The Destructive Tree Pathogen Phytophthora ramorum Originates from the Laurosilva Forests of East Asia

. 2021 Mar 18 ; 7 (3) : . [epub] 20210318

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33803849

Grantová podpora
CZ.02.1.01/0.0/0.0/15_003/0000453 European Regional Development Fund
635646 Horizon 2020
18H02245 Japanese Society for the promotion of science KAKEN
K101914 Hungarian Scientific Research Fund (OTKA)

As global plant trade expands, tree disease epidemics caused by pathogen introductions are increasing. Since ca 2000, the introduced oomycete Phytophthora ramorum has caused devastating epidemics in Europe and North America, spreading as four ancient clonal lineages, each of a single mating type, suggesting different geographical origins. We surveyed laurosilva forests for P. ramorum around Fansipan mountain on the Vietnam-China border and on Shikoku and Kyushu islands, southwest Japan. The surveys yielded 71 P. ramorum isolates which we assigned to eight new lineages, IC1 to IC5 from Vietnam and NP1 to NP3 from Japan, based on differences in colony characteristics, gene x environment responses and multigene phylogeny. Molecular phylogenetic trees and networks revealed the eight Asian lineages were dispersed across the topology of the introduced European and North American lineages. The deepest node within P. ramorum, the divergence of lineages NP1 and NP2, was estimated at 0.5 to 1.6 Myr. The Asian lineages were each of a single mating type, and at some locations, lineages of "opposite" mating type were present, suggesting opportunities for inter-lineage recombination. Based on the high level of phenotypic and phylogenetic diversity in the sample populations, the coalescence results and the absence of overt host symptoms, we conclude that P. ramorum comprises many anciently divergent lineages native to the laurosilva forests between eastern Indochina and Japan.

Zobrazit více v PubMed

Brasier C.M. The biosecurity threat to the UK and global environment from international trade in plants. Plant Pathol. 2008;57:792–808. doi: 10.1111/j.1365-3059.2008.01886.x. DOI

Liebhold A.M., Brockerhoff E.G., Garrett L.J., Parke J.L., Britton K.O. Live plant imports: The major pathway for forest insect and pathogen invasions of the US. Front. Ecol. Environ. 2012;10:135–143. doi: 10.1890/110198. DOI

Santini A., Ghelardini L., De Pace C., Desprez-Loustau M.L., Capretti P., Chandelier A., Cech T., Chira D., Diamandis S., Gaitniekis T., et al. Biogeographic patterns and determinants of invasion by alien forest pathogens in Europe. New Phytol. 2013;197:238–250. doi: 10.1111/j.1469-8137.2012.04364.x. PubMed DOI

Jung T., Orlikowski L., Henricot B., Abad-Campos P., Aday A.G., Aguin Casal O., Bakonyi J., Cacciola S.O., Cech T., Chavarriaga D., et al. Widespread Phytophthora infestations in European nurseries put forest, semi-natural and horticultural ecosystems at high risk of Phytophthora diseases. For. Pathol. 2016;46:134–163. doi: 10.1111/efp.12239. DOI

Brasier C.M. Episodic selection as a force in fungal microevolution with special reference to clonal speciation and hybrid introgression. Can. J. Bot. 1995;73:1213–1221. doi: 10.1139/b95-381. DOI

Goodwin S.B. The population genetics of Phytophthora. Phytopathology. 1997;87:462–473. doi: 10.1094/PHYTO.1997.87.4.462. PubMed DOI

Brasier C.M. Phytophthora biodiversity: How many Phytophthora species are there? Phytophthoras For. Nat. Ecosyst. 2009;221:101–115.

Jung T., Sierra-Perez A., Duran A., Horta Jung M., Balci Y., Scanu B. Canker and decline diseases caused by soil- and airborne Phytophthora species in forests and woodlands. Persoonia. 2018;40:182–220. doi: 10.3767/persoonia.2018.40.08. PubMed DOI PMC

Rizzo D.M., Garbelotto M., Davidson J.M., Slaughter G.W., Koike S.T. Phytophthora ramorum as the cause of extensive mortality of Quercus spp. and Lithocarpus densiflorus in California. Plant Dis. 2002;86:205–214. doi: 10.1094/PDIS.2002.86.3.205. PubMed DOI

Rizzo D.M., Garbelotto M., Hansen E.M. Phytophthora ramorum: Integrative research and management of an emerging pathogen in California and Oregon forests. Annu. Rev. Phytopathol. 2005;43:309–335. doi: 10.1146/annurev.phyto.42.040803.140418. PubMed DOI

Brasier C., Webber J. Sudden larch death. Nature. 2010;466:824–825. doi: 10.1038/466824a. PubMed DOI

Grünwald N.J., Garbelotto M., Goss E.M., Heungens K., Prospero S. Emergence of the sudden oak death pathogen Phytophthora ramorum. Trends Microbiol. 2012;20:131–138. doi: 10.1016/j.tim.2011.12.006. PubMed DOI

