HMGB2 is a negative regulator of telomerase activity in human embryonic stem and progenitor cells

. 2019 Dec 01 ; 33 (12) : 14307-14324. [epub] 20191026

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31661640

High-mobility group box (HMGB)1 and HMGB2 proteins are the subject of intensive research because of their involvement in DNA replication, repair, transcription, differentiation, proliferation, cell signaling, inflammation, and tumor migration. Using inducible, stably transfected human embryonic stem cells (hESCs) capable of the short hairpin RNA-mediated knockdown (KD) of HMGB1 and HMGB2, we provide evidence that deregulation of HMGB1 or HMGB2 expression in hESCs and their differentiated derivatives (neuroectodermal cells) results in distinct modulation of telomere homeostasis. Whereas HMGB1 enhances telomerase activity, HMGB2 acts as a negative regulator of telomerase activity in the cell. Stimulation of telomerase activity in the HMGB2-deficient cells may be related to activation of the PI3K/protein kinase B/ glycogen synthase kinase-3β/β-catenin signaling pathways by HMGB1, augmented TERT/telomerase RNA subunit transcription, and possibly also because of changes in telomeric repeat-containing RNA (TERRA) and TERRA-polyA+ transcription. The impact of HMGB1/2 KD on telomerase transcriptional regulation observed in neuroectodermal cells is partially masked in hESCs by their pluripotent state. Our findings on differential roles of HMGB1 and HMGB2 proteins in regulation of telomerase activity may suggest another possible outcome of HMGB1 targeting in cells, which is currently a promising approach aiming at increasing the anticancer activity of cytotoxic agents.-Kučírek, M., Bagherpoor, A. J., Jaroš, J., Hampl, A., Štros, M. HMGB2 is a negative regulator of telomerase activity in human embryonic stem and progenitor cells.

Zobrazit více v PubMed

Štros, M. (2010) HMGB proteins: interactions with DNA and chromatin. Biochim. Biophys. Acta 1799, 101-113

Müller, S., Ronfani, L., and Bianchi, M. E. (2004) Regulated expression and subcellular localization of HMGB1, a chromatin protein with a cytokine function. J. Intern. Med. 255, 332-343

Malarkey, C. S., and Churchill, M. E. (2012) The high mobility group box: the ultimate utility player of a cell. Trends Biochem. Sci. 37, 553-562

Reeves, R. (2015) High mobility group (HMG) proteins: modulators of chromatin structure and DNA repair in mammalian cells. DNA Repair (Amst.) 36, 122-136

Livesey, K. M., Kang, R., Vernon, P., Buchser, W., Loughran, P., Watkins, S. C., Zhang, L., Manfredi, J. J., Zeh, H. J. III, Li, L., Lotze, M. T., and Tang, D. (2012) p53/HMGB1 complexes regulate autophagy and apoptosis. Cancer Res. 72, 1996-2005

Bianchi, M. E., Crippa, M. P., Manfredi, A.A., Mezzapelle, R., Rovere Querini, P., and Venereau, E. (2017) High-mobility group box 1 protein orchestrates responses to tissue damage via inflammation, innate and adaptive immunity, and tissue repair. Immunol. Rev. 280, 74-82

Calogero, S., Grassi, F., Aguzzi, A., Voigtländer, T., Ferrier, P., Ferrari, S., and Bianchi, M. E. (1999) The lack of chromosomal protein Hmg1 does not disrupt cell growth but causes lethal hypoglycaemia in newborn mice. Nat. Genet. 22, 276-280

Ronfani, L., Ferraguti, M., Croci, L., Ovitt, C.E., Schöler, H. R., Consalez, G. G., and Bianchi, M. E. (2001) Reduced fertility and spermatogenesis defects in mice lacking chromosomal protein Hmgb2. Development 128, 1265-1273

Meneghini, V., Bortolotto, V., Francese, M. T., Dellarole, A., Carraro, L., Terzieva, S., and Grilli, M. (2013) High-mobility group box-1 protein and β-amyloid oligomers promote neuronal differentiation of adult hippocampal neural progenitors via receptor for advanced glycation end products/nuclear factor-KB axis: relevance for Alzheimer's disease. J. Neurosci. 33, 6047-6059

Shay, J. W., and Wright, W. E. (2019) Telomeres and telomerase: three decades of progress. Nat. Rev. Genet. 20, 299-309

