HMGB1 and HMGB2 proteins up-regulate cellular expression of human topoisomerase IIalpha
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
19223331
PubMed Central
PMC2673423
DOI
10.1093/nar/gkp067
PII: gkp067
Knihovny.cz E-zdroje
- MeSH
- aktivace transkripce MeSH
- antigeny nádorové biosyntéza genetika MeSH
- DNA vazebné proteiny biosyntéza genetika MeSH
- DNA-topoisomerasy typu II biosyntéza genetika MeSH
- DNA chemie metabolismus MeSH
- faktor vázající CCAAT metabolismus MeSH
- lidé MeSH
- mutageneze MeSH
- nádorové buněčné linie MeSH
- promotorové oblasti (genetika) MeSH
- protein HMGB1 chemie genetika metabolismus MeSH
- protein HMGB2 metabolismus MeSH
- retinoblastomový protein metabolismus MeSH
- senioři MeSH
- upregulace * MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antigeny nádorové MeSH
- DNA vazebné proteiny MeSH
- DNA-topoisomerasy typu II MeSH
- DNA MeSH
- faktor vázající CCAAT MeSH
- protein HMGB1 MeSH
- protein HMGB2 MeSH
- retinoblastomový protein MeSH
Topoisomerase IIalpha (topo IIalpha) is a nuclear enzyme involved in several critical processes, including chromosome replication, segregation and recombination. Previously we have shown that chromosomal protein HMGB1 interacts with topo IIalpha, and stimulates its catalytic activity. Here we show the effect of HMGB1 on the activity of the human topo IIalpha gene promoter in different cell lines. We demonstrate that HMGB1, but not a mutant of HMGB1 incapable of DNA bending, up-regulates the activity of the topo IIalpha promoter in human cells that lack functional retinoblastoma protein pRb. Transient over-expression of pRb in pRb-negative Saos-2 cells inhibits the ability of HMGB1 to activate the topo IIalpha promoter. The involvement of HMGB1 and its close relative, HMGB2, in modulation of activity of the topo IIalpha gene is further supported by knock-down of HMGB1/2, as evidenced by significantly decreased levels of topo IIalpha mRNA and protein. Our experiments suggest a mechanism of up-regulation of cellular expression of topo IIalpha by HMGB1/2 in pRb-negative cells by modulation of binding of transcription factor NF-Y to the topo IIalpha promoter, and the results are discussed in the framework of previously observed pRb-inactivation, and increased levels of HMGB1/2 and topo IIalpha in tumors.
Zobrazit více v PubMed
Wang JC. Cellular roles of DNA topoisomerases: a molecular perspective. Nat. Rev. Mol. Cell Biol. 2002;3:430–440. PubMed
Osheroff N, Zechiedrich EL, Gale KC. Catalytic function of DNA topoisomerase II. Bioessays. 1991;13:269–273. PubMed
Baldwin EL, Osheroff N. Etoposide, topoisomerase II and cancer. Curr. Med. Chem. Anticancer Agents. 2005;5:363–372. PubMed
Denny WA. Emerging DNA topoisomerase inhibitors as anticancer drugs. Expert Opin. Emerg. Drugs. 2004;9:105–133. PubMed
Štros M, Launholt D, Grasser KD. The HMG-box: a versatile protein domain occurring in a wide variety of DNA-binding proteins. Cell Mol. Life Sci. 2007;64:2590–2606. PubMed PMC
Bianchi ME. Significant (re)location: how to use chromatin and/or abundant proteins as messages of life and death. Trends Cell Biol. 2004;14:287–293. PubMed
Thomas JO, Travers AA. HMG1 and 2, and related ‘architectural’ DNA-binding proteins. Trends Biochem. Sci. 2001;26:167–174. PubMed
