oomycete Dotaz Zobrazit nápovědu
Pythium oligandrum (Oomycota) is known for its strong mycoparasitism against more than 50 fungal and oomycete species. However, the ability of this oomycete to suppress and kill the causal agents of dermatophytoses is yet to be studied. We provide a complex study of the interactions between P. oligandrum and dermatophytes representing all species dominating in the developed countries. We assessed its biocidal potential by performing growth tests, on both solid and liquid cultivation media and by conducting a pilot clinical study. In addition, we studied the molecular background of mycoparasitism using expression profiles of genes responsible for the attack on the side of P. oligandrum and the stress response on the side of Microsporum canis. We showed that dermatophytes are efficiently suppressed or killed by P. oligandrum in the artificial conditions of cultivations media between 48 and 72 h after first contact. Significant intra- and interspecies variability was noted. Of the 69 patients included in the acute regimen study, symptoms were completely eliminated in 79% of the patients suffering from foot odour, hyperhidrosis disappeared in 67% of cases, clinical signs of dermatomycoses could no longer be observed in 83% of patients, and 15% of persons were relieved of symptoms of onychomycosis. Our investigations provide clear evidence that the oomycete is able to recognize and kill dermatophytes using recognition mechanisms that resemble those described in oomycetes attacking fungi infecting plants, albeit with some notable differences.
- MeSH
- antibióza * MeSH
- Arthrodermataceae růst a vývoj MeSH
- biologická terapie metody MeSH
- fyziologický stres MeSH
- lidé MeSH
- mikrobiální viabilita MeSH
- pilotní projekty MeSH
- Pythium růst a vývoj MeSH
- stanovení celkové genové exprese MeSH
- tinea terapie MeSH
- výsledek terapie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Plant NADPH oxidases, also known as respiratory burst oxidase homologues (RBOHs), have been identified as a major source of reactive oxygen species (ROS) during plant-microbe interactions. The subcellular localization of the tobacco (Nicotiana tabacum) ROS-producing enzyme RBOHD was examined in Bright Yellow-2 cells before and after elicitation with the oomycete protein cryptogein using electron and confocal microscopy. The plasma membrane (PM) localization of RBOHD was confirmed and immuno-electron microscopy on purified PM vesicles revealed its distribution in clusters. The presence of the protein fused to GFP was also seen in intracellular compartments, mainly Golgi cisternae. Cryptogein induced, within 1h, a 1.5-fold increase in RBOHD abundance at the PM and a concomitant decrease in the internal compartments. Use of cycloheximide revealed that most of the proteins targeted to the PM upon elicitation were not newly synthesized but may originate from the Golgi pool. ROS accumulation preceded RBOHD transcript- and protein-upregulation, indicating that ROS resulted from the activation of a PM-resident pool of enzymes, and that enzymes newly addressed to the PM were inactive. Taken together, the results indicate that control of RBOH abundance and subcellular localization may play a fundamental role in the mechanism of ROS production.
- MeSH
- buněčná membrána metabolismus MeSH
- fungální proteiny metabolismus MeSH
- konfokální mikroskopie MeSH
- kvantitativní polymerázová řetězová reakce MeSH
- NADPH-oxidasy genetika metabolismus MeSH
- Phytophthora fyziologie MeSH
- reaktivní formy kyslíku metabolismus MeSH
- rostlinné proteiny genetika metabolismus MeSH
- tabák genetika metabolismus mikrobiologie MeSH
- transmisní elektronová mikroskopie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Numerous oomycetes colonise the crayfish cuticle, the best known being the crayfish plague pathogen Aphanomyces astaci. Although other oomycetes associated with crayfish complicate the isolation and molecular detection of A. astaci, their diversity is little known. To improve this knowledge, we analysed 95 oomycete isolates obtained during attempts to isolate A. astaci from crayfish presumably infected by this pathogen. We characterized the isolates morphologically and by sequencing of the nuclear internal transcribed spacer (ITS) region. We identified 13 taxa by molecular analysis. Ten of them were assigned to five genera; the remaining three were affiliated with the order Saprolegniales but could not be reliably assigned to any genus. Morphological identification to species level was only possible for 15 % of isolates; all corresponded to Saprolegnia ferax, which was confirmed by ITS sequencing. The most frequently isolated species were S. ferax and Saprolegnia australis. Only seven isolates of A. astaci were obtained, all from one disease outbreak. We show that oomycete cultures obtained as by-products of parasite isolation are valuable for oomycete diversity studies, but morphological identification may uncover only a fraction of their diversity. Further, we show that crayfish may be frequently associated with potentially serious parasites of other organisms.
