Synchrospora gen. nov., a New Peronosporaceae Genus with Aerial Lifestyle from a Natural Cloud Forest in Panama
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/15_003/0000453
Czech Ministry for Education, Youth and Sports and the European Regional Development Fund
PubMed
37233228
PubMed Central
PMC10218844
DOI
10.3390/jof9050517
PII: jof9050517
Knihovny.cz E-zdroje
- Klíčová slova
- adaptation, caducity, canopy, evolution, homothallic, leaf pathogen, oomycete, phylogeny, synchronous sporulation, tropical,
- Publikační typ
- časopisecké články MeSH
During a survey of Phytophthora diversity in Panama, fast-growing oomycete isolates were obtained from naturally fallen leaves of an unidentified tree species in a tropical cloud forest. Phylogenetic analyses of sequences from the nuclear ITS, LSU and ßtub loci and the mitochondrial cox1 and cox2 genes revealed that they belong to a new species of a new genus, officially described here as Synchrospora gen. nov., which resided as a basal genus within the Peronosporaceae. The type species S. medusiformis has unique morphological characteristics. The sporangiophores show determinate growth, multifurcating at the end, forming a stunted, candelabra-like apex from which multiple (8 to >100) long, curved pedicels are growing simultaneously in a medusa-like way. The caducous papillate sporangia mature and are shed synchronously. The breeding system is homothallic, hence more inbreeding than outcrossing, with smooth-walled oogonia, plerotic oospores and paragynous antheridia. Optimum and maximum temperatures for growth are 22.5 and 25-27.5 °C, consistent with its natural cloud forest habitat. It is concluded that S. medusiformis as adapted to a lifestyle as a canopy-dwelling leaf pathogen in tropical cloud forests. More oomycete explorations in the canopies of tropical rainforests and cloud forests are needed to elucidate the diversity, host associations and ecological roles of oomycetes and, in particular, S. medusiformis and possibly other Synchrospora taxa in this as yet under-explored habitat.
Faculty of Forestry University of Belgrade Kneza Višeslava 1 11030 Belgrade Serbia
Phytophthora Research and Consultancy 83131 Nußdorf Germany
Smithsonian Tropical Research Institute Apartado Panamá Panama City 0843 03092 Panama
USDA APHIS Plant Protection and Quarantine 4700 River Road Riverdale MD 20737 USA
Zobrazit více v PubMed
Dick M.W. Straminipilous fungi: Systematics of the Peronosporomycetes Including Accounts of the Marine Straminipilous Protists, the Plasmodiophorids and Similar Organisms. Kluwer; Dordrecht, The Netherlands: 2001.
Hulvey J., Telle S., Nigrelli L., Lamour K., Thines M. Salisapiliaceae—A new family of oomycetes from marsh grass litter of southeastern North America. Persoonia. 2010;25:109–116. doi: 10.3767/003158510X551763. PubMed DOI PMC
Beakes G.W., Honda T., Thines M. Systematics of the Stramenipila: Labyrinthulomycota, Hyphochytridiomycota, and Oomycota. In: McLaughlin D.J., Spatafora J., editors. Systematics and Evolution. Springer; New York, NY, USA: 2014. pp. 39–97.
Thines M., Choi Y.-J. Evolution, diversity and taxonomy of the Peronosporaceae, with focus on the genus Peronospora. Phytopathology. 2016;106:6–18. doi: 10.1094/PHYTO-05-15-0127-RVW. PubMed DOI
Bennett R.M., de Cock A.W.A.M., Lévesque A., Thines M. Calycofera gen. nov., an estuarine sister taxon to Phytopythium, Peronosporaceae. Mycol. Prog. 2017;16:947–954. doi: 10.1007/s11557-017-1326-9. DOI
Jung T., Scanu B., Bakonyi J., Seress D., Kovács G.M., Durán A., Sanfuentes von Stowasser E., Schena L., Mosca S., Thu P.Q., et al. Nothophytophthora gen. nov., a new sister genus of Phytophthora from natural and semi-natural ecosystems. Persoonia. 2017;39:143–174. doi: 10.3767/persoonia.2017.39.07. PubMed DOI PMC
Bourret T.B., Choudhury R.A., Mehl H.K., Blomquist C.L., McRoberts N., Rizzo D.M. Multiple origins of downy mildews and mito-nuclear discordance within the paraphyletic genus Phytophthora. PLoS ONE. 2018;13:e0192502. doi: 10.1371/journal.pone.0192502. PubMed DOI PMC
Scanu B., Jung T., Masigol H., Linaldeddu B.T., Horta Jung M., Brandano A., Mostowfizadeh-Ghalamfarsa R., Janoušek J., Riolo M., Cacciola S.O. Phytophthora heterospora sp. nov., a new pseudoconidia-producing sister species of P. palmivora. J. Fungi. 2021;7:870. doi: 10.3390/jof7100870. PubMed DOI PMC
Maia C., Horta Jung M., Carella G., Milenković I., Janoušek J., Tomšovský M., Mosca S., Schena L., Cravador A., Moricca S., et al. Eight new Halophytophthora species from marine and brackish-water ecosystems in Portugal and an updated phylogeny for the genus. Persoonia. 2022;48:54–90. doi: 10.3767/persoonia.2022.48.02. PubMed DOI PMC
Cooke D.E.L., Drenth A., Duncan J.M., Wagels G., Brasier C.M. A molecular phylogeny of Phytophthora and related oomycetes. Fungal Genet. Biol. 2000;30:17–32. doi: 10.1006/fgbi.2000.1202. PubMed DOI
Riethmüller A., Voglmayr H., Göker M., Weiß M., Oberwinkler F. Phylogenetic relationships of the downy mildews (Peronosporales) and related groups based on nuclear large subunit ribosomal DNA sequences. Mycologia. 2002;94:834–849. doi: 10.1080/15572536.2003.11833177. PubMed DOI
Kroon L.P.N.M., Bakker F.T., van den Bosch G.B.M., Bonants P.J.M., Flier W.G. Phylogenetic analysis of Phytophthora species based on mitochondrial and nuclear DNA sequences. Fungal Genet. Biol. 2004;41:766–782. doi: 10.1016/j.fgb.2004.03.007. PubMed DOI
Göker M., Voglmayer H., Riethmüller A., Oberwinkler F. How do obligate parasites evolve? A multi–gene phylogenetic analysis of downy mildews. Fungal Genet. Biol. 2007;44:105–122. doi: 10.1016/j.fgb.2006.07.005. PubMed DOI
Runge F., Telle S., Ploch S., Savory E., Day B., Sharma R., Thines M. The inclusion of downy mildews in a multi–locus–dataset and its reanalysis reveals a high degree of paraphyly in Phytophthora. IMA Fungus. 2011;2:163–171. doi: 10.5598/imafungus.2011.02.02.07. PubMed DOI PMC
Martin F.N., Blair J.E., Coffey M.D. A combined mitochondrial and nuclear multilocus phylogeny of the genus Phytophthora. Fungal Genet. Biol. 2014;66:19–32. doi: 10.1016/j.fgb.2014.02.006. PubMed DOI
Brasier C., Scanu B., Cooke D., Jung T. Phytophthora: An ancient, historic, biologically and structurally cohesive and evolutionarily successful generic concept in need of preservation. IMA Fungus. 2022;13:12. doi: 10.1186/s43008-022-00097-z. PubMed DOI PMC
Briard M., Dutertre M., Rouxel F., Brygoo Y. Ribosomal RNA sequence divergence within the Pythiaceae. Mycol. Res. 1995;99:1119–1127. doi: 10.1016/S0953-7562(09)80782-X. DOI
de Cock A.W.A.M., Lévesque C.A. New species of Pythium and Phytophthora. Stud. Mycol. 2004;50:481–487.
Villa N.O., Kageyama K., Asano T., Suga H. Phylogenetic relationships of Pythium and Phytophthora species based on ITS rDNA, cytochrome oxidase II and beta–tubulin gene sequences. Mycologia. 2006;98:410–422. PubMed
Bala K., Robideau G.P., Lévesque C.A., de Cock A.W.A.M., Abad Z.G., Lodhi A.M., Shahzad S., Ghaffar A., Coffey M.D. Phytopythium Abad, de Cock, Bala, Robideau, Lodhi & Lévesque, gen. nov. and Phytopythium sindhum Lodhi, Shahzad & Lévesque, sp. nov. Fungal Planet 49. Persoonia. 2010;24:136–137.
Uzuhashi S., Tojo M., Kakishima M. Phylogeny of the genus Pythium and description of new genera. Mycoscience. 2010;51:337–365. doi: 10.47371/mycosci.MYC51337. DOI
de Cock A.W.A.M., Lodhi A.M., Rintoul T.L., Bala K., Robideau G.P., Abad Z.G., Coffey M.D., Shahzad S., Lévesque C.A. Phytopythium: Molecular phylogeny and systematics. Persoonia. 2015;34:25–39. doi: 10.3767/003158515X685382. PubMed DOI PMC
Nguyen H.D.T., Dodge A., Dadej K., Rintoul T.L., Ponomareva E., Martin F.N., de Cock A.W.A.M., Lévesque C.A., Redhead S.A., Spies C.F.J. Whole genome sequencing and phylogenomic analysis show support for the splitting of genus Pythium. Mycologia. 2022;114:501–515. doi: 10.1080/00275514.2022.2045116. PubMed DOI
Gäumann E.A. The Fungi. A Description of Their Morphological Features and Evolutionary Development. Hafner Publishing; New York, NY, USA: London, UK: 1952.
Newell S.Y., Fell J.W. Do halophytophthoras (marine Pythiaceae) rapidly occupy fallen leaves by intraleaf mycelial growth? Can. J. Bot. 1995;73:761–765. doi: 10.1139/b95-083. DOI
Erwin D.C., Ribeiro O.K. Phytophthora Diseases Worldwide. APS Press; St. Paul, MN, USA: 1996.
Leaño E.M., Jones E.B.G., Vrijmoed L.L.P. Why are Halophytophthora species well adapted to mangrove habitats? Fungal Divers. 2000;5:131–151.
Nakagiri A. Ecology and biodiversity of Halophytophthora species. Fungal Divers. 2000;5:153–164.
