Nonhistone Proteins HMGB1 and HMGB2 Differentially Modulate the Response of Human Embryonic Stem Cells and the Progenitor Cells to the Anticancer Drug Etoposide
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
NU20-08-00106
Ministry of Health and Education of the Czech Republic - International
P305-15-01354S
Grant Agency of the Czech Republic - International
IBP CAS 68081707
Internal Research Support Program of the Institute of Biophysics Brno - International
PubMed
33076532
PubMed Central
PMC7602880
DOI
10.3390/biom10101450
PII: biom10101450
Knihovny.cz E-zdroje
- Klíčová slova
- HMGB1 and HMGB2, apoptosis, etoposide, human embryonic stem cells, neuroectodermal cells, telomerase,
- MeSH
- antitumorózní látky farmakologie MeSH
- apoptóza účinky léků MeSH
- buněčná diferenciace genetika MeSH
- etoposid farmakologie MeSH
- kmenové buňky účinky léků MeSH
- lidé MeSH
- lidské embryonální kmenové buňky MeSH
- malá interferující RNA MeSH
- nádorové kmenové buňky účinky léků metabolismus MeSH
- nádory farmakoterapie genetika patologie MeSH
- protein HMGB1 antagonisté a inhibitory genetika MeSH
- protein HMGB2 antagonisté a inhibitory genetika MeSH
- regulace genové exprese u nádorů genetika MeSH
- telomerasa genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antitumorózní látky MeSH
- etoposid MeSH
- HMGB1 protein, human MeSH Prohlížeč
- malá interferující RNA MeSH
- protein HMGB1 MeSH
- protein HMGB2 MeSH
- telomerasa MeSH
HMGB1 and HMGB2 proteins are abundantly expressed in human embryonic stem cells (hESCs) and hESC-derived progenitor cells (neuroectodermal cells, hNECs), though their functional roles in pluripotency and the mechanisms underlying their differentiation in response to the anticancer drug etoposide remain to be elucidated. Here, we show that HMGB1 and/or HMGB2 knockdown (KD) by shRNA in hESCs did not affect the cell stemness/pluripotency regardless of etoposide treatments, while in hESC-derived neuroectodermal cells, treatment resulted in differential effects on cell survival and the generation of rosette structures. The objective of this work was to determine whether HMGB1/2 proteins could modulate the sensitivity of hESCs and hESC-derived progenitor cells (hNECs) to etoposide. We observed that HMGB1 KD knockdown (KD) and, to a lesser extent, HMGB2 KD enhanced the sensitivity of hESCs to etoposide. Enhanced accumulation of 53BP1 on telomeres was detected by confocal microscopy in both untreated and etoposide-treated HMGB1 KD hESCs and hNECs, indicating that the loss of HMGB1 could destabilize telomeres. On the other hand, decreased accumulation of 53BP1 on telomeres in etoposide-treated HMGB2 KD hESCs (but not in HMGB2 KD hNECs) suggested that the loss of HMGB2 promoted the stability of telomeres. Etoposide treatment of hESCs resulted in a significant enhancement of telomerase activity, with the highest increase observed in the HMGB2 KD cells. Interestingly, no changes in telomerase activity were found in etoposide-treated control hNECs, but HMGB2 KD (unlike HMGB1 KD) markedly decreased telomerase activity in these cells. Changes in telomerase activity in the etoposide-treated HMGB2 KD hESCs or hNECs coincided with the appearance of DNA damage markers and could already be observed before the onset of apoptosis. Collectively, we have demonstrated that HMGB1 or HMGB2 differentially modulate the impact of etoposide treatment on human embryonic stem cells and their progenitor cells, suggesting possible strategies for the enhancement of the efficacy of this anticancer drug.