Harris A.R., Mullet M., Webber J.F. Changes in the population structure and sporulation behaviour of Phytophthora ramorum associated with the epidemic on Larix (larch) in Britain. Biol. Invasions. 2018;20:2313–2328. doi: 10.1007/s10530-018-1702-7. DOI

Ivors K., Garbelotto M., Vries I.D.E., Ruyter-Spira C., Te Hekkert B., Rosenzweig N., Bonants P. Microsatellite analysis identifies three lineages of Phytophthora ramorum in nurseries yet single lineages in US forests and European nursery populations. Mol Ecol. 2006;15:1493–1505. doi: 10.1111/j.1365-294X.2006.02864.x. PubMed DOI

Goss E.M., Carbone I., Grünwald N.J. Ancient isolation and independent evolution of the three clonal lineages of the exotic sudden oak death pathogen Phytophthora ramorum. Mol. Ecol. 2009;18:1161–1174. doi: 10.1111/j.1365-294X.2009.04089.x. PubMed DOI

Van Poucke K., Franceschini S., Webber J.F., Vercauteren A., Turner J.A., McCracken A.R., Heungens K., Braiser C.M. Discovery of a fourth evolutionary lineage of Phytophthora ramorum: EU2. Fungal Biol. 2012;116:1178–1191. doi: 10.1016/j.funbio.2012.09.003. PubMed DOI

Croucher P.J., Mascheretti S., Garbelotto M. Combining field epidemiological information and genetic data to comprehensively reconstruct the invasion history and microevolution of the Sudden oak death agent Phytophthora ramorum in California. Biol. Invasions. 2013;15:2281–2297. doi: 10.1007/s10530-013-0453-8. PubMed DOI PMC

Dale A.L., Feau N., Everhart S.E., Dhillon B., Wong B., Sheppard J., Bilodeau G.J., Brar A., Tabima J.F., Shen D., et al. Mitotic recombination and rapid genome evolution in the invasive forest pathogen Phytophthora ramorum. mBio. 2019;10:e02452-18. doi: 10.1128/mBio.02452-18. PubMed DOI PMC

Chandelier A., Heungens K., Werres S. Change of mating type in an EU1 lineage isolate of Phytophthora ramorum. J. Phytopathol. 2014;162:43–47. doi: 10.1111/jph.12150. DOI

Brasier C.M., Kirk S.A., Rose J. Differences in the phenotypic stability and adaptive variation between the main European and American lineages of Phytophthora ramorum. In: Brasier C., Jung T., Oßwald W., editors. Progress in Research on Phytophthora Disease of Forest Trees. Forest Research; Farnham, UK: 2006. pp. 5–16.

Franceschini S., Webber J.F., Sancisi-Frey S., Brasier C.M. Gene x environment tests discriminate the new EU2 evolutionary lineage of Phytophthora ramorum and indicate that it is adaptively different. For. Pathol. 2014;44:219–232. doi: 10.1111/efp.12085. DOI

Harris A.R., Brasier C.M., Scanu B., Webber J.F. Fitness characteristics of the European lineages of Phytophthora ramorum. Plant Pathol. 2020 doi: 10.1111/ppa.13292. DOI

Brasier C.M., Denman S., Brown A., Webber J.F. Sudden oak death (Phytophthora ramorum) discovered on trees in Europe. Mycol. Res. 2004;108:1107–1110. doi: 10.1017/S0953756204221244. DOI

Brasier C.M., Vettraino A.M., Chang T.T., Vannini A. Phytophthora lateralis discovered in an old growth Chamaecyparis forest in Taiwan. Plant Pathol. 2010;59:595–603. doi: 10.1111/j.1365-3059.2010.02278.x. DOI

Vettraino A.M., Brasier C.M., Brown A.V., Vannini A. Phytophthora himalsilva sp. nov. an unusually phenotypically variable species from a remote forest in Nepal. Fungal Biol. 2011;115:275–287. doi: 10.1016/j.funbio.2010.12.013. PubMed DOI

Huai W.X., Tian G., Hansen E.M., Zhao W.X., Goheen E.M., Grünwald N.J., Cheng C. Identification of Phytophthora species baited and isolated from forest soil and streams in northwestern Yunnan province, China. For. Pathol. 2013;43:87–103. doi: 10.1111/efp.12015. DOI

Jung T., Chang T.T., Bakonyi J., Seress D., Pérez-Sierra A., Yang X., Hong C., Scanu B., Fu C.H., Hsueh K.L., et al. Diversity of Phytophthora species in natural ecosystems of Taiwan and association with disease symptoms. Plant Pathol. 2017;66:194–211. doi: 10.1111/ppa.12564. DOI

Hansen E.M., Goheen D.J., Jules E.S., Ullian B. Managing Port–Orford–Cedar and the introduced pathogen Phytophthora lateralis. Plant Dis. 2000;84:4–14. doi: 10.1094/PDIS.2000.84.1.4. PubMed DOI

