HMGB1 and HMGB2 proteins have been implicated in numerous cellular processes, including proliferation, differentiation, apoptosis, and tumor growth. It is unknown whether they are involved in regulating the typical functions of pluripotent human embryonic stem cells (hESCs) and/or those of the differentiated derivatives of hESCs. Using inducible, stably transfected hESCs capable of shRNA-mediated knockdown of HMGB1 and HMGB2, we provide evidence that downregulation of HMGB1 and/or HMGB2 in undifferentiated hESCs does not affect the stemness of cells and induces only minor changes to the proliferation rate, cell-cycle profile, and apoptosis. After differentiation is induced, however, the downregulation of those proteins has important effects on proliferation, apoptosis, telomerase activity, and the efficiency of differentiation toward the neuroectodermal lineage. Furthermore, those processes are affected only when one, but not both, of the two proteins is downregulated; the knockdown of both HMGB1 and HMGB2 results in a normal phenotype. Those results advance our knowledge of regulation of hESC and human neuroectodermal cell differentiation and illustrate the distinct roles of HMGB1 and HMGB2 during early human development.
- MeSH
- apoptóza genetika MeSH
- buněčná diferenciace * MeSH
- buněčná sebeobnova genetika MeSH
- buněčné linie MeSH
- buněčný cyklus genetika MeSH
- buněčný rodokmen genetika MeSH
- down regulace genetika MeSH
- histony metabolismus MeSH
- lidé MeSH
- lidské embryonální kmenové buňky cytologie metabolismus MeSH
- neurální ploténka cytologie MeSH
- proliferace buněk genetika MeSH
- protein HMGB1 metabolismus MeSH
- protein HMGB2 metabolismus MeSH
- telomerasa metabolismus MeSH
- transfekce MeSH
- tvar buňky genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Telomere repeats are added onto chromosome ends by telomerase, consisting of two main core components: a catalytic protein subunit (telomerase reverse trancriptase, TERT), and an RNA subunit (telomerase RNA, TR). Here, we report for the first time evidence that HMGB1 (a chromatin-associated protein in mammals, acting as a DNA chaperone in transcription, replication, recombination, and repair) can modulate cellular activity of mammalian telomerase. Knockout of the HMGB1 gene (HMGB1 KO) in mouse embryonic fibroblasts (MEFs) results in chromosomal abnormalities, enhanced colocalization of γ-H2AX foci at telomeres, and a moderate shortening of telomere lengths. HMGB1 KO MEFs also exhibit significantly (>5-fold) lower telomerase activity than the wild-type MEFs. Correspondingly, enhanced telomerase activity is observed upon overexpression of HMGB1 in MEFs. HMGB1 physically interacts with both TERT and TR, as well as with active telomerase complex in vitro. However, direct interaction of HMGB1 with telomerase is most likely not accountable for the observed higher telomerase activity in HMGB1-containing cells, as revealed from the inability of purified HMGB1 protein to stimulate telomerase activity in vitro. While no transcriptional silencing of TERT is observed in HMGB1 KO MEFs, levels of TR are diminished (~3-fold), providing possible explanation for the observed lower telomerase activity in HMGB1 KO cells. Interestingly, knockout of the HMGB2 gene elevates telomerase activity (~3-fold) in MEFs, suggesting that the two closely related proteins of the HMGB family, HMGB1 and HMGB2, have opposite effects on telomerase activity in the cell. The ability of HMGB1 to modulate cellular activity of telomerase and to maintain telomere integrity can help to understand some aspects of the protein involvement in chromosome stability and cancer.
- MeSH
- buněčné linie MeSH
- chromozomální aberace MeSH
- down regulace MeSH
- fibroblasty cytologie metabolismus MeSH
- fluorescenční mikroskopie MeSH
- fragmentace DNA MeSH
- genový knockout MeSH
- histony genetika metabolismus MeSH
- hybridizace in situ fluorescenční MeSH
- myši MeSH
- poškození DNA MeSH
- protein HMGB1 genetika metabolismus MeSH
- protein HMGB2 genetika metabolismus MeSH
- replikace DNA MeSH
- RNA genetika metabolismus MeSH
- telomerasa genetika metabolismus MeSH
- telomery metabolismus patologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Topoisomerase IIalpha (topo IIalpha) is a nuclear enzyme involved in several critical processes, including chromosome replication, segregation and recombination. Previously we have shown that chromosomal protein HMGB1 interacts with topo IIalpha, and stimulates its catalytic activity. Here we show the effect of HMGB1 on the activity of the human topo IIalpha gene promoter in different cell lines. We demonstrate that HMGB1, but not a mutant of HMGB1 incapable of DNA bending, up-regulates the activity of the topo IIalpha promoter in human cells that lack functional retinoblastoma protein pRb. Transient over-expression of pRb in pRb-negative Saos-2 cells inhibits the ability of HMGB1 to activate the topo IIalpha promoter. The involvement of HMGB1 and its close relative, HMGB2, in modulation of activity of the topo IIalpha gene is further supported by knock-down of HMGB1/2, as evidenced by significantly decreased levels of topo IIalpha mRNA and protein. Our experiments suggest a mechanism of up-regulation of cellular expression of topo IIalpha by HMGB1/2 in pRb-negative cells by modulation of binding of transcription factor NF-Y to the topo IIalpha promoter, and the results are discussed in the framework of previously observed pRb-inactivation, and increased levels of HMGB1/2 and topo IIalpha in tumors.
- MeSH
- aktivace transkripce MeSH
- antigeny nádorové biosyntéza genetika MeSH
- DNA vazebné proteiny biosyntéza genetika MeSH
- DNA-topoisomerasy typu II biosyntéza genetika MeSH
- DNA chemie metabolismus MeSH
- faktor vázající CCAAT metabolismus MeSH
- financování organizované MeSH
- lidé MeSH
- mutageneze MeSH
- nádorové buněčné linie MeSH
- promotorové oblasti (genetika) MeSH
- protein HMGB1 genetika chemie metabolismus MeSH
- protein HMGB2 metabolismus MeSH
- retinoblastomový protein metabolismus MeSH
- senioři MeSH
- upregulace MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH