Czech Republic
Zobrazit více v PubMed
Acuto O, Di Bartolo V, Michel F. Tailoring T-cell receptor signals by proximal negative feedback mechanisms. Nat Rev Immunol (2008) 8(9):699–712.10.1038/nri2397 PubMed DOI
Filipp D, Julius M. Lipid rafts: resolution of the “fyn problem”? Mol Immunol (2004) 41(6–7):645–56.10.1016/j.molimm.2004.04.011 PubMed DOI
Bonnard M, Maroun CR, Julius M. Physical association of CD4 and CD45 in primary, resting CD4(+) T cells. Cell Immunol (1997) 175(1):1–11.10.1006/cimm.1996.1044 PubMed DOI
Veillette A, Latour S, Davidson D. Negative regulation of immunoreceptor signaling. Annu Rev Immunol (2002) 20:669–707.10.1146/annurev.immunol.20.081501.130710 PubMed DOI
Nel AE. T-cell activation through the antigen receptor. Part 1: signaling components, signaling pathways, and signal integration at the T-cell antigen receptor synapse. J Allergy Clin Immunol (2002) 109(5):758–70.10.1067/mai.2002.124259 PubMed DOI
Smith-Garvin JE, Koretzky GA, Jordan MS. T cell activation. Annu Rev Immunol (2009) 27:591–619.10.1146/annurev.immunol.021908.132706 PubMed DOI PMC
Klammt C, Lillemeier BF. How membrane structures control T cell signaling. Front Immunol (2012) 3:291.10.3389/fimmu.2012.00291 PubMed DOI PMC
Simons K, Sampaio JL. Membrane organization and lipid rafts. Cold Spring Harb Perspect Biol (2011) 3(10):a004697.10.1101/cshperspect.a004697 PubMed DOI PMC
Horejsi V, Hrdinka M. Membrane microdomains in immunoreceptor signaling. FEBS Lett (2014) 588(15):2392–7.10.1016/j.febslet.2014.05.047 PubMed DOI
Chen X, Morris R, Lawrence MJ, Quinn PJ. The isolation and structure of membrane lipid rafts from rat brain. Biochimie (2007) 89(2):192–6.10.1016/j.biochi.2006.07.006 PubMed DOI
Chen X, Jen A, Warley A, Lawrence MJ, Quinn PJ, Morris RJ. Isolation at physiological temperature of detergent-resistant membranes with properties expected of lipid rafts: the influence of buffer composition. Biochem J (2009) 417:525–33.10.1042/Bj20081385 PubMed DOI
Lindner R, Naim HY. Domains in biological membranes. Exp Cell Res (2009) 315(17):2871–8.10.1016/j.yexcr.2009.07.020 PubMed DOI
Horejsi V, Otahal P, Brdicka T. LAT – an important raft-associated transmembrane adaptor protein delivered on 6 July 2009 at the 34th FEBS Congress in Prague, Czech Republic. FEBS J (2010) 277(21):4383–97.10.1111/j.1742-4658.2010.07831.x PubMed DOI
Ballek O, Brouckova A, Manning J, Filipp D. A specific type of membrane microdomains is involved in the maintenance and translocation of kinase active Lck to lipid rafts. Immunol Lett (2012) 142(1–2):64–74.10.1016/j.imlet.2012.01.001 PubMed DOI
Otahal P, Angelisova P, Hrdinka M, Brdicka T, Novak P, Drbal K, et al. A new type of membrane raft-like microdomains and their possible involvement in TCR signaling. J Immunol (2010) 184(7):3689–96.10.4049/jimmunol.0902075 PubMed DOI
Filipp D, Zhang J, Leung BL, Shaw A, Levin SD, Veillette A, et al. Regulation of Fyn through translocation of activated Lck into lipid rafts. J Exp Med (2003) 197(9):1221–7.10.1084/jem.20022112 PubMed DOI PMC
Filipp D, Leung BL, Zhang J, Veillette A, Julius M. Enrichment of lck in lipid rafts regulates colocalized fyn activation and the initiation of proximal signals through TCR alpha beta. J Immunol (2004) 172(7):4266–74.10.4049/jimmunol.172.7.4266 PubMed DOI