Brasier C.M., Cooke D.E.L., Duncan J.M., Hansen E.M. Multiple new phenotypic taxa from trees and riparian ecosystems in Phytophthora gonapodyides–P. megasperma ITS Clade 6, which tend to be high-temperature tolerant and either inbreeding or sterile. Mycol. Res. 2003;107:277–290. doi: 10.1017/S095375620300738X. PubMed DOI
Jung T., Stukely M.J.C., Hardy G.E.S.J., White D., Paap T., Dunstan W.A., Burgess T.I. Multiple new Phytophthora species from ITS Clade 6 associated with natural ecosystems in Australia: Evolutionary and ecological implications. Persoonia. 2011;26:13–39. doi: 10.3767/003158511X557577. PubMed DOI PMC
Jung T., Milenković I., Corcobado T., Májek T., Janoušek J., Kudláček T., Tomšovský M., Nagy Z., Durán A., Tarigan M., et al. Extensive morphological and behavioural diversity among fourteen new and seven described species in Phytophthora Clade 10 and its evolutionary implications. Persoonia. 2022;49:1–57. doi: 10.3767/persoonia.2022.49.01. PubMed DOI PMC
Bennett R.M., Nam B., Dedeles G.R., Thines M. Phytopythium leanoi sp. nov. and Phytopythium dogmae sp. nov., Phytopythium species associated with mangrove leaf litter from the Philippines. Acta Mycol. 2017;52:1103. doi: 10.5586/am.1103. DOI
Jesus A.L., Marano A.V., Gonçalves D.R., Jerônimo G.H., Pires-Zottarelli C.L.A. Two new species of Halophytophthora from Brazil. Mycol. Prog. 2019;18:1411–1421. doi: 10.1007/s11557-019-01523-0. DOI
Chen Q., Bakhshi M., Balci Y., Broders K.D., Cheewangkoon R., Chen S.F., Fan X.L., Gramaje D., Halleen F., Horta Jung M., et al. Genera of phytopathogenic fungi: GOPHY 4. Stud. Mycol. 2022;101:417–564. doi: 10.3114/sim.2022.101.06. PubMed DOI PMC
Beakes G.W., Glockling S.L., Sekimoto S. The evolutionary phylogeny of the oomycete “fungi”. Protoplasma. 2012;249:3–19. doi: 10.1007/s00709-011-0269-2. PubMed DOI
O’Hanlon R., Destefanis M., Milenković I., Tomšovský M., Janoušek J., Bellgard S.E., Weir B.S., Kudláček T., Horta Jung M., Jung T. Two new Nothophytophthora species from streams in Ireland and Northern Ireland: Nothophytophthora irlandica and N. lirii sp. nov. PLoS ONE. 2021;16:e0250527. doi: 10.1371/journal.pone.0250527. PubMed DOI PMC
Brasier C.M., Robredo F., Ferraz J.F.P. Evidence for Phytophthora cinnamomi involvement in Iberian oak decline. Plant Pathol. 1993;42:140–145. doi: 10.1111/j.1365-3059.1993.tb01482.x. DOI
Brasier C.M., Kirk S.A., Delcan J., Cooke D.E.L., Jung T., In’T Veld W.A.M. Phytophthora alni sp. nov. and its variants: Designation of emerging heteroploid hybrid pathogens spreading on Alnus trees. Mycol. Res. 2004;108:1172–1184. doi: 10.1017/S0953756204001005. PubMed DOI
Jung T., Blaschke H., Neumann P. Isolation, identification and pathogenicity of Phytophthora species from declining oak stands. Eur. J. For. Pathol. 1996;26:253–272. doi: 10.1111/j.1439-0329.1996.tb00846.x. DOI
Jung T., Blaschke H., Osswald W. Involvement of soilborne Phytophthora species in Central European oak decline and the effect of site factors on the disease. Plant Pathol. 2000;49:706–718. doi: 10.1046/j.1365-3059.2000.00521.x. DOI
Jung T., Vettraino A.M., Cech T.L., Vannini A. The impact of invasive Phytophthora species on European forests. In: Lamour K., editor. Phytophthora: A Global Perspective. CABI; Wallingford, UK: 2013. pp. 146–158.
Jung T., Orlikowski L., Henricot B., Abad-Campos P., Aday A.G., Aguín Casal O., Bakonyi J., Cacciola S.O., Cech T., Chavarriaga D., et al. Widespread Phytophthora infestations in European nurseries put forest, semi–natural and horticultural ecosystems at high risk of Phytophthora diseases. For. Pathol. 2016;46:134–163. doi: 10.1111/efp.12239. DOI
Jung T., Pérez-Sierra A., Durán A., Horta Jung M., Balci Y., Scanu B. Canker and decline diseases caused by soil- and airborne Phytophthora species in forests and woodlands. Persoonia. 2018;40:182–220. doi: 10.3767/persoonia.2018.40.08. PubMed DOI PMC
Jung T., Durán A., von Stowasser E.S., Schena L., Mosca S., Fajardo S., González M., Navarro Ortega A.D., Bakonyi J., Seress D., et al. Diversity of Phytophthora species in Valdivian rainforests and association with severe dieback symptoms. For. Pathol. 2018;48:e12443. doi: 10.1111/efp.12443. DOI
Jung T., Scanu B., Brasier C.M., Webber J., Milenković I., Corcobado T., Tomšovský T., Pánek M., Bakonyi J., Maia C., et al. A survey in natural forest ecosystems of Vietnam reveals high diversity of both new and described Phytophthora taxa including P. ramorum. Forests. 2020;11:93. doi: 10.3390/f11010093. DOI
Hansen E.M., Goheen D.J., Jules E.S., Ullian B. Managing Port–Orford–Cedar and the introduced pathogen Phytophthora lateralis. Plant Dis. 2000;84:4–14. doi: 10.1094/PDIS.2000.84.1.4. PubMed DOI
Hansen E.M., Reeser P.W., Sutton W. Phytophthora beyond agriculture. Annu. Rev. Phytopathol. 2012;50:359–378. doi: 10.1146/annurev-phyto-081211-172946. PubMed DOI
Rizzo D.M., Garbelotto M., Davidson J.M., Slaughter G.W., Koike S.T. Phytophthora ramorum as the cause of extensive mortality of Quercus spp. and Lithocarpus densiflorus in California. Plant Dis. 2002;86:205–214. doi: 10.1094/PDIS.2002.86.3.205. PubMed DOI
Vettraino A.M., Barzanti G.P., Bianco M.C., Ragazzi A., Capretti P., Paoletti E., Luisi N., Anselmi N., Vannini A. Occurrence of Phytophthora species in oak stands in Italy and their association with declining oak trees. For. Pathol. 2002;32:19–28. doi: 10.1046/j.1439-0329.2002.00264.x. DOI
Vettraino A.M., Morel O., Perlerou C., Robin C., Diamandis S., Vannini A. Occurrence and distribution of Phytophthora species associated with Ink Disease of chestnut in Europe. Eur. J. Plant Pathol. 2005;111:169–180. doi: 10.1007/s10658-004-1882-0. DOI
Balci Y., Halmschlager E. Incidence of Phytophthora species in oak forests in Austria and their possible involvement in oak decline. For. Pathol. 2003;33:157–174. doi: 10.1046/j.1439-0329.2003.00318.x. DOI
Balci Y., Halmschlager E. Phytophthora species in oak ecosystems in Turkey and their association with declining oak trees. Plant Pathol. 2003;52:694–702. doi: 10.1111/j.1365-3059.2003.00919.x. DOI
Jönsson U., Lundberg L., Sonesson K., Jung T. First records of soilborne Phytophthora species in Swedish oak forests. For. Pathol. 2003;33:175–179. doi: 10.1046/j.1439-0329.2003.00320.x. DOI
Jung T., Blaschke M. Phytophthora root and collar rot of alders in Bavaria: Distribution, modes of spread and possible management strategies. Plant Pathol. 2004;53:197–208. doi: 10.1111/j.0032-0862.2004.00957.x. DOI
Hardham A.R. Phytophthora cinnamomi. Mol. Plant Pathol. 2005;6:589–604. doi: 10.1111/j.1364-3703.2005.00308.x. PubMed DOI
Balci Y., Balci S., Eggers J., MacDonald W.L., Juzwik J., Long R.P., Gottschalk K.W. Phytophthora spp. associated with forest soils in Eastern and North–Central U.S. oak ecosystems. Plant Dis. 2007;91:705–710. doi: 10.1094/PDIS-91-6-0705. PubMed DOI
Balci Y., Long R.P., Mansfield M., Balser D., MacDonald W.L. Involvement of Phytophthora species in white oak (Quercus alba) decline in southern Ohio. For. Pathol. 2010;40:430–442. doi: 10.1111/j.1439-0329.2009.00617.x. DOI
Greslebin A., Hansen E.M., Sutton W. Phytophthora austrocedrae sp. nov., a new species associated with Austrocedrus chilensis mortality in Patagonia (Argentina) Mycol. Res. 2007;111:308–316. doi: 10.1016/j.mycres.2007.01.008. PubMed DOI
Durán A., Gryzenhout M., Slippers B., Ahumada R., Rotella A., Flores F., Wingfield B.D., Wingfield M.J. Phytophthora pinifolia sp. nov. associated with a serious needle disease of Pinus radiata in Chile. Plant Pathol. 2008;57:715–727. doi: 10.1111/j.1365-3059.2008.01893.x. DOI
Jung T. Beech decline in Central Europe driven by the interaction between Phytophthora infections and climatic extremes. For. Pathol. 2009;39:73–94. doi: 10.1111/j.1439-0329.2008.00566.x. DOI
Jung T., Burgess T.I. Re-evaluation of Phytophthora citricola isolates from multiple woody hosts in Europe and North America reveals a new species, Phytophthora plurivora sp. nov. Persoonia. 2009;22:95–110. doi: 10.3767/003158509X442612. PubMed DOI PMC
Brasier C., Webber J. Sudden larch death. Nature. 2010;466:824–825. doi: 10.1038/466824a. PubMed DOI
Green S., Brasier C.M., Schlenzig A., McCracken A., MacAskill G.A., Wilson M., Webber J.F. The destructive invasive pathogen Phytophthora lateralis found on Chamaecyparis lawsoniana across the UK. For. Pathol. 2013;43:19–28.
