Phytophthora heterospora sp. nov., a New Pseudoconidia-Producing Sister Species of P. palmivora
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
34682290
PubMed Central
PMC8539753
DOI
10.3390/jof7100870
PII: jof7100870
Knihovny.cz E-zdroje
- Klíčová slova
- Peronosporaceae, Phytophthora, clade 4, durian, multi gene sequencing, olive, oomycete, phylogenetic analyses, pseudoconidia, sporangia, taxonomy,
- Publikační typ
- časopisecké články MeSH
Since 1999, an unusual Phytophthora species has repeatedly been found associated with stem lesions and root and collar rot on young olive trees in Southern Italy. In all cases, this species was obtained from recently established commercial plantations or from nursery plants. Morphologically, the Phytophthora isolates were characterized by the abundant production of caducous non-papillate conidia-like sporangia (pseudoconidia) and caducous papillate sporangia with a short pedicel, resembling P. palmivora var. heterocystica. Additional isolates with similar features were obtained from nursery plants of Ziziphus spina-christi in Iran, Juniperus oxycedrus and Capparis spinosa in Italy, and mature trees in commercial farms of Durio zibethinus in Vietnam. In this study, morphology, breeding system and growth characteristics of these Phytophthora isolates with peculiar features were examined, and combined mitochondrial and nuclear multigene phylogenetic analyses were performed. The proportion between pseudoconidia and sporangia varied amongst isolates and depended on the availability of free water. Oogonia with amphigynous antheridia and aplerotic oospores were produced in dual cultures with an A2 mating type strain of P. palmivora, indicating all isolates were A1 mating type. Phylogenetically, these isolates grouped in a distinct well-supported clade sister to P. palmivora; thus, they constitute a separate taxon. The new species, described here as Phytophthora heterospora sp. nov., proved to be highly pathogenic to both olive and durian plants in stem inoculation tests.
Department of Agricultural Sciences University of Sassari 07100 Sassari Italy
Department of Agriculture Food and Environment University of Catania 95123 Catania Italy
Department of Plant Protection School of Agriculture Shiraz University Shiraz 7144165186 Iran
Zobrazit více v PubMed
Erwin D.C., Ribeiro O.K. Phytophthora Diseases Worldwide. APS Press American Phytopathological Society; St. Paul, MN, USA: 1996. p. 562.
Hansen E.M., Reeser P.W., Sutton W. Phytophthora beyond agriculture. Ann. Rev. Phytopathol. 2012;50:359–378. doi: 10.1146/annurev-phyto-081211-172946. PubMed DOI
Jung T., Sierra-Perez A., Duran A., Horta Jung M., Balci Y., Scanu B. Canker and decline diseases caused by soil- and airborne Phytophthora species in forests and woodlands. Persoonia. 2018;40:182–220. doi: 10.3767/persoonia.2018.40.08. PubMed DOI PMC
Bourret T.B., Choudhury R.A., Mehl H.K., Blomquist C.L., McRoberts N., Rizzo D.M. Multiple origins of downy mildews and mito-nuclear discordance within the paraphyletic genus Phytophthora. PLoS ONE. 2018;13:e0192502. doi: 10.1371/journal.pone.0192502. PubMed DOI PMC
Garbelotto M., Frankel S., Scanu B. Soil-and waterborne Phytophthora species linked to recent outbreaks in Northern California restoration sites. Calif. Agric. 2018;72:208–216. doi: 10.3733/ca.2018a0033. DOI
Jung T., Horta Jung M., Cacciola S.O., Cech T., Bakonyi J., Seress D., Mosca S., Schena L., Seddaiu S., Pane A., et al. Multiple new cryptic pathogenic Phytophthora species from Fagaceae forests in Austria, Italy and Portugal. IMA Fungus. 2017;8:219–244. doi: 10.5598/imafungus.2017.08.02.02. PubMed DOI PMC
Oßwald W., Fleischmann F., Rigling D., Coelho A.C., Cravador A., Diez J., Dalio R.J., Horta Jung M., Pfanz H., Robin C., et al. Strategies of attack and defence in woody plant-Phytophthora interactions. For. Pathol. 2014;44:169–190. doi: 10.1111/efp.12096. DOI
Bassani I., Larousse M., Tran Q.D., Attard A., Galiana E. Phytophthora zoospores: From perception of environmental signals to inoculum formation on the host-root surface. Comput. Struct. Biotechnol. J. 2020;18:3766–3773. doi: 10.1016/j.csbj.2020.10.045. PubMed DOI PMC
Harris A.R., Webber J.F. Sporulation potential, symptom expression and detection of Phytophthora ramorum on larch needles and other foliar hosts. Plant Pathol. 2016;65:1441–1451. doi: 10.1111/ppa.12538. DOI
Scanu B., Webber J.F. Dieback and mortality of Nothofagus in Britain: Ecology, pathogenicity and sporulation potential of the causal agent Phytophthora pseudosyringae. Plant Pathol. 2016;65:26–36. doi: 10.1111/ppa.12399. DOI
Scanu B., Cacciola S.O., Linaldeddu B., Pane A., Franceschini A., Magnano di San Lio G. Characterization and evolutionary significance of a new Phytophthora species producing conidia. J. Plant Pathol. 2015;97:38.