Agresti A, Bianchi ME. HMGB proteins and gene expression. Curr. Opin. Genet. Dev. 2003;13:170–178. PubMed
Paull TT, Haykinson MJ, Johnson RC. The nonspecific DNA-binding and -bending proteins HMG1 and HMG2 promote the assembly of complex nucleoprotein structures. Genes Dev. 1993;7:1521–1534. PubMed
Pil PM, Chow CS, Lippard SJ. High-mobility-group 1 protein mediates DNA bending as determined by ring closures. Proc. Natl Acad. Sci. USA. 1993;90:9465–9469. PubMed PMC
Štros M, Bačíková A, Polanská E, Štokrová J, Strauss F. HMGB1 interacts with human topoisomerase IIalpha and stimulates its catalytic activity. Nucleic Acids Res. 2007;35:5001–5013. PubMed PMC
Jaouen S, de Koning L, Gaillard C, Muselíková-Polanská E, Štros M, Strauss F. Determinants of specific binding of HMGB1 protein to hemicatenated DNA loops. J. Mol. Biol. 2005;353:822–837. PubMed
Sheflin LG, Fucile NW, Spaulding SW. The specific interactions of HMG 1 and 2 with negatively supercoiled DNA are modulated by their acidic C-terminal domains and involve cysteine residues in their HMG 1/2 boxes. Biochemistry. 1993;32:3238–3248. PubMed
Štros M, Štokrová J, Thomas JO. DNA looping by the HMG-box domains of HMG1 and modulation of DNA binding by the acidic C-terminal domain. Nucleic Acids Res. 1994;22:1044–1051. PubMed PMC
Calogero S, Grassi F, Aguzzi A, Voigtländer T, Ferrier P, Ferrari S, Bianchi ME. The lack of chromosomal protein Hmg1 does not disrupt cell growth but causes lethal hypoglycaemia in newborn mice. Nat. Genet. 1999;22:276–280. PubMed
Giavara S, Kosmidou E, Hande MP, Bianchi ME, Morgan A, d'Adda di Fagagna F, Jackson SP. Yeast Nhp6A/B and mammalian Hmgb1 facilitate the maintenance of genome stability. Curr. Biol. 2005;15:68–72. PubMed
Völp K, Brezniceanu M-L, Bösser S, Brabletz T, Kirchner T, Göttel D, Joos S, Zörnig M. Increased expression of high mobility group box 1 (HMGB1) is associated with an elevated level of the antiapoptotic c-IAP2 protein in human colon carcinomas. Gut. 2006;55:234–242. PubMed PMC
Testa A, Donati G, Yan P, Romani F, Huang TH, Viganò MA, Mantovani R. Chromatin immunoprecipitation (ChIP) on chip experiments uncover a widespread distribution of NF-Y binding CCAAT sites outside of core promoters. J. Biol. Chem. 2005;280:13606–13615. PubMed
Štros M. DNA bending by the chromosomal protein HMG1 and its high mobility group box domains. Effect of flanking sequences. J. Biol. Chem. 1998;273:10355–10361. PubMed
Štros M, Ozaki T, Bačíková A, Kageyama H, Nakagawara A. HMGB1 and HMGB2 cell-specifically down-regulate the p53- and p73-dependent sequence-specific transactivation from the human Bax gene promoter. J. Biol. Chem. 2002;277:7157–7164. PubMed
Jiang H, Karnezis AN, Tao M, Guida PM, Zhu L. pRB and p107 have distinct effects when expressed in pRB-deficient tumor cells at physiologically relevant levels. Oncogene. 2000;19:3878–3887. PubMed
Bhat UG, Raychaudhuri P, Beck WT. Functional interaction between human topoisomerase IIα and retinoblastoma protein. Proc. Natl Acad. Sci. USA. 1999;96:7859–7864. PubMed PMC
Magan N, Szremska AP, Isaacs RJ, Stowell KM. Modulation of DNA topoisomerase IIα promoter activity by members of the Sp (specificity protein) and NF-Y (nuclear factor Y) families of transcription factors. Biochem. J. 2003;374:723–729. PubMed PMC