Green S., Elliot M., Armstrong A., Hendry S.J. Phytophthora austrocedrae emerges as a serious threat to juniper (Juniperus communis) in Britain. Plant Pathol. 2015;64:456–466. doi: 10.1111/ppa.12253. DOI
Pérez-Sierra A., López-García C., León M., García-Jiménez J., Abad-Campos P., Jung T. Previously unrecorded low temperature Phytophthora species associated with Quercus decline in a Mediterranean forest in Eastern Spain. For. Pathol. 2013;43:331–339. doi: 10.1111/efp.12037. DOI
Pérez-Sierra A., Chitty R., Eacock A., Jones B., Biddle M., Crampton M., Lewis A., Olivieri L., Webber J.F. First report of Phytophthora pluvialis in Europe causing resinous cankers on western hemlock. New Dis. Rep. 2022;45:e12064. doi: 10.1002/ndr2.12064. DOI
Ginetti B., Moricca S., Squires J.N., Cooke D.E.L., Ragazzi A., Jung T. Phytophthora acerina sp. nov., a new species causing bleeding cankers and dieback of Acer pseudoplatanus trees in planted forests in Northern Italy. Plant Pathol. 2014;63:858–876. doi: 10.1111/ppa.12153. DOI
Scanu B., Linaldeddu B.T., Deidda A., Jung T. Diversity of Phytophthora species from declining Mediterranean maquis vegetation, including two new species, Phytophthora crassamura and P. ornamentata sp. nov. PLoS ONE. 2015;10:e0143234. doi: 10.1371/journal.pone.0143234. PubMed DOI PMC
Scanu B., Webber J.F. Dieback and mortality of Nothofagus in Britain: Ecology, pathogenicity and sporulation potential of the causal agent Phytophthora pseudosyringae. Plant Pathol. 2016;65:26–36. doi: 10.1111/ppa.12399. DOI
Milenković I., Keča N., Karadžić D., Radulović Z., Nowakowska J.A., Oszako T., Sikora K., Corcobado T., Jung T. Isolation and pathogenicity of Phytophthora species from poplar plantations in Serbia. Forests. 2018;9:330. doi: 10.3390/f9060330. DOI
Corcobado T., Cech T.L., Brandstetter M., Daxer A., Hüttler C., Kudláček T., Horta Jung M., Jung T. Decline of European beech in Austria: Involvement of Phytophthora spp. and contributing biotic and abiotic factors. Forests. 2020;11:895. doi: 10.3390/f11080895. DOI
Jung T., Hansen E.M., Winton L., Oßwald W., Delatour C. Three new species of Phytophthora from European oak forests. Mycol. Res. 2002;106:397–411. doi: 10.1017/S0953756202005622. DOI
Jung T., Chang T.T., Bakonyi J., Seress D., Pérez-Sierra A., Yang X., Hong C., Scanu B., Fu C.H., Hsueh K.-L., et al. Diversity of Phytophthora species in natural ecosystems of Taiwan and association with disease symptoms. Plant Pathol. 2017;66:194–211. doi: 10.1111/ppa.12564. DOI
Jung T., Horta Jung M., Scanu B., Seress D., Kovács D.M., Maia C., Pérez-Sierra A., Chang T.-T., Chandelier A., Heungens A., et al. Six new Phytophthora species from ITS Clade 7a including two sexually functional heterothallic hybrid species detected in natural ecosystems in Taiwan. Persoonia. 2017;38:100–135. doi: 10.3767/003158517X693615. PubMed DOI PMC
Jung T., Horta Jung M., Cacciola S.O., Cech T., Bakonyi J., Seress D., Mosca S., Schena L., Seddaiu S., Pane A., et al. Multiple new cryptic pathogenic Phytophthora species from Fagaceae forests in Austria, Italy and Portugal. IMA Fungus. 2017;8:219–244. doi: 10.5598/imafungus.2017.08.02.02. PubMed DOI PMC
Jung T., La Spada F., Pane A., Aloi F., Evoli M., Horta Jung M., Scanu B., Faedda R., Rizza C., Puglisi I., et al. Diversity and distribution of Phytophthora species in protected natural areas in Sicily. Forests. 2019;10:259. doi: 10.3390/f10030259. DOI
Zeng H.-C., Ho H.-H., Zheng F.-C. A survey of Phytophthora species on Hainan Island of South China. J. Phytopathol. 2009;157:33–39. doi: 10.1111/j.1439-0434.2008.01441.x. DOI
Brasier C.M., Vettraino A.M., Chang T.T., Vannini A. Phytophthora lateralis discovered in an old growth Chamaecyparis forest in Taiwan. Plant Pathol. 2010;59:595–603. doi: 10.1111/j.1365-3059.2010.02278.x. DOI
Rea A.J., Burgess T.I., Hardy G.E.S.J., Stukely M.J.C., Jung T. Two novel and potentially endemic species of Phytophthora associated with episodic dieback of kwongan vegetation in the south–west of Western Australia. Plant Pathol. 2011;60:1055–1068. doi: 10.1111/j.1365-3059.2011.02463.x. DOI
Reeser P.W., Sutton W., Hansen E.M., Remigi P., Adams G.C. Phytophthora species in forest streams in Oregon and Alaska. Mycologia. 2011;103:22–35. doi: 10.3852/10-013. PubMed DOI
Vettraino A.M., Brasier C.M., Brown A.V., Vannini A. Phytophthora himalsilva sp. nov. an unusually phenotypically variable species from a remote forest in Nepal. Fungal Biol. 2011;115:275–287. doi: 10.1016/j.funbio.2010.12.013. PubMed DOI
Huai W.X., Tian G., Hansen E.M., Zhao W.-X., Goheen E.M., Grünwald N.J., Cheng C. Identification of Phytophthora species baited and isolated from forest soil and streams in northwestern Yunnan province, China. For. Pathol. 2013;43:87–103. doi: 10.1111/efp.12015. DOI
Huberli D., Hardy G.E.S.J., White D., Williams N., Burgess T.I. Fishing for Phytophthora from Western Australia’ s waterways: A distribution and diversity survey. Australas. Plant Pathol. 2013;42:251–260. doi: 10.1007/s13313-012-0195-6. DOI
