The Destructive Tree Pathogen Phytophthora ramorum Originates from the Laurosilva Forests of East Asia
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/15_003/0000453
European Regional Development Fund
635646
Horizon 2020
18H02245
Japanese Society for the promotion of science KAKEN
K101914
Hungarian Scientific Research Fund (OTKA)
PubMed
33803849
PubMed Central
PMC8003361
DOI
10.3390/jof7030226
PII: jof7030226
Knihovny.cz E-zdroje
- Klíčová slova
- biosecurity, epidemic, evolutionary history, lineages, mating types, phylogeny,
- Publikační typ
- časopisecké články MeSH
As global plant trade expands, tree disease epidemics caused by pathogen introductions are increasing. Since ca 2000, the introduced oomycete Phytophthora ramorum has caused devastating epidemics in Europe and North America, spreading as four ancient clonal lineages, each of a single mating type, suggesting different geographical origins. We surveyed laurosilva forests for P. ramorum around Fansipan mountain on the Vietnam-China border and on Shikoku and Kyushu islands, southwest Japan. The surveys yielded 71 P. ramorum isolates which we assigned to eight new lineages, IC1 to IC5 from Vietnam and NP1 to NP3 from Japan, based on differences in colony characteristics, gene x environment responses and multigene phylogeny. Molecular phylogenetic trees and networks revealed the eight Asian lineages were dispersed across the topology of the introduced European and North American lineages. The deepest node within P. ramorum, the divergence of lineages NP1 and NP2, was estimated at 0.5 to 1.6 Myr. The Asian lineages were each of a single mating type, and at some locations, lineages of "opposite" mating type were present, suggesting opportunities for inter-lineage recombination. Based on the high level of phenotypic and phylogenetic diversity in the sample populations, the coalescence results and the absence of overt host symptoms, we conclude that P. ramorum comprises many anciently divergent lineages native to the laurosilva forests between eastern Indochina and Japan.
Centre for Agricultural Research Plant Protection Institute ELKH H 1022 Budapest Hungary
Department of Agricultural Sciences University of Sassari 07100 Sassari Italy
Forest Research Alice Holt Lodge Farnham GU10 4LH Surrey UK
Forestry and Forest Products Research Institute Tsukuba Ibaraki 305 8687 Japan
Phytophthora Research and Consultancy 83131 Nußdorf Germany
River Basin Research Center Gifu University Gifu 501 1193 Japan
Zobrazit více v PubMed
Brasier C.M. The biosecurity threat to the UK and global environment from international trade in plants. Plant Pathol. 2008;57:792–808. doi: 10.1111/j.1365-3059.2008.01886.x. DOI
Liebhold A.M., Brockerhoff E.G., Garrett L.J., Parke J.L., Britton K.O. Live plant imports: The major pathway for forest insect and pathogen invasions of the US. Front. Ecol. Environ. 2012;10:135–143. doi: 10.1890/110198. DOI
Santini A., Ghelardini L., De Pace C., Desprez-Loustau M.L., Capretti P., Chandelier A., Cech T., Chira D., Diamandis S., Gaitniekis T., et al. Biogeographic patterns and determinants of invasion by alien forest pathogens in Europe. New Phytol. 2013;197:238–250. doi: 10.1111/j.1469-8137.2012.04364.x. PubMed DOI
Jung T., Orlikowski L., Henricot B., Abad-Campos P., Aday A.G., Aguin Casal O., Bakonyi J., Cacciola S.O., Cech T., Chavarriaga D., et al. Widespread Phytophthora infestations in European nurseries put forest, semi-natural and horticultural ecosystems at high risk of Phytophthora diseases. For. Pathol. 2016;46:134–163. doi: 10.1111/efp.12239. DOI
Brasier C.M. Episodic selection as a force in fungal microevolution with special reference to clonal speciation and hybrid introgression. Can. J. Bot. 1995;73:1213–1221. doi: 10.1139/b95-381. DOI
Goodwin S.B. The population genetics of Phytophthora. Phytopathology. 1997;87:462–473. doi: 10.1094/PHYTO.1997.87.4.462. PubMed DOI
Brasier C.M. Phytophthora biodiversity: How many Phytophthora species are there? Phytophthoras For. Nat. Ecosyst. 2009;221:101–115.