Brasier C.M., Franceschini S., Vettraino A.M., Hansen E.M., Green S., Robin C., Webber J.F., Vannini A. Four phenotypically and phylogenetically distinct lineages in Phytophthora lateralis. Fungal Biol. 2012;116:1232–1249. doi: 10.1016/j.funbio.2012.10.002. PubMed DOI

Jung T., Scanu B., Brasier C.M., Webber J., Milenković I., Corcobado T., Tomšovský M., Pánek M., Bakonyi J., Maia C., et al. A survey in natural forest ecosystems of vietnam reveals high diversity of both new and described phytophthora taxa including P. ramorum. Forests. 2020;11:93. doi: 10.3390/f11010093. DOI

Jung T., Blaschke H., Neumann P. Isolation, identification and pathogenicity of Phytophthora species from declining oak stands. Eur. J. For. Path. 1996;26:253–272. doi: 10.1111/j.1439-0329.1996.tb00846.x. DOI

Werres S., Marwitz R., Man In’t veld W.A., De Cock A.W.A.M., Bonants P.J.M., De Weerdt M., Themann K., Ilieva E., Baayen R.P. Phytophthora ramorum sp. nov., a new pathogen on Rhododendron and Viburnum. Mycol. Res. 2001;105:1155–1165. doi: 10.1016/S0953-7562(08)61986-3. DOI

Jung T., Jung M.H., Scanu B., Seress D., Kovács M.G., Maia C., Pérez-Sierra A., Chang T.-T., Chandelier A., Heungens K., et al. Six new Phytophthora species from ITS Clade 7a including two sexually functional heterothallic hybrid species detected in natural ecosystems in Taiwan. Persoonia. 2017;38:100–135. doi: 10.3767/003158517X693615. PubMed DOI PMC

Cooke D.E.L., Drenth A., Duncan J.M., Wagels G., Brasier C.M. A molecular phylogeny of Phytophthora and related Oomycetes. Fungal Genet. Biol. 2000;30:17–32. doi: 10.1006/fgbi.2000.1202. PubMed DOI

Brasier C.M., Beales P.A., Kirk S.A., Denman S., Rose J. Phytophthora kernoviae sp. nov. an invasive pathogen causing bleeding stem lesions on forest trees and foliar necrosis of ornamentals in Britain. Mycol. Res. 2005;109:853–859. doi: 10.1017/S0953756205003357. PubMed DOI

Boutet X., Vercauteren A., Heungens K., Laurent F., Chandelier A. Oospore progenies from Phytophthora ramorum. Fungal Biol. 2010;114:369–378. PubMed

Jung T., Colquhoun I.J., Hardy G.E.S.J. New insights into the survival strategy of the invasive soilborne pathogen Phytophthora cinnamomi in different natural ecosystems in Western Australia. For. Pathol. 2013;43:266–288. doi: 10.1111/efp.12025. DOI

Brasier C.M., Kirk S.A. Production of gametangia by Phytophthora ramorum in vitro. Mycol. Res. 2004;108:823–827. doi: 10.1017/S0953756204000565. PubMed DOI

R Core Team R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. [(accessed on 15 March 2021)]; Available online: https://www.R-project.org/

Lenth R. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.4.3.01. [(accessed on 15 March 2021)]; Available online: https://CRAN.R-project.org/package=emmeans.

Erwin D.C., Ribeiro O.K. Phytophthora Diseases Worldwide. APS Press American Phytopathological Society; St. Paul, MN, USA: 1996.

White T.J., Bruns T., Lee S., Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M.A., Gelfand D.H., Sninsky J.J., White T.J., editors. PCR Protocols: A Guide to Methods and Applications. Academic Press; San Diego, CA, USA: 1990. pp. 315–322.

Martin F.N., Tooley P.W. Phylogenetic relationships among Phytophthora species inferred from sequence analysis of mitochondrially encoded cytochrome oxidase I and II genes. Mycologia. 2003;95:269–284. doi: 10.1080/15572536.2004.11833112. PubMed DOI

Kroon L.P.N.M., Bakker F.T., van den Bosch G.B.M., Bonants P.J.M., Flier W.G. Phylogenetic analysis of Phytophthora species based on mitochondrial and nuclear DNA sequences. Fungal Genet. Biol. 2004;41:766–782. doi: 10.1016/j.fgb.2004.03.007. PubMed DOI

Blair J.E., Coffey M.D., Park S.-Y., Greiser D.M., Kang S. A multi-locus phylogeny for Phytophthora utilizing markers derived from complete genome sequences. Fungal Genet. Biol. 2008;45:266–277. doi: 10.1016/j.fgb.2007.10.010. PubMed DOI