Wang Q, Zambetti GP, Suttle DP. Inhibition of DNA topoisomerase IIα gene expression by the p53 tumor suppressor. Mol. Cell Biol. 1997;17:389–397. PubMed PMC
Hamanaka R, Kohno K, Seguchi T, Okamura K, Morimoto A, Ono M, Ogata J, Kuwano M. Induction of low density lipoprotein receptor and a transcription factor SP-1 by tumor necrosis factor in human microvascular endothelial cells. J. Biol. Chem. 1992;267:13160–13165. PubMed
Bronner C, Hopfner R, Mousli M. Transcriptional regulation of the human topoisomerase IIα gene. Anticancer Res. 2002;22:605–612. PubMed
Das D, Scovell WM. The binding interaction of HMG-1 with the TATA-binding protein/TATA complex. J. Biol. Chem. 2001;276:32597–32605. PubMed
Dintilhac A, Bernués J. HMGB1 interacts with many apparently unrelated proteins by recognizing short amino acid sequences. J. Biol. Chem. 2002;277:7021–7028. PubMed
Mantovani R. The molecular biology of the CCAAT-binding factor NF-Y. Gene. 1999;239:15–27. PubMed
Herzog CE, Zwelling LA. Evaluation of a potential regulatory role for inverted CCAAT boxes in the human topoisomerase IIα promoter. Biochem. Biophys. Res. Commun. 1997;232:608–612. PubMed
Isaacs RJ, Harris AL, Hickson ID. Regulation of the human topoisomerase IIα gene promoter in confluence-arrested cells. J. Biol. Chem. 1996;271:16741–16747. PubMed
Morgan SE, Beck WT. Role of an inverted CCAAT element in human topoisomerase IIα gene expression in ICRF-187-sensitive and -resistant CEM leukemic cells. Mol. Pharmacol. 2001;59:203–211. PubMed
Wong B, Masse JE, Yen YM, Giannikopoulos P, Feigon J, Johnson RC. Binding to cisplatin-modified DNA by the Saccharomyces cerevisiae HMGB protein Nhp6A. Biochemistry. 2002;41:5404–5414. PubMed
Klass J, Murphy FV, 4th, Fouts S, Serenil M, Changela A, Siple J, Churchill ME. The role of intercalating residues in chromosomal high-mobility-group protein DNA binding, bending and specificity. Nucleic Acids Res. 2003;31:2852–2864. PubMed PMC
Teo S-H, Grasser KD, Thomas JO. Differences in the DNA-binding properties of the HMG-box domains of HMG1 and the sex-determining factor SRY. Eur. J. Biochem. 1995;230:943–950. PubMed
Grasser KD, Teo S-H, Lee KB, Broadhurst RW, Rees C, Hardman CH, Thomas JO. DNA-binding properties of the tandem HMG boxes of high-mobility-group protein 1 (HMG1) Eur. J. Biochem. 1998;253:787–795. PubMed
Štros M. Two mutations of basic residues within the N-terminus of HMG-1 B domain with different effects on DNA supercoiling and binding to bent DNA. Biochemistry. 2001;40:4769–4779. PubMed
He Q, Ohndorf UM, Lippard SJ. Intercalating residues determine the mode of HMGB1 domains A and B binding to cisplatin-modified DNA. Biochemistry. 2000;39:14426–14435. PubMed
Jung Y, Lippard SJ. Nature of full-length HMGB1 binding to cisplatin-modified DNA. Biochemistry. 2003;42:2664–2671. PubMed
Weinberg RA. The retinoblastoma protein and cell cycle control. Cell. 1995;81:323–330. PubMed
Xiao H, Goodrich DW. The retinoblastoma tumor supressor protein is required for efficient processing and repair of trapped topoisomerase II-DNA-cleavable complexes. Oncogene. 2005;24:8105–8113. PubMed PMC
Liu H, Dibling B, Spike B, Dirlam A, Macleod K. New roles for the RB tumor supressor protein. Curr. Opin. Genet. Dev. 2004;14:55–64. PubMed