Zobrazit více v PubMed
Thomson J.A., Itskovitz-Eldor J., Shapiro S.S., Waknitz M.A., Swiergiel J.J., Marshall V.S., Jones J.M. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145–1147. doi: 10.1126/science.282.5391.1145. PubMed DOI
Shroff G. Therapeutic potential of human embryonic stem cells in type 2 diabetes mellitus. World J. Stem Cells. 2016;8:223–230. doi: 10.4252/wjsc.v8.i7.223. PubMed DOI PMC
Filion T.M., Qiao M., Ghule P.N., Mandeville M., van Wijnen A.J., Stein J.L., Lian J.B., Altieri D.C., Stein G.S. Survival responses of human embryonic stem cells to DNA damage. J. Cell. Physiol. 2009;220:586–592. doi: 10.1002/jcp.21735. PubMed DOI PMC
Štros M. HMGB proteins: Interactions with DNA and chromatin. Biochim Biophys Acta. 2010;1799:101–113. doi: 10.1016/j.bbagrm.2009.09.008. PubMed DOI
Tripathi A., Shrinet K., Kumar A. HMGB1 protein as a novel target for cancer. Toxicol. Rep. 2019;6:253–261. doi: 10.1016/j.toxrep.2019.03.002. PubMed DOI PMC
Mukherjee A., Vasquez K.M. Targeting Chromosomal Architectural HMGB Proteins Could Be the Next Frontier in Cancer Therapy. Cancer Res. 2020;80:2075–2082. doi: 10.1158/0008-5472.CAN-19-3066. PubMed DOI PMC
Muller S., Ronfani L., Bianchi M.E. Regulated expression and subcellular localization of HMGB1, a chromatin protein with a cytokine function. J. Intern. Med. 2004;255:332–343. doi: 10.1111/j.1365-2796.2003.01296.x. PubMed DOI
Kim C.G., Lee J.J., Jung D.Y., Jeon J., Heo H.S., Kang H.C., Shin J.H., Cho Y.S., Cha K.J., Kim C.G., et al. Profiling of differentially expressed genes in human stem cells by cDNA microarray. Mol. Cells. 2006;21:343–355. PubMed
Adjaye J., Huntriss J., Herwig R., BenKahla A., Brink T.C., Wierling C., Hultschig C., Groth D., Yaspo M.L., Picton H.M., et al. Primary differentiation in the human blastocyst: Comparative molecular portraits of inner cell mass and trophectoderm cells. Stem Cells. 2005;23:1514–1525. doi: 10.1634/stemcells.2005-0113. PubMed DOI
Bagherpoor A.J., Dolezalova D., Barta T., Kučírek M., Sani S.A., Esner M., Bosakova M.K., Vinarsky V., Peskova L., Hampl A., et al. Properties of Human Embryonic Stem Cells and Their Differentiated Derivatives Depend on Nonhistone DNA-Binding HMGB1 and HMGB2 Proteins. Stem Cells Dev. 2017;26:328–340. doi: 10.1089/scd.2016.0274. PubMed DOI
Yanai H., Ban T., Wang Z., Choi M.K., Kawamura T., Negishi H., Nakasato M., Lu Y., Hangai S., Koshiba R., et al. HMGB proteins function as universal sentinels for nucleic-acid-mediated innate immune responses. Nat. Cell Biol. 2009;462:99–103. doi: 10.1038/nature08512. PubMed DOI
Malarkey C.S., Churchill M.E. The high mobility group box: The ultimate utility player of a cell. Trends Biochem. Sci. 2012;37:553–562. doi: 10.1016/j.tibs.2012.09.003. PubMed DOI PMC
Abraham A.B., Bronstein R., Reddy A.S., Maletic-Savatic M., Aguirre A., Tsirka S.E. Aberrant neural stem cell proliferation and increased adult neurogenesis in mice lacking chromatin protein HMGB2. PLoS ONE. 2013;8:e84838. doi: 10.1371/journal.pone.0084838. PubMed DOI PMC
Taniguchi N., Carames B., Hsu E., Cherqui S., Kawakami Y., Lotz M. Expression patterns and function of chromatin protein HMGB2 during mesenchymal stem cell differentiation. J. Biol. Chem. 2011;286:41489–41498. doi: 10.1074/jbc.M111.236984. PubMed DOI PMC