Cacciola S.O., Agosteo G.E., Pane A. First report of Phytophthora palmivora as a pathogen of olive in Italy. Plant Dis. 2000;84:1153. doi: 10.1094/PDIS.2000.84.10.1153A. PubMed DOI
Agosteo G.E., Magnano di San Lio G., Cacciola S.O. Root rot of young olive trees caused by Phytophthora palmivora in southern Italy. Acta Hortic. 2002;586:709–712. doi: 10.17660/ActaHortic.2002.586.151. DOI
Babacauh K.D. Structure des populations de Phytophthora palmivora (Butl.) Butl. Emend. Bras. Et Griff. Parasite du cacaoyer (Theobroma cacao L.) (Population structure Phytophthora palmivora from cacao [Theobroma cacao L.]) Bul. Soc. Bot. Fr. Lett. Bot. 1983;130:15–25.
Scanu B., Hunter G.C., Linaldeddu B.T., Franceschini A., Maddau L., Jung T., Denman S. A taxonomic re-evaluation reveals that Phytophthora cinnamomi and Pcinnamomi var. parvispora are separate species. For. Pathol. 2014;44:1–20.
Jung T., Blaschke H., Neumann P. Isolation, identification and pathogenicity of Phytophthora species from declining oak stands. Eur. J. For. Path. 1996;26:253–272. doi: 10.1111/j.1439-0329.1996.tb00846.x. DOI
Jeffers S.N., Martin S.B. Comparison of two media selective for Phytophthora and Pythium spp. Plant Dis. 1986;70:1038–1043. doi: 10.1094/PD-70-1038. DOI
Brasier C.M., Griffin M.J. Taxonomy of Phytophthora palmivora on cocoa. T. Brit. Mycol. Soc. 1979;71:111–143. doi: 10.1016/S0007-1536(79)80015-7. DOI
Pane A., Allatta C., Sammarco G., Cacciola S.O. First report of bud rot of Canary Island date palm caused by Phytophthora palmivora in Italy. Plant Dis. 2007;91:1059. doi: 10.1094/PDIS-91-8-1059A. PubMed DOI
Cacciola S.O., Pennisi A.M., Agosteo G.E., Magnano di San Lio G. First Report of Phytophthora palmivora on Grevillea spp. in Italy. Plant Dis. 2003;87:1006. doi: 10.1094/PDIS.2003.87.8.1006A. PubMed DOI
Van Tri M., Van Hoa N., Minh Chau N., Pane A., Faedda R., De Patrizio A., Schena L., Olsson C.H.B., Wright S.A.I., Ramstedt M., et al. Decline of jackfruit (Artocarpus heterophyllus) incited by Phytophthora palmivora in Vietnam. Phytopathol. Mediterr. 2015;54:275–280.
Cooke D.E.L., Drenth A., Duncan J.M., Wagels G., Brasier C.M. A molecular phylogeny of Phytophthora and related oomycetes. Fungal Genet. Biol. 2000;30:17–32. doi: 10.1006/fgbi.2000.1202. PubMed DOI
White T.J., Bruns T., Lee S., Taylor J. Amplification and direct sequencing of fungal ribosomal DNA for phylogenetics. In: Innis M.A., Gelfand D.H., Sninsky J.J., White T.J., editors. PCR Protocols: A Guide to Methods and Applications. Academic Press; San Diego, CA, USA: 1990. pp. 315–322.