Jung T., Sierra-Perez A., Duran A., Horta Jung M., Balci Y., Scanu B. Canker and decline diseases caused by soil- and airborne Phytophthora species in forests and woodlands. Persoonia. 2018;40:182–220. doi: 10.3767/persoonia.2018.40.08. PubMed DOI PMC
Rizzo D.M., Garbelotto M., Davidson J.M., Slaughter G.W., Koike S.T. Phytophthora ramorum as the cause of extensive mortality of Quercus spp. and Lithocarpus densiflorus in California. Plant Dis. 2002;86:205–214. doi: 10.1094/PDIS.2002.86.3.205. PubMed DOI
Rizzo D.M., Garbelotto M., Hansen E.M. Phytophthora ramorum: Integrative research and management of an emerging pathogen in California and Oregon forests. Annu. Rev. Phytopathol. 2005;43:309–335. doi: 10.1146/annurev.phyto.42.040803.140418. PubMed DOI
Brasier C., Webber J. Sudden larch death. Nature. 2010;466:824–825. doi: 10.1038/466824a. PubMed DOI
Grünwald N.J., Garbelotto M., Goss E.M., Heungens K., Prospero S. Emergence of the sudden oak death pathogen Phytophthora ramorum. Trends Microbiol. 2012;20:131–138. doi: 10.1016/j.tim.2011.12.006. PubMed DOI
Harris A.R., Mullet M., Webber J.F. Changes in the population structure and sporulation behaviour of Phytophthora ramorum associated with the epidemic on Larix (larch) in Britain. Biol. Invasions. 2018;20:2313–2328. doi: 10.1007/s10530-018-1702-7. DOI
Ivors K., Garbelotto M., Vries I.D.E., Ruyter-Spira C., Te Hekkert B., Rosenzweig N., Bonants P. Microsatellite analysis identifies three lineages of Phytophthora ramorum in nurseries yet single lineages in US forests and European nursery populations. Mol Ecol. 2006;15:1493–1505. doi: 10.1111/j.1365-294X.2006.02864.x. PubMed DOI
Goss E.M., Carbone I., Grünwald N.J. Ancient isolation and independent evolution of the three clonal lineages of the exotic sudden oak death pathogen Phytophthora ramorum. Mol. Ecol. 2009;18:1161–1174. doi: 10.1111/j.1365-294X.2009.04089.x. PubMed DOI
Van Poucke K., Franceschini S., Webber J.F., Vercauteren A., Turner J.A., McCracken A.R., Heungens K., Braiser C.M. Discovery of a fourth evolutionary lineage of Phytophthora ramorum: EU2. Fungal Biol. 2012;116:1178–1191. doi: 10.1016/j.funbio.2012.09.003. PubMed DOI
Croucher P.J., Mascheretti S., Garbelotto M. Combining field epidemiological information and genetic data to comprehensively reconstruct the invasion history and microevolution of the Sudden oak death agent Phytophthora ramorum in California. Biol. Invasions. 2013;15:2281–2297. doi: 10.1007/s10530-013-0453-8. PubMed DOI PMC
Dale A.L., Feau N., Everhart S.E., Dhillon B., Wong B., Sheppard J., Bilodeau G.J., Brar A., Tabima J.F., Shen D., et al. Mitotic recombination and rapid genome evolution in the invasive forest pathogen Phytophthora ramorum. mBio. 2019;10:e02452-18. doi: 10.1128/mBio.02452-18. PubMed DOI PMC
Chandelier A., Heungens K., Werres S. Change of mating type in an EU1 lineage isolate of Phytophthora ramorum. J. Phytopathol. 2014;162:43–47. doi: 10.1111/jph.12150. DOI
Brasier C.M., Kirk S.A., Rose J. Differences in the phenotypic stability and adaptive variation between the main European and American lineages of Phytophthora ramorum. In: Brasier C., Jung T., Oßwald W., editors. Progress in Research on Phytophthora Disease of Forest Trees. Forest Research; Farnham, UK: 2006. pp. 5–16.