Nika K, Soldani C, Salek M, Paster W, Gray A, Etzensperger R, et al. Constitutively active Lck kinase in T cells drives antigen receptor signal transduction. Immunity (2010) 32(6):766–77.10.1016/j.immuni.2010.05.011 PubMed DOI PMC
Rossy J, Owen DM, Williamson DJ, Yang Z, Gaus K. Conformational states of the kinase Lck regulate clustering in early T cell signaling. Nat Immunol (2013) 14(1):82–9.10.1038/ni.2488 PubMed DOI
Holdorf AD, Lee KH, Burack WR, Allen PM, Shaw AS. Regulation of Lck activity by CD4 and CD28 in the immunological synapse. Nat Immunol (2002) 3(3):259–64.10.1038/ni761 PubMed DOI
Filipp D, Moemeni B, Ferzoco A, Kathirkamathamby K, Zhang J, Ballek O, et al. Lck-dependent Fyn activation requires C terminus-dependent targeting of kinase-active Lck to lipid rafts. J Biol Chem (2008) 283(39):26409–22.10.1074/jbc.M710372200 PubMed DOI PMC
Neer EJ, Schmidt CJ, Nambudripad R, Smith TF. The ancient regulatory-protein family of WD-repeat proteins. Nature (1994) 371(6495):297–300.10.1038/371297a0 PubMed DOI
Volta V, Beugnet A, Gallo S, Magri L, Brina D, Pesce E, et al. RACK1 depletion in a mouse model causes lethality, pigmentation deficits and reduction in protein synthesis efficiency. Cell Mol Life Sci (2013) 70(8):1439–50.10.1007/s00018-012-1215-y PubMed DOI PMC
Steele MR, McCahill A, Thompson DS, MacKenzie C, Isaacs NW, Houslay MD, et al. Identification of a surface on the beta-propeller protein RACK1 that interacts with the cAMP-specific phosphodiesterase PDE4D5. Cell Signal (2001) 13(7):507–13.10.1016/S0898-6568(01)00167-X PubMed DOI
Adams DR, Ron D, Kiely PA. RACK1, a multifaceted scaffolding protein: structure and function. Cell Commun Signal (2011) 9:22.10.1186/1478-811X-9-22 PubMed DOI PMC
Ron D, Jiang Z, Yao L, Vagts A, Diamond I, Gordon A. Coordinated movement of RACK1 with activated betaIIPKC. J Biol Chem (1999) 274(38):27039–46.10.1074/jbc.274.38.27039 PubMed DOI
Liliental J, Chang DD. Rack1, a receptor for activated protein kinase C, interacts with integrin beta subunit. J Biol Chem (1998) 273(4):2379–83.10.1074/jbc.273.4.2379 PubMed DOI
Cox EA, Bennin D, Doan AT, O’Toole T, Huttenlocher A. RACK1 regulates integrin-mediated adhesion, protrusion, and chemotactic cell migration via its Src-binding site. Mol Biol Cell (2003) 14(2):658–69.10.1091/mbc.E02-03-0142 PubMed DOI PMC
Yaka R, Thornton C, Vagts AJ, Phamluong K, Bonci A, Ron D. NMDA receptor function is regulated by the inhibitory scaffolding protein, RACK1. Proc Natl Acad Sci U S A (2002) 99(8):5710–5.10.1073/pnas.062046299 PubMed DOI PMC
Chang BY, Conroy KB, Machleder EM, Cartwright CA. RACK1, a receptor for activated C kinase and a homolog of the beta subunit of G proteins, inhibits activity of src tyrosine kinases and growth of NIH 3T3 cells. Mol Cell Biol (1998) 18(6):3245–56.10.1128/MCB.18.6.3245 PubMed DOI PMC
Chang BY, Chiang M, Cartwright CA. The interaction of Src and RACK1 is enhanced by activation of protein kinase C and tyrosine phosphorylation of RACK1. J Biol Chem (2001) 276(23):20346–56.10.1074/jbc.M101375200 PubMed DOI
Chang BY, Harte RA, Cartwright CA. RACK1: a novel substrate for the Src protein-tyrosine kinase. Oncogene (2002) 21(50):7619–29.10.1038/sj.onc.1206002 PubMed DOI