Blair J.E., Coffey M.D., Park S.-Y., Greiser D.M., Kang S. A multi-locus phylogeny for Phytophthora utilizing markers derived from complete genome sequences. Fungal Genet. Biol. 2008;45:266–277. doi: 10.1016/j.fgb.2007.10.010. PubMed DOI
Martin F.N., Tooley P.W. Phylogenetic relationships among Phytophthora species inferred from sequence analysis of mitochondrially encoded cytochrome oxidase I and II genes. Mycologia. 2003;95:269–284. doi: 10.2307/3762038. PubMed DOI
Kroon L.P.N.M., Bakker F.T., van den Bosch G.B.M., Bonants P.J.M., Flier W.G. Phylogenetic analysis of Phytophthora species based on mitochondrial and nuclear DNA sequences. Fungal Genet. Biol. 2004;41:766–782. doi: 10.1016/j.fgb.2004.03.007. PubMed DOI
Hall T. BioEdit Version 5.0.6. Department of Microbiology, North Carolina State University. [(accessed on 8 June 2021)]. Available online: http://www.mbio.ncsu.edu/BioEdit/bioedit.html.
O’Hanlon R., Destefanis M., Milenković I., Tomšovský M., Janoušek J., Bellgard S.E., Weir B.S., Kudláček T., Horta Jung M., Jung T. Two new Nothophytophthora species from streams in Ireland and Northern Ireland: Nothophytophthora irlandica and N. lirii sp. nov. PLoS ONE. 2021;16:e0250527. doi: 10.1371/journal.pone.0250527. PubMed DOI PMC
Katoh K., Standley D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC
Choi Y.J., Klosterman S.J., Kummer V., Voglmayr H., Shin H.D., Thines M. Multi-locus tree and species tree approaches toward resolving a complex clade of downy mildews (Straminipila, Oomycota), including pathogens of beet and spinach. Mol. Phylogenet. Evol. 2015;86:24–34. doi: 10.1016/j.ympev.2015.03.003. PubMed DOI PMC
Huelsenbeck J.P., Ronquist F. MrBayes: Bayesian inference of phylogeny. Bioinformatics. 2001;17:754–755. doi: 10.1093/bioinformatics/17.8.754. PubMed DOI
Ronquist F., Heuelsenbeck J.P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19:1572–1574. doi: 10.1093/bioinformatics/btg180. PubMed DOI
Edler D., Klein J., Antonelli A., Silvestro D. raxmlGUI 2.0: A graphical interface and toolkit for phylogenetic analyses using RAxML. Methods Ecol Evol. 2020;12:373–377. doi: 10.1111/2041-210X.13512. DOI
Stamatakis A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–1313. doi: 10.1093/bioinformatics/btu033. PubMed DOI PMC
Maddison W.P., Maddison D.R. Mesquite: A Modular System for Evolutionary Analysis. 2019 Version 3.61. [(accessed on 1 June 2021)]. Available online: http://www.mesquiteproject.org.
Kumar S., Stecher G., Li M., Knyaz C., Tamura K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018;35:1547–1549. doi: 10.1093/molbev/msy096. PubMed DOI PMC
Scanu B., Linaldeddu B.T., Deidda A., Jung T. Diversity of Phytophthora species from declining Mediterranean maquis vegetation, including two new species, Phytophthora crassamura and P. ornamentata sp. nov. PLoS ONE. 2015;10:e0143234. doi: 10.1371/journal.pone.0143234. PubMed DOI PMC
Dick M.W. Keys to Pythium. University of Reading Press; London, UK: 1990. p. 63.
Drenth A., Guest D.I. Diversity and Management of Phytophthora in Southeast Asia. Australian Centre for International Agricultural Research; Canberra, Australia: 2004. p. 238. ACIAR Monograph 114.