Franceschini S., Webber J.F., Sancisi-Frey S., Brasier C.M. Gene x environment tests discriminate the new EU2 evolutionary lineage of Phytophthora ramorum and indicate that it is adaptively different. For. Pathol. 2014;44:219–232. doi: 10.1111/efp.12085. DOI
Harris A.R., Brasier C.M., Scanu B., Webber J.F. Fitness characteristics of the European lineages of Phytophthora ramorum. Plant Pathol. 2020 doi: 10.1111/ppa.13292. DOI
Brasier C.M., Denman S., Brown A., Webber J.F. Sudden oak death (Phytophthora ramorum) discovered on trees in Europe. Mycol. Res. 2004;108:1107–1110. doi: 10.1017/S0953756204221244. DOI
Brasier C.M., Vettraino A.M., Chang T.T., Vannini A. Phytophthora lateralis discovered in an old growth Chamaecyparis forest in Taiwan. Plant Pathol. 2010;59:595–603. doi: 10.1111/j.1365-3059.2010.02278.x. DOI
Vettraino A.M., Brasier C.M., Brown A.V., Vannini A. Phytophthora himalsilva sp. nov. an unusually phenotypically variable species from a remote forest in Nepal. Fungal Biol. 2011;115:275–287. doi: 10.1016/j.funbio.2010.12.013. PubMed DOI
Huai W.X., Tian G., Hansen E.M., Zhao W.X., Goheen E.M., Grünwald N.J., Cheng C. Identification of Phytophthora species baited and isolated from forest soil and streams in northwestern Yunnan province, China. For. Pathol. 2013;43:87–103. doi: 10.1111/efp.12015. DOI
Jung T., Chang T.T., Bakonyi J., Seress D., Pérez-Sierra A., Yang X., Hong C., Scanu B., Fu C.H., Hsueh K.L., et al. Diversity of Phytophthora species in natural ecosystems of Taiwan and association with disease symptoms. Plant Pathol. 2017;66:194–211. doi: 10.1111/ppa.12564. DOI
Hansen E.M., Goheen D.J., Jules E.S., Ullian B. Managing Port–Orford–Cedar and the introduced pathogen Phytophthora lateralis. Plant Dis. 2000;84:4–14. doi: 10.1094/PDIS.2000.84.1.4. PubMed DOI
Brasier C.M., Franceschini S., Vettraino A.M., Hansen E.M., Green S., Robin C., Webber J.F., Vannini A. Four phenotypically and phylogenetically distinct lineages in Phytophthora lateralis. Fungal Biol. 2012;116:1232–1249. doi: 10.1016/j.funbio.2012.10.002. PubMed DOI
Jung T., Scanu B., Brasier C.M., Webber J., Milenković I., Corcobado T., Tomšovský M., Pánek M., Bakonyi J., Maia C., et al. A survey in natural forest ecosystems of vietnam reveals high diversity of both new and described phytophthora taxa including P. ramorum. Forests. 2020;11:93. doi: 10.3390/f11010093. DOI
Jung T., Blaschke H., Neumann P. Isolation, identification and pathogenicity of Phytophthora species from declining oak stands. Eur. J. For. Path. 1996;26:253–272. doi: 10.1111/j.1439-0329.1996.tb00846.x. DOI
Werres S., Marwitz R., Man In’t veld W.A., De Cock A.W.A.M., Bonants P.J.M., De Weerdt M., Themann K., Ilieva E., Baayen R.P. Phytophthora ramorum sp. nov., a new pathogen on Rhododendron and Viburnum. Mycol. Res. 2001;105:1155–1165. doi: 10.1016/S0953-7562(08)61986-3. DOI
Jung T., Jung M.H., Scanu B., Seress D., Kovács M.G., Maia C., Pérez-Sierra A., Chang T.-T., Chandelier A., Heungens K., et al. Six new Phytophthora species from ITS Clade 7a including two sexually functional heterothallic hybrid species detected in natural ecosystems in Taiwan. Persoonia. 2017;38:100–135. doi: 10.3767/003158517X693615. PubMed DOI PMC
Cooke D.E.L., Drenth A., Duncan J.M., Wagels G., Brasier C.M. A molecular phylogeny of Phytophthora and related Oomycetes. Fungal Genet. Biol. 2000;30:17–32. doi: 10.1006/fgbi.2000.1202. PubMed DOI
Brasier C.M., Beales P.A., Kirk S.A., Denman S., Rose J. Phytophthora kernoviae sp. nov. an invasive pathogen causing bleeding stem lesions on forest trees and foliar necrosis of ornamentals in Britain. Mycol. Res. 2005;109:853–859. doi: 10.1017/S0953756205003357. PubMed DOI
Boutet X., Vercauteren A., Heungens K., Laurent F., Chandelier A. Oospore progenies from Phytophthora ramorum. Fungal Biol. 2010;114:369–378. PubMed
Jung T., Colquhoun I.J., Hardy G.E.S.J. New insights into the survival strategy of the invasive soilborne pathogen Phytophthora cinnamomi in different natural ecosystems in Western Australia. For. Pathol. 2013;43:266–288. doi: 10.1111/efp.12025. DOI
Brasier C.M., Kirk S.A. Production of gametangia by Phytophthora ramorum in vitro. Mycol. Res. 2004;108:823–827. doi: 10.1017/S0953756204000565. PubMed DOI
R Core Team R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. [(accessed on 15 March 2021)]; Available online: https://www.R-project.org/
Lenth R. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.4.3.01. [(accessed on 15 March 2021)]; Available online: https://CRAN.R-project.org/package=emmeans.
Erwin D.C., Ribeiro O.K. Phytophthora Diseases Worldwide. APS Press American Phytopathological Society; St. Paul, MN, USA: 1996.
White T.J., Bruns T., Lee S., Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M.A., Gelfand D.H., Sninsky J.J., White T.J., editors. PCR Protocols: A Guide to Methods and Applications. Academic Press; San Diego, CA, USA: 1990. pp. 315–322.