Martin F.N. Mitochondrial haplotype determination in the oomycete plant pathogen Phytophthora ramorum. Curr. Genet. 2008;54:23–34. doi: 10.1007/s00294-008-0196-8. PubMed DOI

Staden R., Beal K.F., Bonfield J.K. The Staden package 1998. Methods Mol. Biol. 2000;132:115–130. PubMed

Katoh K., Standley D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC

Lanfear R., Frandsen P., Wright A., Senfeld T., Calcott B. PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 2016;34:772–773. doi: 10.1093/molbev/msw260. PubMed DOI

Nguyen L.T., Schmidt H.A., von Haeseler A., Minh B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015;32:268–274. doi: 10.1093/molbev/msu300. PubMed DOI PMC

Sukumaran J., Holder M.T. DendroPy: A Python library for phylogenetic computing. Bioinformatics. 2010;26:1569–1571. doi: 10.1093/bioinformatics/btq228. PubMed DOI

Bouckaert R., Heled J., Kühnert D., Vaughan T., Wu C., Xie D., Suchard M., Rambaut A., Drummond A. BEAST 2: A software platform for bayesian evolutionary analysis. PLoS Comput. Biol. 2014;10:e1003537. doi: 10.1371/journal.pcbi.1003537. PubMed DOI PMC

Bouckaert R., Drummond A. bModelTest: Bayesian phylogenetic site model averaging and model comparison. BMC Evol. Biol. 2017;17:42. doi: 10.1186/s12862-017-0890-6. PubMed DOI PMC

Drummond A.J., Ho S.Y.W., Phillips M.J., Rambaut A. Relaxed phylogenetics and dating with confidence. PLoS Biol. 2006;4:699–710. doi: 10.1371/journal.pbio.0040088. PubMed DOI PMC

Paradis E., Schliep K. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 2019;35:526–528. doi: 10.1093/bioinformatics/bty633. PubMed DOI

Yu G. treeio: Base Classes and Functions for Phylogenetic Tree Input and Output. R package version 1.4.1. [(accessed on 15 March 2021)]; Available online: https://guangchuangyu.github.io/software/treeio.

Yu G., Smith D., Zhu H., Guan Y., Lam T.T. ggtree: An R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol. Evol. 2017;8:28–36. doi: 10.1111/2041-210X.12628. DOI

Yu G., Lam T.T., Zhu H., Guan Y. Two methods for mapping and visualizing associated data on phylogeny using ggtree. Mol. Biol. Evol. 2018;35:3041–3043. doi: 10.1093/molbev/msy194. PubMed DOI PMC

Yu G. Using ggtree to visualize data on tree-like structures. Curr. Protoc. Bioinform. 2020;69:e96. doi: 10.1002/cpbi.96. PubMed DOI

Rambaut A., Drummond A., Xie D., Baele G., Suchard M. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 2018;67:901–904. doi: 10.1093/sysbio/syy032. PubMed DOI PMC

Inkscape’s Contributors (2003–2020). Inkscape. [(accessed on 2 December 2020)]; Available online: https://inkscape.org/

Li W.-H., Tanimura M., Sharp P.M. An evaluation of the molecular clock hypothesis using mammalian DNA sequences. J. Mol. Evol. 1987;25:330–342. doi: 10.1007/BF02603118. PubMed DOI

Wolfe K.H., Sharp P.M., Li W.-H. Rates of synonymous substitution in plant nuclear genes. J. Mol. Evol. 1989;29:208–211. doi: 10.1007/BF02100204. DOI

Gaut B.S., Morton B.R., McCaig B.C., Clegg M.T. Substitution rate comparisons between grasses and palms: Synonymous rate differences at the nuclear gene Adh parallel rate differences at the plastid gene rbcL. Proc. Natl. Acad. Sci. USA. 1996;93:10274–10279. doi: 10.1073/pnas.93.19.10274. PubMed DOI PMC

Richardson J.E., Pennington R.T., Pennington T.D., Hollingsworth P.M. Rapid diversification of a species-rich genus of neotropical rain forest trees. Science. 2001;293:2242–2245. doi: 10.1126/science.1061421. PubMed DOI

Kasuga T., White T.J., Taylor J.W. Estimation of nucleotide substitution rates in Eurotiomycete fungi. Mol. Biol. Evol. 2002;19:2318–2324. doi: 10.1093/oxfordjournals.molbev.a004056. PubMed DOI

Smith D.R. Mutation rates in plastid genomes: They are lower than you might think. Genome Biol. Evol. 2015;7:1227–1234. doi: 10.1093/gbe/evv069. PubMed DOI PMC

Galtier N., Nabholz S., Glémin S., Hurst G.D.D. Mitochondrial DNA as a marker of molecular diversity: A reappraisal. Mol. Ecol. 2009;18:4541–4550. doi: 10.1111/j.1365-294X.2009.04380.x. PubMed DOI