Wang L., Yu L., Zhang T., Wang L., Leng Z., Guan Y., Wang X. HMGB1 enhances embryonic neural stem cell proliferation by activating the MAPK signaling pathway. Biotechnol. Lett. 2014;36:1631–1639. doi: 10.1007/s10529-014-1525-2. PubMed DOI
Guazzi S., Strangio A., Franzi A.T., Bianchi M.E. HMGB1, an architectural chromatin protein and extracellular signalling factor, has a spatially and temporally restricted expression pattern in mouse brain. Gene Expr. Patterns GEP. 2003;3:29–33. doi: 10.1016/S1567-133X(02)00093-5. PubMed DOI
Kučírek M., Bagherpoor A.J., Jaroš J., Hampl A., Štros M. HMGB2 is a negative regulator of telomerase activity in human embryonic stem and progenitor cells. FASEB J. 2019;33:14307–14324. doi: 10.1096/fj.201901465RRR. PubMed DOI
Agresti A., Bianchi M.E. HMGB proteins and gene expression. Curr. Opin. Genet. Dev. 2003;13:170–178. doi: 10.1016/S0959-437X(03)00023-6. PubMed DOI
Shay J.W., Wright W.E. Telomeres and telomerase: Three decades of progress. Nat. Rev. Genet. 2019;20:299–309. doi: 10.1038/s41576-019-0099-1. PubMed DOI
Blackburn E.H., Epel E.S., Lin J. Human telomere biology: A contributory and interactive factor in aging, disease risks, and protection. Science. 2015;350:1193–1198. doi: 10.1126/science.aab3389. PubMed DOI
Hiyama E., Hiyama K. Telomere and telomerase in stem cells. Br. J. Cancer. 2007;96:1020–1024. doi: 10.1038/sj.bjc.6603671. PubMed DOI PMC
Wu R.A., Upton H.E., Vogan J.M., Collins K. Telomerase Mechanism of Telomere Synthesis. Ann. Rev. Biochem. 2017;86:439–460. doi: 10.1146/annurev-biochem-061516-045019. PubMed DOI PMC
Sato N., Mizumoto K., Kusumoto M., Nishio S., Maehara N., Urashima T., Ogawa T., Tanaka M. Up-regulation of telomerase activity in human pancreatic cancer cells after exposure to etoposide. Br. J. Cancer. 2000;82:1819–1826. doi: 10.1054/bjoc.2000.1117. PubMed DOI PMC
Moriarty T.J., Dupuis S., Autexier C. Rapid upregulation of telomerase activity in human leukemia HL-60 cells treated with clinical doses of the DNA-damaging drug etoposide. Leukemia. 2002;16:1112–1120. doi: 10.1038/sj.leu.2402522. PubMed DOI PMC
Grandela C., Pera M.F., Grimmond S.M., Kolle G., Wolvetang E.J. p53 is required for etoposide-induced apoptosis of human embryonic stem cells. Stem Cell Res. 2007;1:116–128. doi: 10.1016/j.scr.2007.10.003. PubMed DOI
Kondo S., Kondo Y., Li G., Silverman R.H., Cowell J.K. Targeted therapy of human malignant glioma in a mouse model by 2-5A antisense directed against telomerase RNA. Oncogene. 1998;16:3323–3330. doi: 10.1038/sj.onc.1201885. PubMed DOI
Bashash D., Zareii M., Safaroghli-Azar A., Omrani M.D., Ghaffari S.H. Inhibition of telomerase using BIBR1532 enhances doxorubicin-induced apoptosis in pre-B acute lymphoblastic leukemia cells. Hematology. 2017;22:330–340. doi: 10.1080/10245332.2016.1275426. PubMed DOI
Polanská E., Dobsakova Z., Dvorackova M., Fajkus J., Štros M. HMGB1 gene knockout in mouse embryonic fibroblasts results in reduced telomerase activity and telomere dysfunction. Chromosoma. 2012;121:419–431. doi: 10.1007/s00412-012-0373-x. PubMed DOI