Martin F.N., Tooley P.W. Phylogenetic relationships among Phytophthora species inferred from sequence analysis of mitochondrially encoded cytochrome oxidase I and II genes. Mycologia. 2003;95:269–284. doi: 10.1080/15572536.2004.11833112. PubMed DOI
Kroon L.P.N.M., Bakker F.T., van den Bosch G.B.M., Bonants P.J.M., Flier W.G. Phylogenetic analysis of Phytophthora species based on mitochondrial and nuclear DNA sequences. Fungal Genet. Biol. 2004;41:766–782. doi: 10.1016/j.fgb.2004.03.007. PubMed DOI
Blair J.E., Coffey M.D., Park S.-Y., Greiser D.M., Kang S. A multi-locus phylogeny for Phytophthora utilizing markers derived from complete genome sequences. Fungal Genet. Biol. 2008;45:266–277. doi: 10.1016/j.fgb.2007.10.010. PubMed DOI
Martin F.N. Mitochondrial haplotype determination in the oomycete plant pathogen Phytophthora ramorum. Curr. Genet. 2008;54:23–34. doi: 10.1007/s00294-008-0196-8. PubMed DOI
Staden R., Beal K.F., Bonfield J.K. The Staden package 1998. Methods Mol. Biol. 2000;132:115–130. PubMed
Katoh K., Standley D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC
Lanfear R., Frandsen P., Wright A., Senfeld T., Calcott B. PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 2016;34:772–773. doi: 10.1093/molbev/msw260. PubMed DOI
Nguyen L.T., Schmidt H.A., von Haeseler A., Minh B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015;32:268–274. doi: 10.1093/molbev/msu300. PubMed DOI PMC
Sukumaran J., Holder M.T. DendroPy: A Python library for phylogenetic computing. Bioinformatics. 2010;26:1569–1571. doi: 10.1093/bioinformatics/btq228. PubMed DOI
Bouckaert R., Heled J., Kühnert D., Vaughan T., Wu C., Xie D., Suchard M., Rambaut A., Drummond A. BEAST 2: A software platform for bayesian evolutionary analysis. PLoS Comput. Biol. 2014;10:e1003537. doi: 10.1371/journal.pcbi.1003537. PubMed DOI PMC
Bouckaert R., Drummond A. bModelTest: Bayesian phylogenetic site model averaging and model comparison. BMC Evol. Biol. 2017;17:42. doi: 10.1186/s12862-017-0890-6. PubMed DOI PMC
Drummond A.J., Ho S.Y.W., Phillips M.J., Rambaut A. Relaxed phylogenetics and dating with confidence. PLoS Biol. 2006;4:699–710. doi: 10.1371/journal.pbio.0040088. PubMed DOI PMC
Paradis E., Schliep K. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 2019;35:526–528. doi: 10.1093/bioinformatics/bty633. PubMed DOI
Yu G. treeio: Base Classes and Functions for Phylogenetic Tree Input and Output. R package version 1.4.1. [(accessed on 15 March 2021)]; Available online: https://guangchuangyu.github.io/software/treeio.
Yu G., Smith D., Zhu H., Guan Y., Lam T.T. ggtree: An R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol. Evol. 2017;8:28–36. doi: 10.1111/2041-210X.12628. DOI
Yu G., Lam T.T., Zhu H., Guan Y. Two methods for mapping and visualizing associated data on phylogeny using ggtree. Mol. Biol. Evol. 2018;35:3041–3043. doi: 10.1093/molbev/msy194. PubMed DOI PMC
Yu G. Using ggtree to visualize data on tree-like structures. Curr. Protoc. Bioinform. 2020;69:e96. doi: 10.1002/cpbi.96. PubMed DOI
Rambaut A., Drummond A., Xie D., Baele G., Suchard M. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 2018;67:901–904. doi: 10.1093/sysbio/syy032. PubMed DOI PMC
Inkscape’s Contributors (2003–2020). Inkscape. [(accessed on 2 December 2020)]; Available online: https://inkscape.org/
Li W.-H., Tanimura M., Sharp P.M. An evaluation of the molecular clock hypothesis using mammalian DNA sequences. J. Mol. Evol. 1987;25:330–342. doi: 10.1007/BF02603118. PubMed DOI
Wolfe K.H., Sharp P.M., Li W.-H. Rates of synonymous substitution in plant nuclear genes. J. Mol. Evol. 1989;29:208–211. doi: 10.1007/BF02100204. DOI
Gaut B.S., Morton B.R., McCaig B.C., Clegg M.T. Substitution rate comparisons between grasses and palms: Synonymous rate differences at the nuclear gene Adh parallel rate differences at the plastid gene rbcL. Proc. Natl. Acad. Sci. USA. 1996;93:10274–10279. doi: 10.1073/pnas.93.19.10274. PubMed DOI PMC
Richardson J.E., Pennington R.T., Pennington T.D., Hollingsworth P.M. Rapid diversification of a species-rich genus of neotropical rain forest trees. Science. 2001;293:2242–2245. doi: 10.1126/science.1061421. PubMed DOI
Kasuga T., White T.J., Taylor J.W. Estimation of nucleotide substitution rates in Eurotiomycete fungi. Mol. Biol. Evol. 2002;19:2318–2324. doi: 10.1093/oxfordjournals.molbev.a004056. PubMed DOI
Smith D.R. Mutation rates in plastid genomes: They are lower than you might think. Genome Biol. Evol. 2015;7:1227–1234. doi: 10.1093/gbe/evv069. PubMed DOI PMC
Galtier N., Nabholz S., Glémin S., Hurst G.D.D. Mitochondrial DNA as a marker of molecular diversity: A reappraisal. Mol. Ecol. 2009;18:4541–4550. doi: 10.1111/j.1365-294X.2009.04380.x. PubMed DOI
Bandelt H.-J., Forster P., Röhl A. Median-joining networks for inferring intraspecies phylogenies. Mol. Biol. Evol. 1999;16:37–48. doi: 10.1093/oxfordjournals.molbev.a026036. PubMed DOI
Posada D., Crandall K.A. Intraspecific gene genealogies: Trees grafting into networks. Trends Ecol. Evol. 2001;16:37–45. doi: 10.1016/S0169-5347(00)02026-7. PubMed DOI
Cassens I., Mardulyn P., Milinkovitch M.C. Evaluating intraspecific “network” construction methods using simulated sequence data: Do existing algorithms outperform the Global Maximum Parsimony approach? Syst. Biol. 2005;54:363–372. doi: 10.1080/10635150590945377. PubMed DOI
Morrison D.A. Networks in phylogenetic analysis: New tools for population biology. Int. J. Parasitol. 2005;35:567–582. doi: 10.1016/j.ijpara.2005.02.007. PubMed DOI
Bandelt H.-J., Dress A.W.M. Split decomposition: A new and useful approach to phylogenetic analysis of distance data. Mol. Phylogenet. Evol. 1992;1:242–252. doi: 10.1016/1055-7903(92)90021-8. PubMed DOI
Fluxus Technology Ltd (2004–2020). Network 10.1.0.0. [(accessed on 2 December 2020)]; Available online: https://www.fluxus-engineering.com.
Huson D.H., Bryant D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 2006;23:254–267. doi: 10.1093/molbev/msj030. PubMed DOI
Hamming R.W. Error detecting and error correcting codes. Bell Syst. Tech. J. 1950;29:147–160. doi: 10.1002/j.1538-7305.1950.tb00463.x. DOI
Dress A.W.M., Huson D.H. Constructing splits graphs. IEEE/ACM Trans. Comput. Biol. Bioinform. 2004;1:109–115. doi: 10.1109/TCBB.2004.27. PubMed DOI
Cassens I., Van Waerebeek K., Best P.B., Crespo E.A., Reyes J.C., Milinkovitch M.C. The phylogeography of dusky dolphins (Lagenorhynchus obscurus): A critical examination of network methods and rooting procedures. Mol. Ecol. 2003;12:1781–1792. doi: 10.1046/j.1365-294X.2003.01876.x. PubMed DOI
Werres S., Kaminski K. Characterisation of European and North American Phytophthora ramorum isolates due to their morphology and mating behaviour in vitro with heterothallic Phytophthora species. Mycol. Res. 2005;109:860–871. doi: 10.1017/S0953756205003369. PubMed DOI
Jung T., Jung M.H., Cacciola S.O., Cech T., Bakonyi J., Seress D., Mosca S., Schena L., Seddaiu S., Pane A., et al. Multiple new cryptic pathogenic Phytophthora species from Fagaceae forests in Austria, Italy and Portugal. IMA Fungus. 2017;8:219–244. doi: 10.5598/imafungus.2017.08.02.02. PubMed DOI PMC
Stenlid J., Oliva J. Phenotypic interactions between tree hosts and invasive forest pathogens in the light of globalization and climate change. Phil. Trans. R. Soc. B. 2016;371:20150455. doi: 10.1098/rstb.2015.0455. PubMed DOI PMC
Donahoo R.S., Blomquist C.L., Thomas S.L., Moulton J.K., Cooke D.E.L., Lamour K.H. Phytophthora foliorum sp. nov., a new species causing leaf blight of azalea. Mycol. Res. 2006;110:1309–1322. doi: 10.1016/j.mycres.2006.07.017. PubMed DOI
Robin C., Piou D., Feau N., Douzon G., Schenck N., Hansen E.M. Root and aerial infections of Chamaecyparis lawsoniana by Phytophthora lateralis: A new threat for European countries. Forest Pathol. 2011;41:417–424. doi: 10.1111/j.1439-0329.2010.00688.x. DOI
Green S., Brasier C.M., Schlenzig A., McCracken A., MacAskill G.A., Wilson M., Webber J.F. The destructive invasive pathogen Phytophthora lateralis found on Chamaecyparis lawsoniana across the UK. Forest Pathol. 2013;43:19–28.