Jiao Y, Wang HC, Fan SJ. Growth suppression and radiosensitivity increase by HMGB1 in breast cancer. Acta Pharmacol. Sin. 2007;28:1957–1967. PubMed
Semizarov D, Kroeger P, Fesik S. siRNA-mediated gene silencing: a global genome view. Nucleic Acids Res. 2004;32:3836–3845. PubMed PMC
Sandri MI, Isaacs RJ, Ongkeko WM, Harris AL, Hickson ID, Broggini M, Vikhanskaya F. p53 regulates the minimal promoter of the human topoisomerase IIα gene. Nucleic Acids Res. 1996;24:4464–4470. PubMed PMC
Kwon Y, Shin BS, Chung IK. The p53 tumor supressor stimulates the catalytic activity of human topoisomerase IIα by enhancing the rate of ATP hydrolysis. J. Biol. Chem. 2000;275:18503–18510. PubMed
Ronfani L, Ferraguti M, Croci L, Ovitt CE, Schöler HR, Consalez GG, Bianchi ME. Reduced fertility and spermatogenesis defects in mice lacking chromosomal protein Hmgb2. Development. 2001;128:1265–1273. PubMed
Bianchi ME, Agresti A. HMG proteins: dynamic players in gene regulation and differentiation. Curr. Opin. Genet. Dev. 2005;15:496–506. PubMed
Lok C-N, Lang AJ, Mirski SE, Cole SP. Characterization of the human topoisomerase IIβ (TOP2B) promoter activity: essential roles of the nuclear factor-Y (NF-Y)- and specificity protein-1 (Sp1)-binding sites. Biochem. J. 2002;368:741–751. PubMed PMC
Yoon JH, Kim JK, Rha GB, Oh M, Park S-H, Seong RH, Hong SH, Park SD. Sp1 mediates cell proliferation-dependent regulation of rat DNA topoisomerase IIα gene promoter. Biochem. J. 1999;344:367–374. PubMed PMC
Hopfner R, Mousli M, Oudet P, Bronner C. Overexpression of ICBP90, a novel CCAAT-binding protein, overcomes cell contact inhibition by forcing topoisomerase II alpha expression. Anticancer Res. 2002;22:3165–3170. PubMed
Aizawa S, Nishino H, Saito K, Kimura K, Shirakawa H, Yoshida M. Stimulation of transcription in cultured cells by high mobility group protein 1: essential role of the acidic carboxyl-terminal region. Biochemistry. 1994;33:14690–14695. PubMed
Ueda T, Chou H, Kawase T, Shirakawa H, Yoshida M. Acidic C-tail of HMGB1 is required for its target binding to nucleosome linker DNA and transciption stimulation. Biochemistry. 2004;43:9901–9908. PubMed
Banerjee S, Kundu TK. The acidic C-terminal domain and A-box of HMGB-1 regulates p53-mediated transcription. Nucleic Acids Res. 2003;31:3236–3247. PubMed PMC
Watson M, Stott K, Thomas JO. Mapping intramolecular interactions between domains in HMGB1 using a tail-truncation approach. J. Mol. Biol. 2007;374:1286–1297. PubMed
Roemer SC, Adelman J, Churchill ME, Edwards DP. Mechanism of high-mobility group protein B enhancement of progesterone receptor sequence-specific DNA binding. Nucleic Acids Res. 2008;36:3655–3666. PubMed PMC
Beck WT, Mo YY, Bhat UG. Cytotoxic signalling by inhibitors of DNA topoisomerase II. Biochem. Soc. Trans. 2001;29:702–703. PubMed
Jeanblanc M, Mousli M, Hopfner R, Bathami K, Martinet N, Abbady AQ, Siffert JC, Mathieu E, Muller CD, Bronner C. The retinoblastoma gene and its product are targeted by ICBP90: a key mechanism in the G1/S transition during the cell cycle. Oncogene. 2005;24:7337–7345. PubMed
Jayaraman L, Moorthy NC, Murthy KG, Manley JL, Bustin M, Prives C. High mobility group protein-1 (HMG-1) is a unique activator of p53. Genes Dev. 1998;12:462–472. PubMed PMC