Bandelt H.-J., Forster P., Röhl A. Median-joining networks for inferring intraspecies phylogenies. Mol. Biol. Evol. 1999;16:37–48. doi: 10.1093/oxfordjournals.molbev.a026036. PubMed DOI

Posada D., Crandall K.A. Intraspecific gene genealogies: Trees grafting into networks. Trends Ecol. Evol. 2001;16:37–45. doi: 10.1016/S0169-5347(00)02026-7. PubMed DOI

Cassens I., Mardulyn P., Milinkovitch M.C. Evaluating intraspecific “network” construction methods using simulated sequence data: Do existing algorithms outperform the Global Maximum Parsimony approach? Syst. Biol. 2005;54:363–372. doi: 10.1080/10635150590945377. PubMed DOI

Morrison D.A. Networks in phylogenetic analysis: New tools for population biology. Int. J. Parasitol. 2005;35:567–582. doi: 10.1016/j.ijpara.2005.02.007. PubMed DOI

Bandelt H.-J., Dress A.W.M. Split decomposition: A new and useful approach to phylogenetic analysis of distance data. Mol. Phylogenet. Evol. 1992;1:242–252. doi: 10.1016/1055-7903(92)90021-8. PubMed DOI

Fluxus Technology Ltd (2004–2020). Network 10.1.0.0. [(accessed on 2 December 2020)]; Available online: https://www.fluxus-engineering.com.

Huson D.H., Bryant D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 2006;23:254–267. doi: 10.1093/molbev/msj030. PubMed DOI

Hamming R.W. Error detecting and error correcting codes. Bell Syst. Tech. J. 1950;29:147–160. doi: 10.1002/j.1538-7305.1950.tb00463.x. DOI

Dress A.W.M., Huson D.H. Constructing splits graphs. IEEE/ACM Trans. Comput. Biol. Bioinform. 2004;1:109–115. doi: 10.1109/TCBB.2004.27. PubMed DOI

Cassens I., Van Waerebeek K., Best P.B., Crespo E.A., Reyes J.C., Milinkovitch M.C. The phylogeography of dusky dolphins (Lagenorhynchus obscurus): A critical examination of network methods and rooting procedures. Mol. Ecol. 2003;12:1781–1792. doi: 10.1046/j.1365-294X.2003.01876.x. PubMed DOI

Werres S., Kaminski K. Characterisation of European and North American Phytophthora ramorum isolates due to their morphology and mating behaviour in vitro with heterothallic Phytophthora species. Mycol. Res. 2005;109:860–871. doi: 10.1017/S0953756205003369. PubMed DOI

Jung T., Jung M.H., Cacciola S.O., Cech T., Bakonyi J., Seress D., Mosca S., Schena L., Seddaiu S., Pane A., et al. Multiple new cryptic pathogenic Phytophthora species from Fagaceae forests in Austria, Italy and Portugal. IMA Fungus. 2017;8:219–244. doi: 10.5598/imafungus.2017.08.02.02. PubMed DOI PMC

Stenlid J., Oliva J. Phenotypic interactions between tree hosts and invasive forest pathogens in the light of globalization and climate change. Phil. Trans. R. Soc. B. 2016;371:20150455. doi: 10.1098/rstb.2015.0455. PubMed DOI PMC

Donahoo R.S., Blomquist C.L., Thomas S.L., Moulton J.K., Cooke D.E.L., Lamour K.H. Phytophthora foliorum sp. nov., a new species causing leaf blight of azalea. Mycol. Res. 2006;110:1309–1322. doi: 10.1016/j.mycres.2006.07.017. PubMed DOI

Robin C., Piou D., Feau N., Douzon G., Schenck N., Hansen E.M. Root and aerial infections of Chamaecyparis lawsoniana by Phytophthora lateralis: A new threat for European countries. Forest Pathol. 2011;41:417–424. doi: 10.1111/j.1439-0329.2010.00688.x. DOI

Green S., Brasier C.M., Schlenzig A., McCracken A., MacAskill G.A., Wilson M., Webber J.F. The destructive invasive pathogen Phytophthora lateralis found on Chamaecyparis lawsoniana across the UK. Forest Pathol. 2013;43:19–28.

Harris A.R., Webber J.F. Insights into the potential host range of Phytophthora foliorum. Forest Pathol. 2019;49:e12556. doi: 10.1111/efp.12556. DOI

Kouznetsov A.N., Luong P. Flora of Fansipan mountain. In: Sobey R.T., editor. Proceedings of the Seminar & Workshop Biodiversity Value of Hoang Lien Mountains & Strategies for Conservation. Society for Environmental Exploration; London, UK: 1998. pp. 11–18.

Miyawaki A. A vegetation - Ecological view of the Japanese archipelago. Bull. Inst. Environ. Sci. Technol. Yokohama Natl. Univ. 1984;11:85–101.

Box E.O., Fujiwara K., Xue-Zhong Q. Diversity and dissimilarity of three forest types in Xishuangbanna, tropical southern China. Bull. Inst. Environ. Sci. Technol. Yokohama Natl. Univ. 1991;17:85–105.