Harris A.R., Webber J.F. Insights into the potential host range of Phytophthora foliorum. Forest Pathol. 2019;49:e12556. doi: 10.1111/efp.12556. DOI
Kouznetsov A.N., Luong P. Flora of Fansipan mountain. In: Sobey R.T., editor. Proceedings of the Seminar & Workshop Biodiversity Value of Hoang Lien Mountains & Strategies for Conservation. Society for Environmental Exploration; London, UK: 1998. pp. 11–18.
Miyawaki A. A vegetation - Ecological view of the Japanese archipelago. Bull. Inst. Environ. Sci. Technol. Yokohama Natl. Univ. 1984;11:85–101.
Box E.O., Fujiwara K., Xue-Zhong Q. Diversity and dissimilarity of three forest types in Xishuangbanna, tropical southern China. Bull. Inst. Environ. Sci. Technol. Yokohama Natl. Univ. 1991;17:85–105.
Averyanov L.V., Loc P.K., Hiep N., Harder D.K. Phytogeographic review of Vietnam and adjacent areas of Eastern Indochina. Komarovia. 2003;3:1–83.
Tang C.Q., Ohsawa M. Ecology of subtropical evergreen broad-leaved forests of Yunnan, southwestern China as compared to those of southwestern Japan. J. Plant Res. 2009;122:335–350. doi: 10.1007/s10265-009-0221-0. PubMed DOI
Nakamura Y., DellaSala D.A., Alaback P. Temperate rainforests of Japan. In: DellaSala D.A., editor. Temperate and Boreal Rainforests of the World. Island Press; Washington, DC, USA: 2011. pp. 181–194.
Hukusima T., Matsui T., Nishio T., Pignatti S., Yang L., Lu S.-Y., Kim M.-H., Yoshikawa M., Honma H., Wang Y. Phytosociology of the Beech (Fagus) Forests in East Asia. Geobotany Studies; Springer; Berlin/Heidelberg, Germany: 2013.
Hua Z. The floras of southern and tropical southeastern Yunnan have been shaped by divergent geological histories. PLoS ONE. 2013;8:e64213. doi: 10.1371/journal.pone.0064213. PubMed DOI PMC
Chang-Fu H., Chung-Fu S., Kuoh-Cheng Y. Introduction to the flora of Taiwan, 3: Floristics, phytogeography, and vegetation. Fl. Taiwan. 1994;2:7–18.
Laumonier Y. The vegetation and Physiography of Sumatra. Springer Science and Business Media; Dordrecht, Germany: 1997. Geobotany 22.
Whitten T., Damanik S.J., Anwar J., Hisyam N. The Ecology of Sumatra. Oxford University Press; Oxford, UK: 1997.
Lillesø J.-P.B., Shrestha T.B., Dhakal L.P., Nayaju R.P., Shrestha R. The Map of Potential Vegetation of Nepal—A Forestry/Agroecological/Biodiversity Classification System. Forest & Landscape; Frederiksberg, Denmark: 2005. Development and Environment Series 2.
