HMGB1 gene knockout in mouse embryonic fibroblasts results in reduced telomerase activity and telomere dysfunction
Language English Country Austria Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
- MeSH
- Cell Line MeSH
- Chromosome Aberrations MeSH
- Down-Regulation MeSH
- Fibroblasts cytology metabolism MeSH
- Microscopy, Fluorescence MeSH
- DNA Fragmentation MeSH
- Gene Knockout Techniques * MeSH
- Histones genetics metabolism MeSH
- In Situ Hybridization, Fluorescence MeSH
- Mice MeSH
- DNA Damage MeSH
- HMGB1 Protein genetics metabolism MeSH
- HMGB2 Protein genetics metabolism MeSH
- DNA Replication MeSH
- RNA genetics metabolism MeSH
- Telomerase genetics metabolism MeSH
- Telomere metabolism pathology MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- gamma-H2AX protein, mouse MeSH Browser
- Histones MeSH
- HMGB1 Protein MeSH
- HMGB2 Protein MeSH
- RNA MeSH
- Telomerase MeSH
- telomerase RNA MeSH Browser
- Tert protein, mouse MeSH Browser
Telomere repeats are added onto chromosome ends by telomerase, consisting of two main core components: a catalytic protein subunit (telomerase reverse trancriptase, TERT), and an RNA subunit (telomerase RNA, TR). Here, we report for the first time evidence that HMGB1 (a chromatin-associated protein in mammals, acting as a DNA chaperone in transcription, replication, recombination, and repair) can modulate cellular activity of mammalian telomerase. Knockout of the HMGB1 gene (HMGB1 KO) in mouse embryonic fibroblasts (MEFs) results in chromosomal abnormalities, enhanced colocalization of γ-H2AX foci at telomeres, and a moderate shortening of telomere lengths. HMGB1 KO MEFs also exhibit significantly (>5-fold) lower telomerase activity than the wild-type MEFs. Correspondingly, enhanced telomerase activity is observed upon overexpression of HMGB1 in MEFs. HMGB1 physically interacts with both TERT and TR, as well as with active telomerase complex in vitro. However, direct interaction of HMGB1 with telomerase is most likely not accountable for the observed higher telomerase activity in HMGB1-containing cells, as revealed from the inability of purified HMGB1 protein to stimulate telomerase activity in vitro. While no transcriptional silencing of TERT is observed in HMGB1 KO MEFs, levels of TR are diminished (~3-fold), providing possible explanation for the observed lower telomerase activity in HMGB1 KO cells. Interestingly, knockout of the HMGB2 gene elevates telomerase activity (~3-fold) in MEFs, suggesting that the two closely related proteins of the HMGB family, HMGB1 and HMGB2, have opposite effects on telomerase activity in the cell. The ability of HMGB1 to modulate cellular activity of telomerase and to maintain telomere integrity can help to understand some aspects of the protein involvement in chromosome stability and cancer.
See more in PubMed
J Cell Biol. 1997 Apr 7;137(1):19-26 PubMed
Genes Dev. 2005 Sep 15;19(18):2100-10 PubMed
Oncogene. 2002 Feb 21;21(9):1434-42 PubMed
Methods Cell Biol. 2001;64:69-96 PubMed
Development. 2001 Apr;128(8):1265-73 PubMed
Mol Gen Genet. 1995 Jun 10;247(5):633-8 PubMed
J Biol Chem. 2004 Dec 31;279(53):55401-10 PubMed
Mol Pharmacol. 2008 Jan;73(1):260-9 PubMed
Curr Biol. 2005 Jan 11;15(1):68-72 PubMed
Biochim Biophys Acta. 2010 Jan-Feb;1799(1-2):101-13 PubMed
Curr Protein Pept Sci. 2011 Mar;12(2):105-11 PubMed
Curr Biol. 2003 Sep 2;13(17):1549-56 PubMed
J Biol Chem. 2002 Mar 1;277(9):7157-64 PubMed
J Biol Chem. 2009 Nov 6;284(45):30871-80 PubMed
Curr Biol. 2000 Jul 27-Aug 10;10(15):886-95 PubMed
FEBS Lett. 2003 Nov 20;554(3):455-61 PubMed
Biol Cell. 2009 Jul;101(7):375-92, 1 p following 392 PubMed
Biotechniques. 2003 Nov;35(5):912-4 PubMed
Eur J Biochem. 2000 Jul;267(13):4088-97 PubMed
Nature. 2000 May 18;405(6784):354-60 PubMed
J Mol Biol. 2005 Nov 4;353(4):822-37 PubMed
Nucleic Acids Res. 2000 Nov 15;28(22):4474-8 PubMed
Mech Ageing Dev. 2008 Jan-Feb;129(1-2):91-8 PubMed
Trends Biochem Sci. 2001 Mar;26(3):167-74 PubMed
J Biol Chem. 1998 Apr 24;273(17):10355-61 PubMed
Biochem J. 2006 Aug 1;397(3):399-406 PubMed
Cell. 2009 Jan 9;136(1):175-86 PubMed
Biochim Biophys Acta. 2010 Jan-Feb;1799(1-2):119-30 PubMed
Philos Trans R Soc Lond B Biol Sci. 2002 Apr 29;357(1420):545-62 PubMed
Mol Cell. 2005 Apr 1;18(1):109-21 PubMed
DNA Repair (Amst). 2004 Aug-Sep;3(8-9):959-67 PubMed
Nat Genet. 1999 Jul;22(3):276-80 PubMed
Biochimie. 2008 Jan;90(1):13-23 PubMed
Genes Dev. 1999 Apr 1;13(7):817-26 PubMed
DNA Repair (Amst). 2006 Sep 8;5(9-10):1082-92 PubMed
Biochem Biophys Res Commun. 1998 May 8;246(1):137-41 PubMed
Nat Protoc. 2006;1(3):1583-90 PubMed
Curr Opin Genet Dev. 2003 Apr;13(2):170-8 PubMed
Blood Cells Mol Dis. 2000 Oct;26(5):534-9 PubMed
Nucleic Acids Res. 2007;35(15):5001-13 PubMed