Oh E., Gryzenhout M., Wingfield B.D., Wingfield M.J., Burgess T.I. Surveys of soil and water reveal a goldmine of Phytophthora diversity in South African natural ecosystems. IMA Fungus. 2013;4:123–131. doi: 10.5598/imafungus.2013.04.01.12. PubMed DOI PMC
Shrestha S.K., Zhou Y., Lamour K. Oomycetes baited from streams in Tennessee 2010–2012. Mycologia. 2013;105:1516–1523. doi: 10.3852/13-010. PubMed DOI
Català S., Peréz–Sierra A., Abad-Campos P. The use of genus–specific amplicon pyrosequencing to assess Phytophthora species diversity using eDNA from soil and water in Northern Spain. PLoS ONE. 2015;10:e0119311. doi: 10.1371/journal.pone.0119311. PubMed DOI PMC
Brazee N.J., Wick R.L., Hulvey J.P. Phytophthora species recovered from the Connecticut River Valley in Massachusetts, USA. Mycologia. 2016;108:6–19. doi: 10.3852/15-038. PubMed DOI
Dunstan W.A., Howard K., Hardy G.E.S.J., Burgess T.I. An overview of Australia’s Phytophthora species assemblage in natural ecosystems recovered from a survey in Victoria. IMA Fungus. 2016;7:47–58. doi: 10.5598/imafungus.2016.07.01.04. PubMed DOI PMC
O’Hanlon R., Choiseul J., Corrigan M., Catarame T., Destefanis M. Diversity and detections of Phytophthora species from trade and nontrade environments in Ireland. Bull. OEPP. 2016;46:594–602. doi: 10.1111/epp.12331. DOI
Burgess T.I., White D., McDougall K.M., Garnas J., Dunstan W.A., Català S., Carnegie A.J., Worboys S., Cahill D., Vettraino A.-M., et al. Distribution and diversity of Phytophthora across Australia. Pac. Conserv. Biol. 2017;23:1–13. doi: 10.1071/PC16032. DOI
Burgess T.I., Simamora A.V., White D., Williams B., Schwager M., Stukely M.J.C., Hardy G.E.S.J. New species from Phytophthora Clade 6a: Evidence for recent radiation. Persoonia. 2018;41:1–17. doi: 10.3767/persoonia.2018.41.01. PubMed DOI PMC
Burgess T.I., Dang Q.N., Le B.V., Pham N.Q., White D., Pham T.Q. Phytophthora acaciivora sp. nov. associated with dying Acacia mangium in Vietnam. FUSE. 2020;6:243–252. doi: 10.3114/fuse.2020.06.11. PubMed DOI PMC
Bose T., Hulbert J.M., Burgess T.I., Paap T., Roets F., Wingfield M.J. Two novel Phytophthora species from the southern tip of Africa. Mycol. Prog. 2021;20:755–767. doi: 10.1007/s11557-021-01702-y. DOI
Dang Q.N., Pham T.Q., Arentz F., Hardy G.E.S.J., Burgess T.I. New Phytophthora species in clade 2a from the Asia-Pacific region including a re-examination of P. colocasiae and P. meadii. Mycol. Prog. 2021;20:111–129. doi: 10.1007/s11557-020-01656-7. DOI
Katoh K., Standley D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC
Lanfear R., Frandsen P., Wright A., Senfeld T., Calcott B. PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 2016;34:772–773. doi: 10.1093/molbev/msw260. PubMed DOI
Kozlov A., Darriba D., Flouri T., Morel B., Stamatakis A. RAxML-NG: A fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics. 2019;35:4453–4455. doi: 10.1093/bioinformatics/btz305. PubMed DOI PMC
Pattengale N., Alipour M., Bininda-Emonds O., Moret B., Stamatakis A. How many bootstrap replicates are necessary? J. Comput. Biol. 2010;17:337–354. doi: 10.1089/cmb.2009.0179. PubMed DOI
Lemoine F., Domelevo Entfellner J., Wilkinson E., Correia D., Dávila Felipe M., De Oliveira T., Gascuel O. Renewing Felsenstein’s phylogenetic bootstrap in the era of big data. Nature. 2018;556:452–456. doi: 10.1038/s41586-018-0043-0. PubMed DOI PMC
Sukumaran J., Holder M.T. DendroPy: A Python library for phylogenetic computing. Bioinformatics. 2010;26:1569–1571. doi: 10.1093/bioinformatics/btq228. PubMed DOI
Müller N., Bouckaert R. Adaptive parallel tempering for BEAST 2. bioRxiv. 2019:603514. doi: 10.1101/603514. DOI
Kone A., Kofke D.A. Selection of temperature intervals for parallel-tempering simulations. J. Chem. Phys. 2005;122:1–2. doi: 10.1063/1.1917749. PubMed DOI
Atchadé Y.F., Roberts G.O., Rosenthal J.S. Towards optimal scaling of metropolis-coupled Markov chain Monte Carlo. Stat. Comput. 2011;21:555–568. doi: 10.1007/s11222-010-9192-1. DOI
Bouckaert R., Drummond A. bModelTest: Bayesian phylogenetic site model averaging and model comparison. BMC Evol. Biol. 2017;17:42. doi: 10.1186/s12862-017-0890-6. PubMed DOI PMC
Drummond A.J., Ho S.Y.W., Phillips M.J., Rambaut A. Relaxed phylogenetics and dating with confidence. PLoS Biol. 2006;4:699–710. doi: 10.1371/journal.pbio.0040088. PubMed DOI PMC
Rambaut A., Drummond A., Xie D., Baele G., Suchard M. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 2018;67:901–904. doi: 10.1093/sysbio/syy032. PubMed DOI PMC
Stöver B.C., Müller K.F. TreeGraph 2: Combining and visualizing evidence from different phylogenetic analyses. BMC Bioinform. 2010;11:7. doi: 10.1186/1471-2105-11-7. PubMed DOI PMC
Tamura K., Stecher G., Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol. Biol. Evol. 2021;38:3022–3027. doi: 10.1093/molbev/msab120. PubMed DOI PMC