Averyanov L.V., Loc P.K., Hiep N., Harder D.K. Phytogeographic review of Vietnam and adjacent areas of Eastern Indochina. Komarovia. 2003;3:1–83.

Tang C.Q., Ohsawa M. Ecology of subtropical evergreen broad-leaved forests of Yunnan, southwestern China as compared to those of southwestern Japan. J. Plant Res. 2009;122:335–350. doi: 10.1007/s10265-009-0221-0. PubMed DOI

Nakamura Y., DellaSala D.A., Alaback P. Temperate rainforests of Japan. In: DellaSala D.A., editor. Temperate and Boreal Rainforests of the World. Island Press; Washington, DC, USA: 2011. pp. 181–194.

Hukusima T., Matsui T., Nishio T., Pignatti S., Yang L., Lu S.-Y., Kim M.-H., Yoshikawa M., Honma H., Wang Y. Phytosociology of the Beech (Fagus) Forests in East Asia. Geobotany Studies; Springer; Berlin/Heidelberg, Germany: 2013.

Hua Z. The floras of southern and tropical southeastern Yunnan have been shaped by divergent geological histories. PLoS ONE. 2013;8:e64213. doi: 10.1371/journal.pone.0064213. PubMed DOI PMC

Chang-Fu H., Chung-Fu S., Kuoh-Cheng Y. Introduction to the flora of Taiwan, 3: Floristics, phytogeography, and vegetation. Fl. Taiwan. 1994;2:7–18.

Laumonier Y. The vegetation and Physiography of Sumatra. Springer Science and Business Media; Dordrecht, Germany: 1997. Geobotany 22.

Whitten T., Damanik S.J., Anwar J., Hisyam N. The Ecology of Sumatra. Oxford University Press; Oxford, UK: 1997.

Lillesø J.-P.B., Shrestha T.B., Dhakal L.P., Nayaju R.P., Shrestha R. The Map of Potential Vegetation of Nepal—A Forestry/Agroecological/Biodiversity Classification System. Forest & Landscape; Frederiksberg, Denmark: 2005. Development and Environment Series 2.

Zeng H.-C., Ho H.-H., Zheng F.-C. A survey of Phytophthora species on Hainan Island of South China. J. Phytopathol. 2009;157:33–39. doi: 10.1111/j.1439-0434.2008.01441.x. DOI

Denman S., Kirk S.A., Brasier C., Webber J.F. In vitro leaf inoculation studies as an indication of tree foliage susceptibility to Phytophthora ramorum in the UK. Plant Pathol. 2005;54:512–521. doi: 10.1111/j.1365-3059.2005.01243.x. DOI

Webber J.F., Mullett M., Brasier C.M. Dieback and mortality of plantation Japanese larch (Larix kaempferi) associated with infection by Phytophthora ramorum. New Dis. Rep. 2010;22:19. doi: 10.5197/j.2044-0588.2010.022.019. DOI

Davidson J.M., Patterson H.A., Wickland A.C., Fichtner E.J., Rizzo D.M. Forest type influences transmission of Phytophthora ramorum in California oak woodlands. Phytopathology. 2011;101:492–501. doi: 10.1094/PHYTO-03-10-0064. PubMed DOI

Eyre C.A., Kozanitas M., Garbelotto M. Population dynamics of aerial and terrestrial populations of Phytophthora ramorum in a California forest under different climatic conditions. Phytopathology. 2013;103:1141–1152. doi: 10.1094/PHYTO-11-12-0290-R. PubMed DOI

Peterson E.K., Hansen E.M., Kanaskie A. Temporal epidemiology of sudden oak death in Oregon. Phytopathology. 2015;105:937–946. doi: 10.1094/PHYTO-12-14-0348-FI. PubMed DOI

Harris A.R., Webber J.F. Sporulation potential, symptom expression and detection of Phytophthora ramorum on larch needles and other foliar hosts. Plant Pathol. 2016;65:1441–1451. doi: 10.1111/ppa.12538. DOI

Lione G., Gonthier P., Garbelotto M. Environmental factors driving the recovery of bay laurels from Phytophthora ramorum infections: An application of numerical ecology to citizen science. Forests. 2017;8:293. doi: 10.3390/f8080293. DOI

Eyre C.A., Garbelotto M. Detection, diversity, and population dynamics of waterborne Phytophthora ramorum populations. Phytopathology. 2015;105:57–68. doi: 10.1094/PHYTO-07-13-0196-R. PubMed DOI

Luz Ribeiro P., Rapini A., Soares e Silva U.C., van den Berg C. Using multiple analytical methods to improve phylogenetic hypotheses in Minaria (Apocynaceae) Mol. Phylogenet. Evol. 2012;65:915–925. doi: 10.1016/j.ympev.2012.08.019. PubMed DOI