Blackburn, E. H., Epel, E. S., and Lin, J. (2015) Human telomere biology: a contributory and interactive factor in aging, disease risks, and protection. Science 350, 1193-1198

Wu, R. A., Upton, H. E., Vogan, J. M., and Collins, K. (2017) Telomerase mechanism of telomere synthesis. Annu. Rev. Biochem. 86, 439-460

Weinrich, S. L., Pruzan, R., Ma, L., Ouellette, M., Tesmer, V. M., Holt, S. E., Bodnar, A. G., Lichtsteiner, S., Kim, N. W., Trager, J. B., Taylor, R.D., Carlos, R., Andrews, W.H., Wright, W.E., Shay, J.W., Harley, C. B., and Morin, G. B. (1997) Reconstitution of human telomerase with the template RNA component hTR and the catalytic protein subunit hTRT. Nat. Genet. 17, 498-502

Khattar, E., and Tergaonkar, V. (2017) Transcriptional regulation of telomerase reverse transcriptase (TERT) by MYC. Front. Cell Dev. Biol. 5, 1

Wang, L., Yao, J., Zhang, X., Guo, B., Le, X., Cubberly, M., Li, Z., Nan, K., Song, T., and Huang, C. (2014) miRNA-302b suppresses human hepatocellular carcinoma by targeting AKT2. Mol. Cancer Res. 12, 190-202

Wang, F., Li, L., Chen, Z., Zhu, M., and Gu, Y. (2016) MicroRNA-214 acts as a potential oncogene in breast cancer by targeting the PTEN-PI3K/Akt signaling pathway. Int. J. Mol. Med. 37, 1421-1428

Zhang, Y., Toh, L., Lau, P., and Wang, X. (2012) Human telomerase reverse transcriptase (hTERT) is a novel target of the Wnt/β-catenin pathway in human cancer. J. Biol. Chem. 287, 32494-32511

MacNeil, D. E., Bensoussan, H. J., and Autexier, C. (2016) Telomerase regulation from beginning to the end. Genes (Basel) 7, E64

Wang, C., Zhao, L., and Lu, S. (2015) Role of TERRAin the regulation of telomere length. Int. J. Biol. Sci. 11, 316-323

Hiyama, E., and Hiyama, K. (2007) Telomere and telomerase in stem cells. Br. J. Cancer 96, 1020-1024

Wu, S., Huang, P., Li, C., Huang, Y., Li, X., Wang, Y., Chen, C., Lv, Z., Tang, A., Sun, X., Lu, J., Li, W., Zhou, J., Gui, Y., Zhou, F., Wang, D., and Cai, Z. (2014) Telomerase reverse transcriptase gene promoter mutations help discern the origin of urogenital tumors: a genomic and molecular study. Eur. Urol. 65, 274-277

Bagherpoor, A. J., Dolezalova, D., Barta, T., Kučírek, M., Sani, S. A., Ešner, M., Kunova Bosakova, M., Vinarský, V., Peskova, L., Hampl, A., and Štros, M. (2017) Properties of human embryonic stem cells and their differentiated derivatives depend on nonhistone DNA-binding HMGB1 and HMGB2 proteins. Stem Cells Dev. 26, 328-340

Polanská, E., Dobšáková, Z., DvořáCková, M., Fajkus, J., and Štros, M. (2012) HMGB1 gene knockout in mouse embryonic fibroblasts results in reduced telomerase activity and telomere dysfunction. Chromosoma 121, 419-431

Adewumi, O., Aflatoonian, B., Ahrlund-Richter, L., Amit, M., Andrews, P. W., Beighton, G., Bello, P.A., Benvenisty, N., Berry, L.S., Bevan, S., Blum, B., Brooking, J., Chen, K.G., Choo, A.B., Churchill, G.A., Corbel, M., Damjanov, I., Draper, J. S., Dvorak, P., Emanuelsson, K., Fleck, R. A., Ford, A., Gertow, K., Gertsenstein, M., Gokhale, P. J., Hamilton, R. S., Hampl, A., Healy, L.E., Hovatta, O., Hyllner, J., Imreh, M.P., Itskovitz-Eldor, J., Jackson, J., Johnson, J.L., Jones, M., Kee, K., King, B. L., Knowles, B.B., Lako, M., Lebrin, F., Mallon, B.S., Manning, D., Mayshar, Y., McKay, R.D., Michalska, A.E., Mikkola, M., Mileikovsky, M., Minger, S.L., Moore, H. D., Mummery, C. L., Nagy, A., Nakatsuji, N., O'Brien, C. M., Oh, S. K., Olsson, C., Otonkoski, T., Park, K. Y., Passier, R., Patel, H., Patel, M., Pedersen, R., Pera, M. F., Piekarczyk, M. S., Pera, R. A., Reubinoff, B. E., Robins, A. J., Rossant, J., Rugg-Gunn, P., Schulz, T. C., Semb, H., Sherrer, E.S., Siemen, H., Stacey, G.N., Stojkovic, M., Suemori, H., Szatkiewicz, J., Turetsky, T., Tuuri, T., vandenBrink, S., Vintersten, K., Vuoristo, S., Ward, D., Weaver, T.A., Young, L. A., and Zhang, W.; International Stem Cell Initiative. (2007) Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nat. Biotechnol. 25, 803-816