Göker M., Voglmayr H., Riethmüller A., Oberwinkler F. How do obligate parasites evolve? A multi-gene phylogenetic analysis of downy mildews. Fungal Genet. Biol. 2007;44:105–122. PubMed
Thines M., Choi Y.J. Evolution, diversity, and taxonomy of the Peronosporaceae, with focus on the genus Peronospora. Phytopathology. 2016;106:6–18. doi: 10.1094/PHYTO-05-15-0127-RVW. PubMed DOI
Zhang Z.G., Zheng X.B., Wang Y.C., Ko W.H. Evaluation of the rearrangement of taxonomic position of Peronophythora litchii based on partial DNA sequences. Bot. Stud. 2007;48:79–89.
Ye W., Wang Y., Shen D., Li D., Pu T., Jiang Z., Zhang Z., Zheng X., Tyler B.M., Wang Y. Sequencing of the litchi downy blight pathogen reveals it is a Phytophthora species with downy mildew-like characteristics. Mol. Plant-Microbe Interact. 2016;29:573–583. doi: 10.1094/MPMI-03-16-0056-R. PubMed DOI
Ho H.H., Zheng F.C., Zheng H.C. Phytophthora cyperi on Digitaria ciliaris in Hainan Province of China. Mycotaxon. 2004;90:431–435.
Zheng X.B., Ho H.H. The sexual stage of Phytophthora polygoni Saw. Bot Bull Acad Sin. 2000;41:57–60.
Göker M., Voglmayr H., Riethmüeller A., Weiß M., Oberwinkler F. Taxonomic aspects of Peronosporaceae inferred from Bayesian molecular phylogenetics. Can. J. Bot. 2003;81:672–683. doi: 10.1139/b03-066. DOI
Thines M., Göker M., Oberwinkler F., Spring O. A revision of Plasmopara penniseti, with implications for the host range of the downy mildews with pyriform haustoria. Mycol. Res. 2007;111:1377–1385. doi: 10.1016/j.mycres.2007.09.006. PubMed DOI
Thines M., Göker M., Telle S., Ryley M., Mathur K., Narayana Y.D., Spring O., Thakur R.P. Phylogenetic relationships in graminicolous downy mildews based on cox2 sequence data. Mycol. Res. 2008;112:345–351. doi: 10.1016/j.mycres.2007.10.010. PubMed DOI
Gaümann E.A. The Fungi. A Description of Their Morphological Features and Evolutionary Development. Hafner Publishing; New York, NY, USA: London, UK: 1952.
Waterhouse G.M. Peronosporales. In: Ainsworth G.C., Sparrow F.K., Sussman A.S., editors. The Fungi—An Advanced Treatise. Academic Press; New York, NY, USA: 1973. pp. 165–183.
Dick M.W., Wong P.T.W., Clark G. The identity of the oomycete causing kikuyu yellows with a reclassification of the downy mildews. Bot. J. Linn. Soc. 1984;89:171–198. doi: 10.1111/j.1095-8339.1984.tb01008.x. DOI
Riethmüller A., Voglmayr H., Goker M., Weiss M., Oberwinkler F. Phylogenetic relationships of the downy mildews (Per-onosporales) and related groups based on nuclear large subunit ribosomal DNA sequences. Mycologia. 2002;94:834. doi: 10.2307/3761698. PubMed DOI
Runge F., Telle S., Ploch S., Savory E., Day B., Sharma R. Thines M. The inclusion of downy mildews in a multi- locus-dataset and its reanalysis reveals a high degree of paraphyly in Phytophthora. IMA Fungus. 2011;2:163–171. doi: 10.5598/imafungus.2011.02.02.07. PubMed DOI PMC
Martin F.N., Blair J.E., Coffey M.D. A combined mitochondrial and nuclear multilocus phylogeny of the genus Phytophthora. Fungal Genet. Biol. 2014;66:19–32. doi: 10.1016/j.fgb.2014.02.006. PubMed DOI
Fletcher K., Gil J., Bertier L.D., Kenefick A., Wood K.J., Zhang L., Reyes-Chin-Wo S., Cavanaugh K., Tsuchida C., Wong J., et al. Genomic signatures of heterokaryosis in the oomycete pathogen Bremia lactucae. Nat. Commun. 2019;10:1–13. doi: 10.1038/s41467-019-10550-0. PubMed DOI PMC
Butler E.J. Report of the Imperial Mycologist, 1918–1919. Scientific Reports of the Agricultural Research Institute, Pusa; Calcutta, India: 1919. p. 82.