- MeSH
- biodiverzita * MeSH
- DNA fungální chemie genetika MeSH
- fylogeneze MeSH
- mezerníky ribozomální DNA chemie genetika MeSH
- mikroskopie MeSH
- molekulární sekvence - údaje MeSH
- oomycety klasifikace cytologie genetika izolace a purifikace MeSH
- sekvenční analýza DNA MeSH
- severní raci mikrobiologie MeSH
- shluková analýza MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Fungi, nematodes and oomycetes belong to the most prominent eukaryotic plant pathogenic organisms. Unicellular organisms from other eukaryotic lineages, commonly addressed as protists, also infect plants. This review provides an introduction to plant pathogenic protists, including algae infecting oomycetes, and their current state of research.
Aphanomyces astaci is an invasive pathogenic oomycete responsible for the crayfish plague, a disease that has devastated European freshwater crayfish. So far, five genotype groups of this pathogen have been identified by applying random amplified polymorphic DNA analysis on axenic cultures. To allow genotyping of A. astaci in host tissue samples, we have developed co-dominant microsatellite markers for this pathogen, tested them on pure cultures of all genotype groups, and subsequently evaluated their use on tissues of (1) natural A. astaci carriers, i.e., North American crayfish species, and (2) A. astaci-infected indigenous European species from crayfish plague outbreaks. Out of over 200 potential loci containing simple sequence repeat (SSR) motifs identified by 454 pyrosequencing of SSR-enriched library, we tested 25 loci with highest number of repeats, and finally selected nine that allow unambiguous separation of all known RAPD-defined genotype groups of A. astaci from axenic cultures. Using these markers, we were able to characterize A. astaci strains from DNA isolates from infected crayfish tissues when crayfish had a moderate to high agent level according to quantitative PCR analyses. The results support the hypothesis that different North American crayfish hosts carry different genotype groups of the pathogen, and confirm that multiple genotype groups, including the one originally introduced to Europe in the 19th century, cause crayfish plague outbreaks in Central Europe. So far undocumented A. astaci genotype seems to have caused one of the analysed outbreaks from the Czech Republic. The newly developed culture-independent approach allowing direct genotyping of this pathogen in both axenic cultures and mixed genome samples opens new possibilities in studies of crayfish plague pathogen distribution, diversity and epidemiology.
- MeSH
- Aphanomyces klasifikace genetika izolace a purifikace MeSH
- genetická variace MeSH
- genotyp MeSH
- mikrosatelitní repetice genetika MeSH
- severní raci parazitologie MeSH
- technika náhodné amplifikace polymorfní DNA MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
Before the advent of molecular phylogenetics, species concepts in the downy mildews, an economically important group of obligate biotrophic oomycete pathogens, have mostly been based upon host range and morphology. While molecular phylogenetic studies have confirmed a narrow host range for many downy mildew species, others, like Pseudoperonospora cubensis affect even different genera. Although often morphological differences were found for new, phylogenetically distinct species, uncertainty prevails regarding their host ranges, especially regarding related plants that have been reported as downy mildew hosts, but were not included in the phylogenetic studies. In these cases, the basis for deciding if the divergence in some morphological characters can be deemed sufficient for designation as separate species is uncertain, as observed morphological divergence could be due to different host matrices colonised. The broad host range of P. cubensis (ca. 60 host species) renders this pathogen an ideal model organism for the investigation of morphological variations in relation to the host matrix and to evaluate which characteristics are best indicators for conspecificity or distinctiveness. On the basis of twelve morphological characterisitcs and a set of twelve cucurbits from five different Cucurbitaceae tribes, including the two species, Cyclanthera pedata and Thladiantha dubia, hitherto not reported as hosts of P. cubensis, a significant influence of the host matrix on pathogen morphology was found. Given the high intraspecific variation of some characteristics, also their plasticity has to be taken into account. The implications for morphological species determination and the confidence limits of morphological characteristics are discussed. For species delimitations in Pseudoperonospora it is shown that the ratio of the height of the first ramification to the sporangiophore length, ratio of the longer to the shorter ultimate branchlet, and especially the length and width of sporangia, as well as, with some reservations, their ratio, are the most suitable characteristics for species delimitation.