Li JJ, Xie D. RACK1, a versatile hub in cancer. Oncogene (2015) 34(15):1890–8.10.1038/onc.2014.127 PubMed DOI
Osmanagic-Myers S, Wiche G. Plectin-RACK1 (receptor for activated C kinase 1) scaffolding: a novel mechanism to regulate protein kinase C activity. J Biol Chem (2004) 279(18):18701–10.10.1074/jbc.M312382200 PubMed DOI
Ron D, Adams DR, Baillie GS, Long A, O’Connor R, Kiely PA. RACK1 to the future – a historical perspective. Cell Commun Signal (2013) 11:53.10.1186/1478-811X-11-53 PubMed DOI PMC
Nilsson J, Sengupta J, Frank J, Nissen P. Regulation of eukaryotic translation by the RACK1 protein: a platform for signalling molecules on the ribosome. EMBO Rep (2004) 5(12):1137–41.10.1038/sj.embor.7400291 PubMed DOI PMC
Sengupta J, Nilsson J, Gursky R, Spahn CM, Nissen P, Frank J. Identification of the versatile scaffold protein RACK1 on the eukaryotic ribosome by cryo-EM. Nat Struct Mol Biol (2004) 11(10):957–62.10.1038/nsmb822 PubMed DOI
Barnden MJ, Allison J, Heath WR, Carbone FR. Defective TCR expression in transgenic mice constructed using cDNA-based alpha- and beta-chain genes under the control of heterologous regulatory elements. Immunol Cell Biol (1998) 76(1):34–40.10.1046/j.1440-1711.1998.00709.x PubMed DOI
Murphy KM, Heimberger AB, Loh DY. Induction by antigen of intrathymic apoptosis of CD4+CD8+TCRlo thymocytes in vivo. Science (1990) 250(4988):1720–3.10.1126/science.2125367 PubMed DOI
Wan YY, Leon RP, Marks R, Cham CM, Schaack J, Gajewski TF, et al. Transgenic expression of the coxsackie/adenovirus receptor enables adenoviral-mediated gene delivery in naive T cells. Proc Natl Acad Sci U S A (2000) 97(25):13784–9.10.1073/pnas.250356297 PubMed DOI PMC
Pear WS, Miller JP, Xu L, Pui JC, Soffer B, Quackenbush RC, et al. Efficient and rapid induction of a chronic myelogenous leukemia-like myeloproliferative disease in mice receiving P210 bcr/abl-transduced bone marrow. Blood (1998) 92(10):3780–92. PubMed
Paster W, Paar C, Eckerstorfer P, Jakober A, Drbal K, Schutz GJ, et al. Genetically encoded Forster resonance energy transfer sensors for the conformation of the Src family kinase Lck. J Immunol (2009) 182(4):2160–7.10.4049/jimmunol.0802639 PubMed DOI
Davidson D, Fournel M, Veillette A. Oncogenic activation of p59fyn tyrosine protein kinase by mutation of its carboxyl-terminal site of tyrosine phosphorylation, tyrosine 528. J Biol Chem (1994) 269(14):10956–63. PubMed
Leung BL, Haughn L, Veillette A, Hawley RG, Rottapel R, Julius M. TCR alpha beta-independent CD28 signaling and costimulation require non-CD4-associated Lck. J Immunol (1999) 163(3):1334–41. PubMed
Lee KH, Holdorf AD, Dustin ML, Chan AC, Allen PM, Shaw AS. T cell receptor signaling precedes immunological synapse formation. Science (2002) 295(5559):1539–42.10.1126/science.1067710 PubMed DOI
Draber P, Vonkova I, Stepanek O, Hrdinka M, Kucova M, Skopcova T, et al. SCIMP, a transmembrane adaptor protein involved in major histocompatibility complex class II signaling. Mol Cell Biol (2011) 31(22):4550–62.10.1128/MCB.05817-11 PubMed DOI PMC
Tavano R, Contento RL, Baranda SJ, Soligo M, Tuosto L, Manes S, et al. CD28 interaction with filamin-A controls lipid raft accumulation at the T-cell immunological synapse. Nat Cell Biol (2006) 8(11):1270–6.10.1038/ncb1492 PubMed DOI