Zeng H.-C., Ho H.-H., Zheng F.-C. A survey of Phytophthora species on Hainan Island of South China. J. Phytopathol. 2009;157:33–39. doi: 10.1111/j.1439-0434.2008.01441.x. DOI
Denman S., Kirk S.A., Brasier C., Webber J.F. In vitro leaf inoculation studies as an indication of tree foliage susceptibility to Phytophthora ramorum in the UK. Plant Pathol. 2005;54:512–521. doi: 10.1111/j.1365-3059.2005.01243.x. DOI
Webber J.F., Mullett M., Brasier C.M. Dieback and mortality of plantation Japanese larch (Larix kaempferi) associated with infection by Phytophthora ramorum. New Dis. Rep. 2010;22:19. doi: 10.5197/j.2044-0588.2010.022.019. DOI
Davidson J.M., Patterson H.A., Wickland A.C., Fichtner E.J., Rizzo D.M. Forest type influences transmission of Phytophthora ramorum in California oak woodlands. Phytopathology. 2011;101:492–501. doi: 10.1094/PHYTO-03-10-0064. PubMed DOI
Eyre C.A., Kozanitas M., Garbelotto M. Population dynamics of aerial and terrestrial populations of Phytophthora ramorum in a California forest under different climatic conditions. Phytopathology. 2013;103:1141–1152. doi: 10.1094/PHYTO-11-12-0290-R. PubMed DOI
Peterson E.K., Hansen E.M., Kanaskie A. Temporal epidemiology of sudden oak death in Oregon. Phytopathology. 2015;105:937–946. doi: 10.1094/PHYTO-12-14-0348-FI. PubMed DOI
Harris A.R., Webber J.F. Sporulation potential, symptom expression and detection of Phytophthora ramorum on larch needles and other foliar hosts. Plant Pathol. 2016;65:1441–1451. doi: 10.1111/ppa.12538. DOI
Lione G., Gonthier P., Garbelotto M. Environmental factors driving the recovery of bay laurels from Phytophthora ramorum infections: An application of numerical ecology to citizen science. Forests. 2017;8:293. doi: 10.3390/f8080293. DOI
Eyre C.A., Garbelotto M. Detection, diversity, and population dynamics of waterborne Phytophthora ramorum populations. Phytopathology. 2015;105:57–68. doi: 10.1094/PHYTO-07-13-0196-R. PubMed DOI
Luz Ribeiro P., Rapini A., Soares e Silva U.C., van den Berg C. Using multiple analytical methods to improve phylogenetic hypotheses in Minaria (Apocynaceae) Mol. Phylogenet. Evol. 2012;65:915–925. doi: 10.1016/j.ympev.2012.08.019. PubMed DOI
Magallon S. A review of the effect of relaxed clock method, long branches, genes, and calibrations in the estimation of angiosperm age. Bot. Sci. 2014;92:1–22. doi: 10.17129/botsci.37. DOI
Sloan D.B., Havird J.C., Sharbrough J. The on-again, off-again relationship between mitochondrial genomes and species boundaries. Mol. Ecol. 2017;26:2212–2236. doi: 10.1111/mec.13959. PubMed DOI PMC
Ducket D.J., Pelletier T.A., Carstens B.C. Identifying model violations under the multispecies coalescent model using P2C2M.SNAPP. PeerJ. 2020;8:e8271. doi: 10.7717/peerj.8271. PubMed DOI PMC
Koch H., DeGiorgio M. Maximum Likelihood estimation of species trees from gene trees in the presence of ancestral population structure. Genome Biol. Evol. 2020;12:3977–3995. doi: 10.1093/gbe/evaa022. PubMed DOI PMC
Nakleh L., Ruths D., Innan H. Gene Trees, Species Trees, and Species Networks. In: Guerra R., Goldstein D., editors. Meta-Analysis and Combining Information in Genetics. Chapman & Hall, CRC Press; Boca Raton, FL, USA: 2009. pp. 275–293.
Matari N.H., Blair J.E. A multilocus timescale for oomycete evolution estimated under three distinct molecular clock models. BMC Evol. Biol. 2014;14:101. doi: 10.1186/1471-2148-14-101. PubMed DOI PMC
Nei M., Takahata N. Effective population size, genetic diversity, and coalescence time in subdivided populations. J. Mol. Evol. 1993;37:240–244. doi: 10.1007/BF00175500. PubMed DOI
Avise J.C. Phylogeography—The History and Formation of Species. Harvard University Press; Cambridge, MA, USA: London, UK: 2000.
Henricot B., Pèrez-Sierra A., Jung T. Phytophthora pachypleura sp. nov., a new species causing root rot of Aucuba japonica and other ornamentals in the United Kingdom. Plant. Pathol. 2014;63:1095–1109. doi: 10.1111/ppa.12194. DOI
Axelrod D.I., Al-Shehbaz I., Raven P.H. History of the modern flora of China. In: Zhang A.L., Wu S.G., editors. Floristic Characteristics and Diversity of East Asian Plants. China Higher Education Press/Springer; Beijing, China: 1998. pp. 43–55.