- MeSH
- Cucurbitaceae mikrobiologie MeSH
- druhová specificita MeSH
- fylogeneze * MeSH
- interakce hostitele a patogenu * MeSH
- oomycety cytologie genetika MeSH
- sporangia anatomie a histologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Geografické názvy
- Česká republika MeSH
Cucurbit downy mildew (CDM), caused by the obligate oomycete Pseudoperonospora cubensis, has resurged around the world during the past three decades. A new pathotype or genetic recombinant of P. cubensis have been suggested as possible reasons for the resurgence of CDM in the United States in 2004. In total, 22 isolates collected between 2004 and 2014, mainly in the eastern United States, were tested for their compatibility with a set of 15 cucurbit host types. The virulence structure within these isolates was evaluated on a set of 12 differential genotypes from eight genera. All isolates were highly compatible with the susceptible cultivar of Cucumis sativus, whereas the least compatibility was observed with Luffa cylindrica and Momordica charantia. Based on the compatibility with the differential host set, five pathotypes (1, 3, 4, 5, and 6) were identified among the 22 isolates examined. Pathotypes 1 and 3 had not been previously described in the United States and isolates of these two new pathotypes were also compatible with 'Poinsett 76', a cultivar of C. sativus known to be resistant to CDM prior to 2004. Virulence within the pathogen population was expressed based on virulence factors, virulence phenotypes, and virulence complexity. The number of virulence factors ranged from two to eight, indicating a complex virulence structure, with 77% of the isolates having five to eight virulence factors. Thirteen virulence phenotypes were identified; the mean number of virulence factors per isolate and mean number of virulence factors per virulence phenotype was 5.05 and 5.23, respectively, indicating that complex isolates and phenotypes contributed equally to the complex virulence structure of P. cubensis. Gleason and Shannon indices of diversity were 3.88 and 2.32, respectively, indicating a diverse virulence structure of P. cubensis within the United States population. The diverse virulence and high virulence complexity within the pathogen population indicate that host resistance alone in available cucurbit cultivars will not be effective to control CDM. An integrated approach involving a combination of fungicide application and introduction of cultivars with new resistance genes will be required for effective management of CDM.
- MeSH
- Cucumis sativus parazitologie MeSH
- fenotyp MeSH
- genotyp MeSH
- hostitelská specificita MeSH
- nemoci rostlin parazitologie MeSH
- oomycety patogenita MeSH
- virulence genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Spojené státy americké MeSH
Nalezena povrchově rostoucí plíseň Penicillium a submersně rostoucí Oospora, stravující pyrokatechin. Z produktů, vzniklých odbouráváním pyrokatechinu těmito plísněmi, izolováno přes 14 kyseliny cis-cis mukonové. Optimální|podmínky odbourávání. Jsou-li přítomny současně obě plísně, potlačí Oospora růst plisně Penicillium
Pythium oligandrum is a soil born free living oomycete able to parasitize fungi and oomycetes prey, including important plant and animals pathogens. Pythium oligandrum can colonize endophytically the root tissues of diverse plants where it induces plant defenses. Here we report the first long-read genome sequencing of a P. oligandrum strain sequenced by PacBio technology. Sequencing of genomic DNA loaded onto six SMRT cells permitted the acquisition of 913,728 total reads resulting in 112X genome coverage. The assembly and polishing of the genome sequence yielded180 contigs (N50 = 1.3 Mb; L50 = 12). The size of the genome assembly is 41.9 Mb with a longest contig of 2.7 Mb and 15,007 predicted protein-coding genes among which 95.25% were supported by RNAseq data, thus constituting a new Pythium genome reference. This data will facilitate genomic comparisons of Pythium species that are commensal, beneficial or pathogenic on plant, or parasitic on fungi and oomycete to identify key genetic determinants underpinning their diverse lifestyles. In addition comparison with plant pathogenic or zoopathogenic species will illuminate genomic adaptations for pathogenesis toward widely diverse hosts.
AIMS: Screening of bacterial flora for strains producing metabolites with inhibitory effects on the human pathogenic oomycete Pythium insidiosum. Separation and characterization of extracts from Pseudomonas stutzeri with anti-Pythium inhibitory activity. Search for genes with anti-Pythium effect within the genome of P. stutzeri. METHODS: A total of 88 bacterial strains were isolated from water resources in northeastern Thailand. Two screening methods were used to establish their inhibitory effects on P. insidiosum. One strain, P. stutzeri ST1302 was randomly chosen, and the extract with anti-P. insidiosum activity was fractionated and subfractionated using liquid column chromatography and purified by thin layer chromatography. The chemical structure of purified fractions was determined by Fourier transform infrared spectroscopy, nuclear magnetic resonance and mass spectrometry. Further, search for genes involved in the anti-Pythium activity (phenazine-1-carboxylic acid, 2,4-diacetylphloroglucinol, pyoluteorin and pyrrolnitrin) was undertaken in this P. stutzeri strain using primers described in the literature. RESULTS: Anti-P. insidiosum activity was detected in 16 isolates (18.2%). In P. stutzeri ST1302, a subfraction labeled PYK7 exhibited strong activity against this oomycete. It was assigned to the diketopiperazines as cyclo(D-Pro-L-Val). In the search for genes, one gene region was successfully amplified. This corresponded to pyrrolnitrin. The results suggest the possibility of using the related metabolites against P. insidiosum. This is the first report on the inhibitory effects of P. stutzeri against this oomycete. The results may contribute to the development of antimicrobial drugs/probiotics against pythiosis.
- MeSH
- diketopiperaziny farmakologie MeSH
- genom bakteriální MeSH
- mikrobiální testy citlivosti MeSH
- Pseudomonas stutzeri chemie genetika izolace a purifikace MeSH
- pyrrolnitrin farmakologie MeSH
- pythióza farmakoterapie mikrobiologie MeSH
- Pythium účinky léků MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Thajsko MeSH