Magallon S. A review of the effect of relaxed clock method, long branches, genes, and calibrations in the estimation of angiosperm age. Bot. Sci. 2014;92:1–22. doi: 10.17129/botsci.37. DOI

Sloan D.B., Havird J.C., Sharbrough J. The on-again, off-again relationship between mitochondrial genomes and species boundaries. Mol. Ecol. 2017;26:2212–2236. doi: 10.1111/mec.13959. PubMed DOI PMC

Ducket D.J., Pelletier T.A., Carstens B.C. Identifying model violations under the multispecies coalescent model using P2C2M.SNAPP. PeerJ. 2020;8:e8271. doi: 10.7717/peerj.8271. PubMed DOI PMC

Koch H., DeGiorgio M. Maximum Likelihood estimation of species trees from gene trees in the presence of ancestral population structure. Genome Biol. Evol. 2020;12:3977–3995. doi: 10.1093/gbe/evaa022. PubMed DOI PMC

Nakleh L., Ruths D., Innan H. Gene Trees, Species Trees, and Species Networks. In: Guerra R., Goldstein D., editors. Meta-Analysis and Combining Information in Genetics. Chapman & Hall, CRC Press; Boca Raton, FL, USA: 2009. pp. 275–293.

Matari N.H., Blair J.E. A multilocus timescale for oomycete evolution estimated under three distinct molecular clock models. BMC Evol. Biol. 2014;14:101. doi: 10.1186/1471-2148-14-101. PubMed DOI PMC

Nei M., Takahata N. Effective population size, genetic diversity, and coalescence time in subdivided populations. J. Mol. Evol. 1993;37:240–244. doi: 10.1007/BF00175500. PubMed DOI

Avise J.C. Phylogeography—The History and Formation of Species. Harvard University Press; Cambridge, MA, USA: London, UK: 2000.

Henricot B., Pèrez-Sierra A., Jung T. Phytophthora pachypleura sp. nov., a new species causing root rot of Aucuba japonica and other ornamentals in the United Kingdom. Plant. Pathol. 2014;63:1095–1109. doi: 10.1111/ppa.12194. DOI

Axelrod D.I., Al-Shehbaz I., Raven P.H. History of the modern flora of China. In: Zhang A.L., Wu S.G., editors. Floristic Characteristics and Diversity of East Asian Plants. China Higher Education Press/Springer; Beijing, China: 1998. pp. 43–55.

Wang H.-W., Ge S. Phylogeography of the endangered Cathaya argyrophylla (Pinaceae) inferred from sequence variation of mitochondrial and nuclear DNA. Mol. Ecol. 2006;15:4109–4122. doi: 10.1111/j.1365-294X.2006.03086.x. PubMed DOI

Tian S., López-Pujol J., Wang H.-W., Ge S., Zhang Z.-Y. Molecular evidence for glacial expansion and interglacial retreat during Quaternary climatic changes in a montane temperate pine (Pinus kwangtungensis Chun ex Tsiang) in southern China. Plant Syst. Evol. 2010;284:219–229. doi: 10.1007/s00606-009-0246-9. DOI

Aoki K., Ueno S., Kamijo T., Setoguchi H., Murakami N., Kato M., Tsumura Y. Genetic differentiation and genetic diversity of Castanopsis (Fagaceae), the dominant tree species in Japanese broadleaved evergreen forests, revealed by analysis of EST-associated microsatellites. PLoS ONE. 2014;9:e87429. doi: 10.1371/journal.pone.0087429. PubMed DOI PMC

Gao L.M., Möller M., Zhang X.-M., Hollingsworth M.L., Liu J., Mill R.R., Gibby M., Li D.-Z. High variation and strong phylogeographic pattern among cpDNA haplotypes in Taxus wallichiana (Taxaceae) in China and North Vietnam. Mol. Ecol. 2007;16:4684–4698. doi: 10.1111/j.1365-294X.2007.03537.x. PubMed DOI

Li C., Hongjin D., Hua P. Diversity and distribution of higher plants in Yunnan, China. Biodiv. Sci. 2013;21:359–363. doi: 10.3724/SP.J.1003.2013.05162. DOI

He K., Hu N.-Q., Chen X., Li J.-T., Jiang X.-L. Interglacial refugia preserved high genetic diversity of the Chinese mole shrew in the mountains of southwest China. Heredity. 2016;116:23–32. doi: 10.1038/hdy.2015.62. PubMed DOI PMC

Ye Z., Chen P., Bu W. Terrestrial mountain islands and Pleistocene climate fluctuations as motors for speciation: A case study on the genus Pseudovelia (Hemiptera: Veliidae) Sci. Rep. 2016;6:33625. doi: 10.1038/srep33625. PubMed DOI PMC

Owen R.B. Physical geography and geology: Imprints on a landscape, Yunnan, China. Geography. 2005;90:279–287. doi: 10.1080/00167487.2005.12094140. DOI