Liu D, Huang CL, Kameyama K, Hayashi E, Yamauchi A, Sumitomo S, Yokomise H. Topoisomerase II alpha gene expression is regulated by the p53 tumor supressor gene in nonsmall cell lung carcinoma patients. Cancer. 2002;94:2239–2247. PubMed
Tsai-Pflugfelder M, Liu LF, Liu AA, Tewey KM, Whang-Peng J, Knutsen T, Huebner K, Croce CM, Wang JC. Cloning and sequencing of cDNA encoding human DNA topoisomerase II and localization of the gene to chromosome region 17q21-22. Proc. Natl Acad. Sci. USA. 1988;85:7177–7181. PubMed PMC
Jenkins JR, Ayton P, Jones T, Davies SL, Simmons DL, Harris AL, Sheer D, Hickson ID. Isolation of cDNA clones encoding the β isozyme of human DNA topoisomerase II and localisation of the gene to chromosome 3p24. Nucleic Acids Res. 1992;20:5587–5592. PubMed PMC
Brezniceanu ML, Völp K, Bösser S, Solbach C, Lichter P, Joos S, Zörnig M. HMGB1 inhibits cell death in yeast and mammalian cells and is abundantly expressed in human breast carcinoma. FASEB J. 2003;17:1295–1297. PubMed
He Q, Liang CH, Lippard SJ. Steroid hormones induce HMG1 overexpression and sensitize breast cancer cells to cisplatin and carboplatin. Proc. Natl Acad. Sci. USA. 2000;97:5768–5772. PubMed PMC
Washiro M, Ohtsuka M, Kimura F, Shimizu H, Yoshidome H, Sugimoto T, Seki N, Miyazaki M. Upregulation of topoisomerase IIalpha expression in advanced gallbladder carcinoma: a potential chemotherapeutic target. J. Cancer Res. Clin. Oncol. 2008;134:793–801. PubMed
Järvinen TA, Liu ET. Topoisomerase IIalpha gene (TOP2A) amplification and deletion in cancer – more common than anticipated. Cytopathology. 2003;14:309–313. PubMed
Rody A, Karn T, Ruckhäberle E, Müller V, Gehrmann M, Solbach C, Ahr A, Gätje R, Holtrich U, Kaufmann M. (March 14, 2008) Gene expression of topoisomerase II alpha (TOP2A) by microarray analysis is highly prognostic in estrogen receptor (ER) positive breast cancer. Breast Cancer Res. Treat. 10.1007/s10549-008-9964-x. PubMed
Guérin E, Entz-Werlé N, Eyer D, Pencreac’h E, Schneider A, Falkenrodt A, Uettwiller F, Babin A, Voegeli AC, Lessard M, Gaub MP, Lutz P, Oudet P. Modification of topoisomerase genes copy number in newly diagnosed childhood acute lymphoblastic leukemia. Leukemia. 2003;17:532–540. PubMed
Pritchard KI, Messersmith H, Elavathil L, Trudeau M, O'Malley F, Dhesy-Thind B. HER-2 and topoisomerase II as predictors of response to chemotherapy. J. Clin. Oncol. 2008;26:736–744. PubMed
Arriola E, Rodriguez-Pinilla SM, Lambros MBK, Jones RL, James M, Savage K, Smith IE, Dowsett M, Reis-Filho JS. Topoisomerase II alpha amplification may predict benefit from adjuvant anthracyclines in HER2 positive early breast cancer. Breast Cancer Res. Treat. 2007;106:181–189. PubMed
Kornblit B, Munthe-Fog L, Petersen SL, Madsen HO, Vindeløv L, Garred P. The genetic variation of the human HMGB1 gene. Tissue Antigens. 2007;70:151–156. PubMed
Döhner H, Stilgenbauer S, Benner A, Leupolt E, Kröber A, Bullinger L, Döhner K, Bentz M, Lichter P. Genomic aberrations and survival in chronic lymphocytic leukemia. N. Engl. J. Med. 2000;343:1910–1916. PubMed
Ferrari S, Finelli P, Rocchi M, Bianchi ME. The active gene that encodes human high mobility group 1 protein (HMG1) contains introns and maps to chromosome 13. Genomics. 1996;35:367–371. PubMed