IDphy: Molecular and Morphological Identification of Phytophthora. [(accessed on 8 September 2021)]. Available online: https://idtools.org/id/phytophthora/molecular.php.
Linaldeddu B.T., Bregant C., Ruzzon B., Montecchio L. Coniella granati and Phytophthora palmivora the main pathogens involved in pomegranate dieback and mortality in north-eastern Italy. Ital. J. Mycol. 2020;49:92–100.
Kurbetli İ., Karaca G., Aydoğdu M. Phytophthora species causing root and collar rot of pomegranate in Turkey. Eur. J. Plant. Pathol. 2020;157:485–496. doi: 10.1007/s10658-020-02007-8. DOI
Chliyeh M., Ouazzani Touhami A., Filali-Maltouf A., El Modafar C., Moukhli A., Oukabli A., Benkirane R., Douira A. Phytophthora palmivora: A new pathogen of olive trees in Morocco. Atlas J. Biol. 2013;2:130–135. doi: 10.5147/ajb.v2i2.22. DOI
Cacciola S.O., Faedda R., Pane A., Scarito G. Root and crown rot of olive caused by Phytophthora spp. In: Schena L., Agosteo G.E., Cacciola S.O., Magnano di San Lio G., editors. Olive Diseases and Disorders. Transworld Research Network; Trivandrum, Kerala, India: 2011. pp. 305–327.
Cacciola S.O., Gullino M.L. Emerging and re-emerging fungus and oomycete soil-borne plant diseases in Italy. Phytopathol. Mediterr. 2019;58:451–472.
Brasier C.M. The biosecurity threat to the UK and global environment from international trade in plants. Plant Pathol. 2008;57:792–808. doi: 10.1111/j.1365-3059.2008.01886.x. DOI
Jung T., Orlikowski L., Henricot B., Abad-Campos P., Aday A.G., Aguin Casal O., Bakonyi J., Cacciola S.O., Cech T., Chavarriaga D., et al. Widespread Phytophthora infestations in European nurseries put forest, semi-natural and horticultural ecosystems at high risk of Phytophthora diseases. For. Pathol. 2016;46:134–163. doi: 10.1111/efp.12239. DOI
Migliorini D., Ghelardini L., Tondini E., Luchi N., Santini A. The potential of symptomless potted plants for carrying invasive soil-borne plant pathogens. Divers. Distrib. 2015;21:1218–1229. doi: 10.1111/ddi.12347. DOI
Drenth A., Guest D. Phytophthora palmivora in Tropical Tree Crops. In: Lamour K., editor. Phytophthora—A Global Perspective. CABI; Oxfordshire, UK: 2013. pp. 187–196.
Mchau G.R.A., Coffey M.D. Isozyme diversity in Phytophthora palmivora: Evidence for a Southeast Asian centre of origin. Mycol. Res. 1994;98:1035–1043. doi: 10.1016/S0953-7562(09)80430-9. DOI
Zentmyer G. Origin and distribution of four species of Phytophthora. Trans. Br. Mycol. Soc. 1988;91:367–378. doi: 10.1016/S0007-1536(88)80111-6. DOI
Brasier C.M., Vettraino A.M., Chang T.T., Vannini A. Phytophthora lateralis discovered in an old growth Chamaecyparis forest in Taiwan. Plant Pathol. 2010;59:595–603. doi: 10.1111/j.1365-3059.2010.02278.x. DOI
Jung T., Chang T.T., Bakonyi J., Seress D., Pérez-Sierra A., Yang X., Hong C., Scanu B., Fu C.H., Hsueh K.L., et al. Diversity of Phytophthora species in natural ecosystems of Taiwan and association with disease symptoms. Plant Pathol. 2017;66:194–211. doi: 10.1111/ppa.12564. DOI
Jung T., Horta Jung M., Webber J.F., Kageyama K., Hieno A., Masuya H., Uematsu S., Pérez-Sierra A., Harris A.R., Forster J., et al. The Destructive Tree Pathogen Phytophthora ramorum Originates from the Laurosilva Forests of East Asia. J. Fungi. 2021;7:226. doi: 10.3390/jof7030226. PubMed DOI PMC