Blair J.E., Coffey M.D., Park S.-Y., Greiser D.M., Kang S. A multi-locus phylogeny for Phytophthora utilizing markers derived from complete genome sequences. Fungal Genet. Biol. 2008;45:266–277. doi: 10.1016/j.fgb.2007.10.010. PubMed DOI
Robideau G.P., de Cock A.W.A.M., Coffey M.D., Voglmayr H., Brouwer H., Bala K., Chitty D.W., Désaulniers N., Eggertson Q.A., Gachon C.M.M., et al. DNA barcoding of oomycetes with cytochrome c oxidase subunit I and internal transcribed spacer. Mol. Ecol. Resour. 2011;11:1002–1011. doi: 10.1111/j.1755-0998.2011.03041.x. PubMed DOI PMC
Martin F.N. Phylogenetic relationships among some Pythium species inferred from sequence analysis of the mitochondrially encoded cytochrome oxidase II gene. Mycologia. 2000;92:711–727. doi: 10.1080/00275514.2000.12061211. PubMed DOI
Martin F.N., Tooley P.W. Phylogenetic relationships among Phytophthora species inferred from sequence analysis of mitochondrially encoded cytochrome oxidase I and II genes. Mycologia. 2003;95:269–284. doi: 10.1080/15572536.2004.11833112. PubMed DOI
Hudspeth D.S.S., Nadler S.A., Hudspeth M.E.S. A COX2 molecular phylogeny of the Peronosporomycetes. Mycologia. 2000;92:674–684. doi: 10.1080/00275514.2000.12061208. DOI
White T.J., Bruns T., Lee S., Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M.A., Gelfand D.H., Sninsky J.J., White T.J., editors. PCR Protocols: A Guide to Methods and Applications. Academic Press; San Diego, CA, USA: 1990. pp. 315–322.
Garbelotto M.M., Lee H.K., Slaughter G., Popenuck T., Cobb F.W., Brunset T.D. Heterokaryosis is not required for virulence of Heterobasidion annosum. Mycologia. 1997;89:92–102. doi: 10.1080/00275514.1997.12026759. DOI
Hopple J.S., Vilgalys R. Phylogenetic relationships among coprinoid taxa and allies based on data from restriction site mapping of nuclear rDNA. Mycologia. 1994;86:96–107. doi: 10.1080/00275514.1994.12026378. DOI
Dick M.W. Keys to Pythium. University of Reading Press; Reading, UK: 1990.
Jung T., Cooke D.E.L., Blaschke H., Duncan J.M., Oßwald W. Phytophthora quercina sp. nov., causing root rot of European oaks. Mycol. Res. 1999;103:785–798. doi: 10.1017/S0953756298007734. DOI
Thines M. Bridging the Gulf: Phytophthora and downy mildews are connected by rare grass parasites. PLoS ONE. 2009;4:e4790. doi: 10.1371/journal.pone.0004790. PubMed DOI PMC
Barreto R.W., Dick M.W. Monograph of Basidiophora (Oomycetes) with the description of a new species. Bot. J. Linn. Soc. 1991;107:313–332. doi: 10.1111/j.1095-8339.1991.tb00226.x. DOI
Telle S., Thines M. Reclassification of an enigmatic downy mildew species on lovegrass (Eragrostis) to the new genus Eraphthora, with a key to the genera of the Peronosporaceae. Mycol. Prog. 2012;11:121–129. doi: 10.1007/s11557-010-0735-9. DOI
Thines M., Telle S., Choi Y.-J., Tan Y.P., Shivas R.G. Baobabopsis, a new genus of graminicolous downy mildews from tropical Australia, with an updated key to the genera of downy mildews. IMA Fungus. 2015;6:483–491. doi: 10.5598/imafungus.2015.06.02.12. PubMed DOI PMC
Crouch J.A., Davis W.J., Shishkoff N., Castroagudín V.L., Martin F., Michelmore R., Thines M. Peronosporaceae species causing downy mildew diseases of Poaceae, including nomenclature revisions and diagnostic resources. FUSE. 2022;9:43–86. doi: 10.3114/fuse.2022.09.05. PubMed DOI PMC
Baxter L., Tripathy S., Ishaque L., Boot N., Cabral A., Kemen E., Thines M., Ah-Fong A., Anderson R., Badejoko W., et al. Signatures of adaptation to obligate biotrophy in the Hyaloperonospora arabidopsis genome. Science. 2010;330:1549–1551. doi: 10.1126/science.1195203. PubMed DOI PMC
Falloon R.E., Sutherland P.W. Peronospora viciae on Pisum sativum: Morphology of asexual and sexual reproductive structures. Mycologia. 1996;88:473–483. doi: 10.1080/00275514.1996.12026673. DOI
Nordskog B., Gadoury D.M., Seem R.C., Hermansen A. Impact of diurnal periodicity, temperature, and light on sporulation of Bremia lactucae. Phytopathology. 2007;97:979–986. doi: 10.1094/PHYTO-97-8-0979. PubMed DOI
Kandel S.L., Mou B., Shishkoff N., Shi A., Subbarao K.V., Klosterman S.J. Spinach downy mildew: Advances in our understanding of the disease cycle and prospects for disease management. Plant Dis. 2019;103:791–803. doi: 10.1094/PDIS-10-18-1720-FE. PubMed DOI
Brown A.V., Brasier C.M. Colonization of tree xylem by Phytophthora ramorum, P. kernoviae and other Phytophthora species. Plant Pathol. 2007;56:227–241. doi: 10.1111/j.1365-3059.2006.01511.x. DOI
Dick M.A., Williams N.M., Bader M.K.-F., Gardner J.F., Bulman L.S. Pathogenicity of Phytophthora pluvialis to Pinus radiata and its relation with red needle cast disease in New Zealand. N. Z. J. For. Sci. 2014;44:6. doi: 10.1186/s40490-014-0006-7. DOI
Scanu B., Linaldeddu B.T., Peréz–Sierra A., Deidda A., Franceschini A. Phytophthora ilicis as a leaf and stem pathogen of Ilex aquifolium in Mediterranean islands. Phytopathol. Mediterr. 2014;53:480–490.