Kamentsky, L., Jones, T. R., Fraser, A., Bray, M. A., Logan, D. J., Madden, K.L., Ljosa, V., Rueden, C., Eliceiri, K.W., and Carpenter, A. E. (2011) Improved structure, function and compatibility for CellProfiler: modular high-throughput image analysis software. Bioinformatics 27, 1179-1180

Polanská, E., Pospíšilová, Š., and Štros, M. (2014) Binding of histone H1 to DNA is differentially modulated by redox state of HMGB1. PLoS One 9, e89070

Štros, M., Kučírek, M., Sani, S. A., and Polanská, E. (2018) HMGB1-mediated DNA bending: distinct roles in increasing p53 binding to DNA and the transactivation of p53-responsive gene promoters. Biochim. Biophys. Acta. Gene Regul. Mech. 1861, 200-210

Fajkus, J., Koppová, K., and Kunická, Z. (2003) Dual-color real-time telomeric repeat amplification protocol. Biotechniques 35, 912-914

Kong, D., Jin, Y., Yin, Y., Mi, H., and Shen, H. (2007) Real-time PCR detection of telomerase activity using specific molecular beacon probes. Anal. Bioanal. Chem. 388, 699-709

Saleh, S., Lam, A. K., and Ho, Y. H. (2008) Real-time PCR quantification of human telomerase reverse transcriptase (hTERT) in colorectal cancer. Pathology 40, 25-30

Mansour, F. H., and Pestov, D. G. (2013) Separation of long RNA by agarose-formaldehyde gel electrophoresis. Anal. Biochem. 441, 18-20

Mender, I., and Shay, J. W. (2015) Telomere restriction fragment (TRF) analysis. Bio Protoc. 5, e1658

Koh, C. M. (2013) Isolation of genomic DNA from mammalian cells. Methods Enzymol. 529, 161-169

Xu, D., Wang, Q., Gruber, A., Björkholm, M., Chen, Z., Zaid, A., Selivanova, G., Peterson, C., Wiman, K. G., and Pisa, P. (2000) Downregulation of telomerase reverse transcriptase mRNA expression by wild type p53 in human tumor cells. Oncogene 19, 5123-5133

Feretzaki, M., and Lingner, J. (2017) A practical qPCR approach to detect TERRA, the elusive telomeric repeat-containing RNA. Methods 114, 39-45

Montero, J. J., López de Silanes, I., Graña, O., and Blasco, M. A. (2016) Telomeric RNAs are essential to maintain telomeres. Nat. Commun. 7, 12534

Koch, L. (2017) Non-coding RNA: a protective role for TERRA at telomeres. Nat. Rev. Genet. 18, 453

Porro, A., Feuerhahn, S., Reichenbach, P., and Lingner, J. (2010) Molecular dissection of telomeric repeat-containing RNA biogenesis unveils the presence of distinct and multiple regulatory pathways. Mol. Cell. Biol. 30, 4808-4817

Moravec, M., Wischnewski, H., Bah, A., Hu, Y., Liu, N., Lafranchi, L., King, M.C., and Azzalin, C. M. (2016) TERRA promotes telomerase-mediated telomere elongation in Schizosaccharomyces pombe. EMBO Rep. 17, 999-1012

Scheibe, M., Arnoult, N., Kappei, D., Buchholz, F., Decottignies, A., Butter, F., and Mann, M. (2013) Quantitative interaction screen of telomeric repeat-containing RNA reveals novel TERRA regulators. Genome Res. 23, 2149-2157