Cinek T, Horejsi V. The nature of large noncovalent complexes containing glycosyl-phosphatidylinositol-anchored membrane glycoproteins and protein tyrosine kinases. J Immunol (1992) 149(7):2262–70. PubMed
Zha Y, Shah R, Locke F, Wong A, Gajewski TF. Use of Cre-adenovirus and CAR transgenic mice for efficient deletion of genes in post-thymic T cells. J Immunol Methods (2008) 331(1–2):94–102.10.1016/j.jim.2007.11.013 PubMed DOI PMC
Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc (2006) 1(6):2856–60.10.1038/nprot.2006.468 PubMed DOI
Franc V, Rehulka P, Medda R, Padiglia A, Floris G, Sebela M. Analysis of the glycosylation pattern of plant copper amine oxidases by MALDI-TOF/TOF MS coupled to a manual chromatographic separation of glycans and glycopeptides. Electrophoresis (2013) 34(16):2357–67.10.1002/elps.201200622 PubMed DOI
Hong L, Webb TJ, Wilkes DS. Dendritic cell-T cell interactions: CD8 alpha alpha expressed on dendritic cells regulates T cell proliferation. Immunol Lett (2007) 108(2):174–8.10.1016/j.imlet.2006.12.003 PubMed DOI PMC
Cerny J, Stockinger H, Horejsi V. Noncovalent associations of T lymphocyte surface proteins. Eur J Immunol (1996) 26(10):2335–43.10.1002/eji.1830261010 PubMed DOI
Otahal P, Pata S, Angelisova P, Horejsi V, Brdicka T. The effects of membrane compartmentalization of csk on TCR signaling. Biochim Biophys Acta (2011) 1813(2):367–76.10.1016/j.bbamcr.2010.12.003 PubMed DOI
Filipp D, Ballek O, Manning J. Lck, membrane microdomains, and TCR triggering machinery: defining the new rules of engagement. Front Immunol (2012) 3:155.10.3389/fimmu.2012.00155 PubMed DOI PMC
Ballek O, Valecka J, Manning J, Filipp D. The pool of preactivated Lck in the initiation of T-cell signaling: a critical re-evaluation of the Lck standby model. Immunol Cell Biol (2015) 93(4):384–95.10.1038/icb.2014.100 PubMed DOI
Foley KS, Young PW. The non-muscle functions of actinins: an update. Biochem J (2014) 459(1):1–13.10.1042/BJ20131511 PubMed DOI
Jury EC, Kabouridis PS, Flores-Borja F, Mageed RA, Isenberg DA. Altered lipid raft-associated signaling and ganglioside expression in T lymphocytes from patients with systemic lupus erythematosus. J Clin Invest (2004) 113(8):1176–87.10.1172/JCI20345 PubMed DOI PMC
Louie RR, King CS, MacAuley A, Marth JD, Perlmutter RM, Eckhart W, et al. p56lck protein-tyrosine kinase is cytoskeletal and does not bind to polyomavirus middle T antigen. J Virol (1988) 62(12):4673–9. PubMed PMC
Hashimoto-Tane A, Yokosuka T, Sakata-Sogawa K, Sakuma M, Ishihara C, Tokunaga M, et al. Dynein-driven transport of T cell receptor microclusters regulates immune synapse formation and T cell activation. Immunity (2011) 34(6):919–31.10.1016/j.immuni.2011.05.012 PubMed DOI
Liu SK, Berry DM, McGlade CJ. The role of Gads in hematopoietic cell signalling. Oncogene (2001) 20(44):6284–90.10.1038/sj.onc.1204771 PubMed DOI
Otey CA, Carpen O. Alpha-actinin revisited: a fresh look at an old player. Cell Motil Cytoskeleton (2004) 58(2):104–11.10.1002/cm.20007 PubMed DOI
Grunewald TG, Butt E. The LIM and SH3 domain protein family: structural proteins or signal transducers or both? Mol Cancer (2008) 7:31.10.1186/1476-4598-7-31 PubMed DOI PMC