Štros M., Polanská E., Štruncová S., Pospíšilová S. HMGB1 and HMGB2 proteins up-regulate cellular expression of human topoisomerase IIalpha. Nucleic Acids Res. 2009;37:2070–2086. doi: 10.1093/nar/gkp067. PubMed DOI PMC
Adewumi O., Aflatoonian B., Ahrlund-Richter L., Amit M., Andrews P.W., Beighton G., Bello P.A., Benvenisty N., Berry L.S., Bevan S., et al. Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nat. Biotechnol. 2007;25:803–816. PubMed
Kamentsky L., Jones T.R., Fraser A., Bray M.A., Logan D.J., Madden K.L., Ljosa V., Rueden C., Eliceiri K.W., Carpenter A.E. Improved structure, function and compatibility for CellProfiler: Modular high-throughput image analysis software. Bioinformatics. 2011;27:1179–1180. doi: 10.1093/bioinformatics/btr095. PubMed DOI PMC
Becker K.A., Ghule P.N., Therrien J.A., Lian J.B., Stein J.L., van Wijnen A.J., Stein G.S. Self-renewal of human embryonic stem cells is supported by a shortened G1 cell cycle phase. J. Cell. Physiol. 2006;209:883–893. doi: 10.1002/jcp.20776. PubMed DOI
Abraham A.B., Bronstein R., Chen E.I., Koller A., Ronfani L., Maletic-Savatic M., Tsirka S.E. Members of the high mobility group B protein family are dynamically expressed in embryonic neural stem cells. Proteome Sci. 2013;11:18. doi: 10.1186/1477-5956-11-18. PubMed DOI PMC
Kimura A., Matsuda T., Sakai A., Murao N., Nakashima K. HMGB2 expression is associated with transition from a quiescent to an activated state of adult neural stem cells. Dev. Dyn. Off. Publ. Am. Assoc. Anat. 2018;247:229–238. doi: 10.1002/dvdy.24559. PubMed DOI
Pibiri V., Ravarino A., Gerosa C., Pintus M.C., Fanos V., Faa G. Stem/progenitor cells in the developing human cerebellum: An immunohistochemical study. Eur. J. Histochem. EJH. 2016;60:2686. doi: 10.4081/ejh.2016.2686. PubMed DOI PMC
Han X., Yu L., Ren J., Wang M., Liu Z., Hu X., Hu D., Chen Y., Chen L., Zhang Y., et al. Efficient and Fast Differentiation of Human Neural Stem Cells from Human Embryonic Stem Cells for Cell Therapy. Stem Cells Int. 2017;2017:9405204. doi: 10.1155/2017/9405204. PubMed DOI PMC
Pauklin S., Vallier L. The Cell-Cycle State of Stem Cells Determines Cell Fate Propensity. Cell. 2014;156:1338. doi: 10.1016/j.cell.2014.02.044. PubMed DOI PMC
Gonzales K.A., Liang H., Lim Y.S., Chan Y.S., Yeo J.C., Tan C.P., Gao B., Le B., Tan Z.Y., Low K.Y., et al. Deterministic Restriction on Pluripotent State Dissolution by Cell-Cycle Pathways. Cell. 2015;162:564–579. doi: 10.1016/j.cell.2015.07.001. PubMed DOI
Yoo S.H., Yoon Y.G., Lee J.S., Song Y.S., Oh J.S., Park B.S., Kwon T.K., Park C., Choi Y.H., Yoo Y.H. Etoposide induces a mixed type of programmed cell death and overcomes the resistance conferred by Bcl-2 in Hep3B hepatoma cells. Int. J. Oncol. 2012;41:1443–1454. doi: 10.3892/ijo.2012.1585. PubMed DOI
Meyn R.E., Meistrich M.L., White R.A. Cycle-dependent anticancer drug cytotoxicity in mammalian cells synchronized by centrifugal elutriation. J. Natl. Cancer Inst. 1980;64:1215–1219. PubMed
Liu J.C., Guan X., Ryan J.A., Rivera A.G., Mock C., Agrawal V., Letai A., Lerou P.H., Lahav G. High mitochondrial priming sensitizes hESCs to DNA-damage-induced apoptosis. Cell Stem Cell. 2013;13:483–491. doi: 10.1016/j.stem.2013.07.018. PubMed DOI PMC