Sanfuentes E., Fajardo S., Sabag M., Hansen E., González M. Phytophthora kernoviae isolated from fallen leaves of Drymis winteri in native forest of southern Chile. Australas. Plant Dis. Notes. 2016;11:19. doi: 10.1007/s13314-016-0205-6. DOI
Jung T., Horta Jung M., Webber J.F., Kageyama K., Hieno A., Masuya H., Uematsu S., Pérez-Sierra A., Harris A.R., Forster J., et al. The destructive tree pathogen Phytophthora ramorum originates from the Laurosilva forests of East Asia. J. Fungi. 2021;7:226. doi: 10.3390/jof7030226. PubMed DOI PMC
Brasier C.M., Griffin M.J. Taxonomy of Phytophthora palmivora on cocoa. Trans. Br. Mycol. Soc. 1979;71:111–143. doi: 10.1016/S0007-1536(79)80015-7. DOI
Rajalakshmy V.K., Joseph A., Arthassery S. Occurrence of two mating groups in Phytophthora meadii causing abnormal leaf fall disease of rubber in South India. Trans. Br. Mycol. Soc. 1985;85:723–725. doi: 10.1016/S0007-1536(85)80269-2. DOI
Drenth A., Guest D.I. Diversity and Management of Phytophthora in Southeast Asia. Australian Centre for International Agricultural Research; Canberra, Australia: 2004.
Cerqueira A.O., Luz E.D.M.N., De Souza J.T. First record of Phytophthora tropicalis causing leaf blight and fruit rot on breadfruit in Brazil. Plant Pathol. 2006;55:296. doi: 10.1111/j.1365-3059.2006.01332.x. DOI
Guest D.I. Black pod: Diverse pathogens with a global impact on cocoa yield. Phytopathology. 2007;97:1650–1653. doi: 10.1094/PHYTO-97-12-1650. PubMed DOI
Akrofi A.Y., Amoako-Atta I., Assuah M., Asare E.K. Black pod disease on cacao (Theobroma cacao, L) in Ghana: Spread of Phytophthora megakarya and role of economic plants in the disease epidemiology. Crop Prot. 2015;72:66–75. doi: 10.1016/j.cropro.2015.01.015. DOI
Tri M.V., Van Hoa N., Minh Chau N., Pane A., Faedda R., De Patrizio A., Schena L., Olsson C.H.B., Wright S.A.I., Ramstedt M., et al. Decline of jackfruit (Artocarpus heterophyllus) incited by Phytophthora palmivora in Vietnam. Phytopathol. Mediterr. 2015;54:275–280.
Puglisi I., De Patrizio A., Schena L., Jung T., Evoli M., Pane A., Hoa N.V., Tri M.V., Wright S., Ramstedt M., et al. Two previously unknown Phytophthora species associated with brown rot of Pomelo (Citrus grandis) fruits in Vietnam. PLoS ONE. 2017;12:e0172085. doi: 10.1371/journal.pone.0172085. PubMed DOI PMC
Chávez-Ramírez B., Rodríguez-Velázquez N.D., Chávez-Sánchez M.E., Vásquez-Murrieta M.S., Hernández-Gallegos M.A., Velázquez-Martínez J.R., Avendaño-Arrazate C.H., Estrada-de los Santos P. Morphological and molecular identification of Phytophthora tropicalis causing black pod rot in Mexico. Can. J. Plant Pathol. 2021;43:670–679. doi: 10.1080/07060661.2020.1870003. DOI
Patil B., Hedge V., Sridhara S., Pandian R.T.P., Thube S.H., Palliath G.K., Gangurde S.S., Jha P.K. Multigene phylogeny and haplotype analysis reveals predominance of oomycetous fungus, Phytophthora meadii (McRae) associated with fruit rot disease of arecanut in India. Saudi J. Biol. Sci. 2019;29:103341. doi: 10.1016/j.sjbs.2022.103341. PubMed DOI PMC