Vercauteren A., Boutet X., D’hondt L., Van Bockstaele E., Maes M., Leus L., Chandelier A., Heungens K. Aberrant genome size and instability of Phytophthora ramorum oospore progenies. Fungal Genet. Biol. 2011;48:537–543. doi: 10.1016/j.fgb.2011.01.008. PubMed DOI

Brasier C.M. Evolutionary Biology of Phytophthora. I. Genetic system, sexuality and variation. Ann. Rev. Phytopathol. 1992;30:153–171. doi: 10.1146/annurev.py.30.090192.001101. DOI

Kasuga T., Bui M., Bernhardt E., Swiecki T., Aram K., Cano L.M., Webber J., Brasier C., Press C., Grünwald N.J., et al. Host-induced aneuploidy and phenotypic diversification in the Sudden Oak Death pathogen Phytophthora ramorum. BMC Genom. 2016;17:385. doi: 10.1186/s12864-016-2717-z. PubMed DOI PMC

Yuzon J.D., Travadon R., Mathu M.C., Tripathy S., Rank N., Mehl H.K., Rizzo D.M., Cobb R., Small C., Tang T., et al. Asexual evolution and forest conditions drive genetic parallelism in Phytophthora ramorum. Microorganisms. 2020;8:940. doi: 10.3390/microorganisms8060940. PubMed DOI PMC

Fichtner E.J., Lynch S.C., Rizzo D.M. Detection, distribution, survival, and sporulation of Phytophthora ramorum in a California redwood-tanoak forest soil. Phytopathology. 2007;97:1366–1375. doi: 10.1094/PHYTO-97-10-1366. PubMed DOI

Roy B.A., Alexander H.M., Davidson J., Campbell F.T., Burdon J.J., Sniezko R., Brasier C. Increasing forest loss worldwide from invasive pests requires new trade regulations. Front. Ecol. Environ. 2014;12:457–465. doi: 10.1890/130240. DOI

Eschen R., Britton K., Brockerhoff E., Burgess T., Valley V., Epanchin-Niell R.S., Gupta K., Hardy G., Huang Y., Kenis M., et al. International variation in phytosanitary legislation and regulations governing importation of plants for planting. Environ. Sci. Policy. 2015;51:228–237. doi: 10.1016/j.envsci.2015.04.021. DOI

Eschen R., Douma B., Grégoire J.C., Mayer F., Rigaux L., Potting R.P.J. A risk categorisation and analysis of the geographic and temporal dynamics of the European import of plants for planting. Biol. Invasions. 2017;19:3243–3257. doi: 10.1007/s10530-017-1465-6. DOI

Davison E.M., Drenth A., Kumar S., Mack S., Mackie A.E., McKirdy S. Pathogens associated with nursery plants imported into Western Australia. Australas. Plant Pathol. 2006;35:473–475. doi: 10.1071/AP06043. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Worldwide forest surveys reveal forty-three new species in Phytophthora major Clade 2 with fundamental implications for the evolution and biogeography of the genus and global plant biosecurity

. 2024 Mar ; 107 () : 251-388. [epub] 20240227

Synchrospora gen. nov., a New Peronosporaceae Genus with Aerial Lifestyle from a Natural Cloud Forest in Panama

. 2023 Apr 27 ; 9 (5) : . [epub] 20230427

Phylogeography and population structure of the global, wide host-range hybrid pathogen Phytophthora × cambivora

. 2023 Feb 23 ; 14 (1) : 4. [epub] 20230223

Extensive morphological and behavioural diversity among fourteen new and seven described species in Phytophthora Clade 10 and its evolutionary implications

. 2022 Dec 20 ; 49 () : 1-57. [epub] 20220813

Natural Populations from the Phytophthora palustris Complex Show a High Diversity and Abundance of ssRNA and dsRNA Viruses

. 2022 Oct 24 ; 8 (11) : . [epub] 20221024

Eight new Halophytophthora species from marine and brackish-water ecosystems in Portugal and an updated phylogeny for the genus

. 2022 Jul 12 ; 48 () : 54-90. [epub] 20220320

Genera of phytopathogenic fungi: GOPHY 4

. 2022 Jul ; 101 () : 417-564. [epub] 20220602

Phytophthora: an ancient, historic, biologically and structurally cohesive and evolutionarily successful generic concept in need of preservation

. 2022 Jun 27 ; 13 (1) : 12. [epub] 20220627

Effects of Phytophthora Inoculations on Photosynthetic Behaviour and Induced Defence Responses of Plant Volatiles in Field-Grown Hybrid Poplar Tolerant to Bark Canker Disease

. 2021 Nov 15 ; 7 (11) : . [epub] 20211115

Phytophthora heterospora sp. nov., a New Pseudoconidia-Producing Sister Species of P. palmivora

. 2021 Oct 16 ; 7 (10) : . [epub] 20211016

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...