Wang H.-W., Ge S. Phylogeography of the endangered Cathaya argyrophylla (Pinaceae) inferred from sequence variation of mitochondrial and nuclear DNA. Mol. Ecol. 2006;15:4109–4122. doi: 10.1111/j.1365-294X.2006.03086.x. PubMed DOI
Tian S., López-Pujol J., Wang H.-W., Ge S., Zhang Z.-Y. Molecular evidence for glacial expansion and interglacial retreat during Quaternary climatic changes in a montane temperate pine (Pinus kwangtungensis Chun ex Tsiang) in southern China. Plant Syst. Evol. 2010;284:219–229. doi: 10.1007/s00606-009-0246-9. DOI
Aoki K., Ueno S., Kamijo T., Setoguchi H., Murakami N., Kato M., Tsumura Y. Genetic differentiation and genetic diversity of Castanopsis (Fagaceae), the dominant tree species in Japanese broadleaved evergreen forests, revealed by analysis of EST-associated microsatellites. PLoS ONE. 2014;9:e87429. doi: 10.1371/journal.pone.0087429. PubMed DOI PMC
Gao L.M., Möller M., Zhang X.-M., Hollingsworth M.L., Liu J., Mill R.R., Gibby M., Li D.-Z. High variation and strong phylogeographic pattern among cpDNA haplotypes in Taxus wallichiana (Taxaceae) in China and North Vietnam. Mol. Ecol. 2007;16:4684–4698. doi: 10.1111/j.1365-294X.2007.03537.x. PubMed DOI
Li C., Hongjin D., Hua P. Diversity and distribution of higher plants in Yunnan, China. Biodiv. Sci. 2013;21:359–363. doi: 10.3724/SP.J.1003.2013.05162. DOI
He K., Hu N.-Q., Chen X., Li J.-T., Jiang X.-L. Interglacial refugia preserved high genetic diversity of the Chinese mole shrew in the mountains of southwest China. Heredity. 2016;116:23–32. doi: 10.1038/hdy.2015.62. PubMed DOI PMC
Ye Z., Chen P., Bu W. Terrestrial mountain islands and Pleistocene climate fluctuations as motors for speciation: A case study on the genus Pseudovelia (Hemiptera: Veliidae) Sci. Rep. 2016;6:33625. doi: 10.1038/srep33625. PubMed DOI PMC
Owen R.B. Physical geography and geology: Imprints on a landscape, Yunnan, China. Geography. 2005;90:279–287. doi: 10.1080/00167487.2005.12094140. DOI
Vercauteren A., Boutet X., D’hondt L., Van Bockstaele E., Maes M., Leus L., Chandelier A., Heungens K. Aberrant genome size and instability of Phytophthora ramorum oospore progenies. Fungal Genet. Biol. 2011;48:537–543. doi: 10.1016/j.fgb.2011.01.008. PubMed DOI
Brasier C.M. Evolutionary Biology of Phytophthora. I. Genetic system, sexuality and variation. Ann. Rev. Phytopathol. 1992;30:153–171. doi: 10.1146/annurev.py.30.090192.001101. DOI
Kasuga T., Bui M., Bernhardt E., Swiecki T., Aram K., Cano L.M., Webber J., Brasier C., Press C., Grünwald N.J., et al. Host-induced aneuploidy and phenotypic diversification in the Sudden Oak Death pathogen Phytophthora ramorum. BMC Genom. 2016;17:385. doi: 10.1186/s12864-016-2717-z. PubMed DOI PMC
Yuzon J.D., Travadon R., Mathu M.C., Tripathy S., Rank N., Mehl H.K., Rizzo D.M., Cobb R., Small C., Tang T., et al. Asexual evolution and forest conditions drive genetic parallelism in Phytophthora ramorum. Microorganisms. 2020;8:940. doi: 10.3390/microorganisms8060940. PubMed DOI PMC
Fichtner E.J., Lynch S.C., Rizzo D.M. Detection, distribution, survival, and sporulation of Phytophthora ramorum in a California redwood-tanoak forest soil. Phytopathology. 2007;97:1366–1375. doi: 10.1094/PHYTO-97-10-1366. PubMed DOI
Roy B.A., Alexander H.M., Davidson J., Campbell F.T., Burdon J.J., Sniezko R., Brasier C. Increasing forest loss worldwide from invasive pests requires new trade regulations. Front. Ecol. Environ. 2014;12:457–465. doi: 10.1890/130240. DOI
Eschen R., Britton K., Brockerhoff E., Burgess T., Valley V., Epanchin-Niell R.S., Gupta K., Hardy G., Huang Y., Kenis M., et al. International variation in phytosanitary legislation and regulations governing importation of plants for planting. Environ. Sci. Policy. 2015;51:228–237. doi: 10.1016/j.envsci.2015.04.021. DOI
Eschen R., Douma B., Grégoire J.C., Mayer F., Rigaux L., Potting R.P.J. A risk categorisation and analysis of the geographic and temporal dynamics of the European import of plants for planting. Biol. Invasions. 2017;19:3243–3257. doi: 10.1007/s10530-017-1465-6. DOI
Davison E.M., Drenth A., Kumar S., Mack S., Mackie A.E., McKirdy S. Pathogens associated with nursery plants imported into Western Australia. Australas. Plant Pathol. 2006;35:473–475. doi: 10.1071/AP06043. DOI
Genera of phytopathogenic fungi: GOPHY 4
Phytophthora heterospora sp. nov., a New Pseudoconidia-Producing Sister Species of P. palmivora