Kang R., Zhang Q., Zeh H.J., 3rd, Lotze M.T., Tang D. HMGB1 in cancer: Good, bad, or both? Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2013;19:4046–4057. doi: 10.1158/1078-0432.CCR-13-0495. PubMed DOI PMC
Yang H., Antoine D.J., Andersson U., Tracey K.J. The many faces of HMGB1: Molecular structure-functional activity in inflammation, apoptosis, and chemotaxis. J. Leukoc. Biol. 2013;93:865–873. doi: 10.1189/jlb.1212662. PubMed DOI PMC
Dantzer F., de la Rubia G., Ménissier-de Murcia J., Hostomsky Z., de Murcia G., Schreiber V. Base excision repair is impaired in mammalian cells lacking Poly(ADP-ribose) polymerase-1. Biochemistry. 2000;39:7559–7569. doi: 10.1021/bi0003442. PubMed DOI
Kaufmann S.H., Desnoyers S., Ottaviano Y., Davidson N.E., Poirier G.G. Specific proteolytic cleavage of poly(ADP-ribose) polymerase: An early marker of chemotherapy-induced apoptosis. Cancer Res. 1993;53:3976–3985. PubMed
Vousden K.H., Lu X. Live or let die: The cell’s response to p53, Nature reviews. Cancer. 2002;2:594–604. PubMed
de Lange T. Shelterin-Mediated Telomere Protection. Ann. Rev. Genet. 2018;52:223–247. doi: 10.1146/annurev-genet-032918-021921. PubMed DOI
Tutton S., Azzam G.A., Stong N., Vladimirova O., Wiedmer A., Monteith J.A., Beishline K., Wang Z., Deng Z., Riethman H., et al. Subtelomeric p53 binding prevents accumulation of DNA damage at human telomeres. Embo J. 2016;35:193–207. doi: 10.15252/embj.201490880. PubMed DOI PMC
Takai H., Smogorzewska A., de Lange T. DNA damage foci at dysfunctional telomeres. Curr. Biol. 2003;13:1549–1556. doi: 10.1016/S0960-9822(03)00542-6. PubMed DOI
Yuan X., Larsson C., Xu D. Mechanisms underlying the activation of TERT transcription and telomerase activity in human cancer: Old actors and new players. Oncogene. 2019;38:6172–6183. doi: 10.1038/s41388-019-0872-9. PubMed DOI PMC
Reeves R. High mobility group (HMG) proteins: Modulators of chromatin structure and DNA repair in mammalian cells. DNA Repair. 2015;36:122–136. doi: 10.1016/j.dnarep.2015.09.015. PubMed DOI
Barreiro-Alonso A., Lamas-Maceiras M., Rodriguez-Belmonte E., Vizoso-Vazquez A., Quindos M., Cerdan M.E. High Mobility Group B Proteins, Their Partners, and Other Redox Sensors in Ovarian and Prostate Cancer. Oxidative Med. Cell. Longev. 2016;2016:5845061. doi: 10.1155/2016/5845061. PubMed DOI PMC
Calogero S., Grassi F., Aguzzi A., Voigtlander T., Ferrier P., Ferrari S., Bianchi M.E. The lack of chromosomal protein Hmg1 does not disrupt cell growth but causes lethal hypoglycaemia in newborn mice. Nat. Genet. 1999;22:276–280. doi: 10.1038/10338. PubMed DOI
Ronfani L., Ferraguti M., Croci L., E Ovitt C., Schöler H.R., Consalez G.G., E Bianchi M. Reduced fertility and spermatogenesis defects in mice lacking chromosomal protein Hmgb2. Development. 2001;128:1265–1273. PubMed
Laurent B., Randrianarison-Huetz V., Marechal V., Mayeux P., Dusanter-Fourt I., Dumenil D. High-mobility group protein HMGB2 regulates human erythroid differentiation through trans-activation of GFI1B transcription. Blood. 2010;115:687–695. doi: 10.1182/blood-2009-06-230094. PubMed DOI