Shakya S.K., Grünwald N.J., Fieland V.J., Knaus B.J., Weiland J.E., Maia C., Drenth A., Guest D.I., Liew E.C.Y., Crane C., et al. Phylogeography of the wide-host range panglobal plant pathogen Phytophthora cinnamomi. Mol Ecol. 2021;30:5164–5178. doi: 10.1111/mec.16109. PubMed DOI
Grünwald N.J., McDonald B.A., Milgroom M.G. Population genomics of fungal and oomycete pathogens. Ann. Rev. Phytopat. 2016;54:323–346. doi: 10.1146/annurev-phyto-080614-115913. PubMed DOI
Ali S., Shao J., Lary D., Strem M., Meinhardt L., Bailey B. Phytophthora megakarya and P. palmivora, Causal Agents of Black Pod Rot, Induce Similar Plant Defense Responses Late during Infection of Susceptible Cacao Pods. Front. Plant Sci. 2017;8:169. doi: 10.3389/fpls.2017.00169. PubMed DOI PMC
Jung T., Horta Jung M., Scanu B., Seress D., Kovács G.M., Maia C., Pérez-Sierra A., Chang T.T., Chandelier A., Heungens K., et al. Six new Phytophthora species from ITS Clade 7a including two sexually functional heterothallic hybrid species detected in natural ecosystems in Taiwan. Persoonia. 2017;38:100–135. doi: 10.3767/003158517X693615. PubMed DOI PMC
Burgess T.I. Molecular characterization of natural hybrids formed between five related indigenous Clade 6 Phytophthora species. PLoS ONE. 2015;10:e0134225. doi: 10.1371/journal.pone.0134225. PubMed DOI PMC
Van Poucke K., Haegeman A., Goedefroit T., Focquet F., Leus L., Horta Jung M., Nave C., Redondo M.A., Husson C., Kostov K., et al. Unravelling hybridization in Phytophthora using phylogenomics and genome size estimation. IMA Fungus. 2021;12:16. doi: 10.1186/s43008-021-00068-w. PubMed DOI PMC
Guo Y., Sakalidis M.L., Torres-Londoño G.A., Hausbeck M. Population structure of a worldwide Phytophthora palmivora collection suggests lack of host specificity and reduced genetic diversity in South American and Caribbean. Plant Dis. 2021 doi: 10.1094/PDIS-05-20-1055-RE. PubMed DOI
FAOSTAT Crops and Livestock Products. 2021. [(accessed on 8 September 2021)]. Available online: http://www.fao.org/faostat/en/#data/QCL.
Kurbetli I., Sulu G., TaŞtekİn E., Polat I. First report of Phytophthora inundata causing olive tree decline in Turkey. Can. J. Plant Pathol. 2016;38:254–257. doi: 10.1080/07060661.2016.1157832. DOI
González M., Pérez-Sierra A., Serrano M.S., Sanchez M.E. Two Phytophthora species causing decline of wild olive (Olea europaea subsp. europaea var. sylvestris) Plant Pathol. 2017;66:941–948. doi: 10.1111/ppa.12649. DOI
Ruano-Rosa D., Schena L., Agosteo G.E., Magnano di San Lio G., Cacciola S.O. Phytophthora oleae sp. nov. causing fruit rot of olive in southern Italy. Plant Pathol. 2018;67:1362–1373. doi: 10.1111/ppa.12836. DOI
Linaldeddu B.T., Bregant C., Montecchio L., Favaron F., Sella L. First report of Phytophthora acerina, P. pini and P. plurivora causing root rot and sudden death on olive trees in Italy. Plant Dis. 2020;104:996. doi: 10.1094/PDIS-10-19-2080-PDN. DOI
Santilli E., Riolo M., La Spada F., Pane A., Cacciola S.O. First report of root rot caused by Phytophthora bilorbang on Olea europaea in Italy. Plants. 2020;9:826. doi: 10.3390/plants9070826. PubMed DOI PMC