Kim ST, Shin YD, Brazin K, Mallis RJ, Sun ZYJ, Wagner G, et al. TCR mechanobiology: torques and tunable structures linkec to early T cell signaling. Front Immunol (2012) 3:76.10.3389/fimmu.2012.00076 PubMed DOI PMC
Hoessli D, Rungger-Brandle E, Jockusch BM, Gabbiani G. Lymphocyte alpha-actinin. Relationship to cell membrane and co-capping with surface receptors. J Cell Biol (1980) 84(2):305–14.10.1083/jcb.84.2.305 PubMed DOI PMC
Nebl T, Pestonjamasp KN, Leszyk JD, Crowley JL, Oh SW, Luna EJ. Proteomic analysis of a detergent-resistant membrane skeleton from neutrophil plasma membranes. J Biol Chem (2002) 277(45):43399–409.10.1074/jbc.M205386200 PubMed DOI
Okkenhaug K, Vanhaesebroeck B. PI3K in lymphocyte development, differentiation and activation. Nat Rev Immunol (2003) 3(4):317–30.10.1038/nri1056 PubMed DOI
Egerton M, Moritz RL, Druker B, Kelso A, Simpson RJ. Identification of the 70kD heat shock cognate protein (Hsc70) and alpha-actinin-1 as novel phosphotyrosine-containing proteins in T lymphocytes. Biochem Biophys Res Commun (1996) 224(3):666–74.10.1006/bbrc.1996.1082 PubMed DOI
Greenwood JA, Theibert AB, Prestwich GD, Murphy-Ullrich JE. Restructuring of focal adhesion plaques by PI 3-kinase: regulation by PtdIns (3,4,5)-P-3 binding to alpha-actinin. J Cell Biol (2000) 150(3):627–41.10.1083/jcb.150.3.627 PubMed DOI PMC
Sjoblom B, Salmazo A, Djinovic-Carugo K. alpha-actinin structure and regulation. Cell Mol Life Sci (2008) 65(17):2688–701.10.1007/s00018-008-8080-8 PubMed DOI PMC
Ellis JH, Ashman C, Burden MN, Kilpatrick KE, Morse MA, Hamblin PA. GRID: a novel Grb-2-related adapter protein that interacts with the activated T cell costimulatory receptor CD28. J Immunol (2000) 164(11):5805–14.10.4049/jimmunol.164.11.5805 PubMed DOI
Salmon WC, Adams MC, Waterman-Storer CM. Dual-wavelength fluorescent speckle microscopy reveals coupling of microtubule and actin movements in migrating cells. J Cell Biol (2002) 158(1):31–7.10.1083/jcb.200203022 PubMed DOI PMC
Zaoui K, Honore S, Isnardon D, Braguer D, Badache A. Memo-RhoA-mDia1 signaling controls microtubules, the actin network, and adhesion site formation in migrating cells. J Cell Biol (2008) 183(3):401–8.10.1083/jcb.200805107 PubMed DOI PMC
Henry WI, Dubois J, Quick QA. The microtubule inhibiting agent epothilone B antagonizes glioma cell motility associated with reorganization of the actin-binding protein alpha-actinin 4. Oncol Rep (2011) 25(3):887–93.10.3892/or.2011.1145 PubMed DOI
Srinivas V, Murata-Hori M. Proper positioning of the cleavage furrow requires alpha-actinin to regulate the specification of different populations of microtubules. J Cell Sci (2012) 125(Pt 20):4713–9.10.1242/jcs.107409 PubMed DOI
Roca-Cusachs P, del Rio A, Puklin-Faucher E, Gauthier NC, Biais N, Sheetz MP. Integrin-dependent force transmission to the extracellular matrix by alpha-actinin triggers adhesion maturation. Proc Natl Acad Sci U S A (2013) 110(15):E1361–70.10.1073/pnas.1220723110 PubMed DOI PMC
Comrie WA, Burkhardt JK. Action and traction: cytoskeletal control of receptor triggering at the immunological synapse. Front Immunol (2016) 7:68.10.3389/fimmu.2016.00068 PubMed DOI PMC