Cui G., Cai F., Ding Z., Gao L. HMGB2 promotes the malignancy of human gastric Cancer and indicates poor survival outcome. Hum. Pathol. 2019;84:133–141. doi: 10.1016/j.humpath.2018.09.017. PubMed DOI
Fu D., Li J., Wei J., Zhang Z., Luo Y., Tan H., Ren C. HMGB2 is associated with malignancy and regulates Warburg effect by targeting LDHB and FBP1 in breast cancer. Cell Commun. Signal. CCS. 2018;16:8. doi: 10.1186/s12964-018-0219-0. PubMed DOI PMC
He S.J., Cheng J., Feng X., Yu Y., Tian L., Huang Q. The dual role and therapeutic potential of high-mobility group box 1 in cancer. Oncotarget. 2017;8:64534–64550. doi: 10.18632/oncotarget.17885. PubMed DOI PMC
Jafri M.A., Ansari S.A., Alqahtani M.H., Shay J.W. Roles of telomeres and telomerase in cancer, and advances in telomerase-targeted therapies. Genome Med. 2016;8:69. doi: 10.1186/s13073-016-0324-x. PubMed DOI PMC
Biniossek M.L., Lechel A., Rudolph K.L., Martens U.M., Zimmermann S. Quantitative proteomic profiling of tumor cell response to telomere dysfunction using isotope-coded protein labeling (ICPL) reveals interaction network of candidate senescence markers. J. Proteom. 2013;91:515–535. doi: 10.1016/j.jprot.2013.08.007. PubMed DOI
Cai X., Ding H., Liu Y., Pan G., Li Q., Yang Z., Liu W. Expression of HMGB2 indicates worse survival of patients and is required for the maintenance of Warburg effect in pancreatic cancer. Acta Biochim. Biophys. Sin. 2017;49:119–127. doi: 10.1093/abbs/gmw124. PubMed DOI
Zhao Y., Yang Z., Wu J., Wu R., Keshipeddy S.K., Wright D., Wang L. High-mobility-group protein 2 regulated by microRNA-127 and small heterodimer partner modulates pluripotency of mouse embryonic stem cells and liver tumor initiating cells. Hepatol. Commun. 2017;1:816–830. doi: 10.1002/hep4.1086. PubMed DOI PMC
Seita J., Rossi D.J., Weissman I.L. Differential DNA damage response in stem and progenitor cells. Cell Stem Cell. 2010;7:145–147. doi: 10.1016/j.stem.2010.07.006. PubMed DOI
Li F., Ge Y., Liu D., Songyang Z. The role of telomere-binding modulators in pluripotent stem cells. Protein Cell. 2020;11:60–70. doi: 10.1007/s13238-019-0651-y. PubMed DOI PMC
Giuffrida D., Rogers I.M., Nagy A., Calogero A.E., Brown T.J., Casper R.F. Human embryonic stem cells secrete soluble factors that inhibit cancer cell growth. Cell Prolif. 2009;42:788–798. doi: 10.1111/j.1365-2184.2009.00640.x. PubMed DOI PMC
Lotem J., Sachs L. Epigenetics and the plasticity of differentiation in normal and cancer stem cells. Oncogene. 2006;25:7663–7672. doi: 10.1038/sj.onc.1209816. PubMed DOI
Zhou S., Abdouh M., Arena V., Arena M., Arena G.O. Reprogramming Malignant Cancer Cells toward a Benign Phenotype following Exposure to Human Embryonic Stem Cell Microenvironment. PLoS ONE. 2017;12:e0169899. doi: 10.1371/journal.pone.0169899. PubMed DOI PMC
Camara-Quilez M., Barreiro-Alonso A., Vizoso-Vazquez A., Rodriguez-Belmonte E., Quindos-Varela M., Lamas-Maceiras M., Cerdan M.E. The HMGB1-2 Ovarian Cancer Interactome. The Role of HMGB Proteins and Their Interacting Partners MIEN1 and NOP53 in Ovary Cancer and Drug-Response. Cancers. 2020;12:2435. doi: 10.3390/cancers12092435. PubMed DOI PMC