Stambolic, V., MacPherson, D., Sas, D., Lin, Y., Snow, B., Jang, Y., Benchimol, S., and Mak, T. W. (2001) Regulation of PTEN transcription by p53. Mol. Cell 8, 317-325

Carracedo, A., and Pandolfi, P. P. (2008) The PTEN-PI3K pathway: of feedbacks and cross-talks. Oncogene 27, 5527-5541

Shang, S., Hua, F., and Hu, Z. W. (2017) The regulation of β-catenin activity and function in cancer: therapeutic opportunities. Oncotarget 8, 33972-33989

Wu, D., and Pan, W. (2010) GSK3: a multifaceted kinase in Wnt signaling. Trends Biochem. Sci. 35, 161-168

Hoffmeyer, K., Raggioli, A., Rudloff, S., Anton, R., Hierholzer, A., Del Valle, I., Hein, K., Vogt, R., and Kemler, R. (2012) Wnt/β-catenin signaling regulates telomerase in stem cells and cancer cells. Science 336, 1549-1554

Takai, H., Smogorzewska, A., and de Lange, T. (2003) DNA damage foci at dysfunctional telomeres. Curr. Biol. 13, 1549-1556

Smogorzewska, A., van Steensel, B., Bianchi, A., Oelmann, S., Schaefer, M. R., Schnapp, G., and de Lange, T. (2000) Control of human telomere length by TRF1 and TRF2. Mol. Cell. Biol. 20, 1659-1668

Barreiro-Alonso, A., Lamas-Maceiras, M., Rodríguez-Belmonte, E., Vizoso-Vázquez, Á., Quindós, M., and Cerdán, M. E. (2016) High mobility group B proteins, their partners, and other redox sensors in ovarian and prostate cancer. Oxid. Med. Cell. Longev. 2016, 5845061

Kimura, A., Matsuda, T., Sakai, A., Murao, N., and Nakashima, K. (2018) HMGB2 expression is associated with transition from a quiescent to an activated state of adult neural stem cells. Dev. Dyn. 247, 229-238

Agresti, A., and Bianchi, M. E. (2003) HMGB proteins and gene expression. Curr. Opin. Genet. Dev. 13, 170-178

Laurent, B., Randrianarison-Huetz, V., Maréchal, V., Mayeux, P., Dusanter-Fourt, I., and Duménil, D. (2010) High-mobility group protein HMGB2 regulates human erythroid differentiation through trans-activation of GF11B transcription. Blood 115, 687-695; erratum: 116, 1627

Taniguchi, N., Caramés, B., Hsu, E., Cherqui, S., Kawakami, Y., and Lotz, M. (2011) Expression patterns and function of chromatin protein HMGB2 during mesenchymal stem cell differentiation. J. Biol. Chem. 286, 41489-41498

Zhao, Y., Yang, Z., Wu, J., Wu, R., Keshipeddy, S. K., Wright, D., and Wang, L. (2017) High-mobility-group protein 2 regulated by microRNA-127 and small heterodimer partner modulates pluripotency of mouse embryonic stem cells and liver tumor initiating cells. Hepatol. Commun. 1, 816-830

Shin, Y. J., Kim, M. S., Kim, M. S., Lee, J., Kang, M., and Jeong, J. H. (2013) High-mobility group box 2 (HMGB2) modulates radio-response and is downregulated by p53 in colorectal cancer cell. Cancer Biol. Ther. 14, 213-221

Kim, H. K., Kang, M.A, Kim, M. S., Shin, Y. J., Chi, S. G., and Jeong, J. H. (2018) Transcriptional repression of high-mobility group box 2 by p21 in radiation-induced senescence. Mol. Cells 41, 362-372

Taniguchi, N., Caramés, B., Ronfani, L., Ulmer, U., Komiya, S., Bianchi, M. E., and Lotz, M. (2009) Aging-related loss of the chromatin protein HMGB2 in articular cartilage is linked to reduced cellularity and osteoarthritis. Proc. Natl. Acad. Sci. USA 106, 1181-1186

Aird, K. M., Iwasaki, O., Kossenkov, A. V., Tanizawa, H., Fatkhutdinov, N., Bitler, B.G., Le, L., Alicea, G., Yang, T.L., Johnson, F.B., Noma, K. I., and Zhang, R. (2016) HMGB2 orchestrates the chromatin landscape of senescence-associated secretory phenotype gene loci. J. Cell Biol. 215, 325-334

Biniossek, M.L., Lechel, A., Rudolph, K.L., Martens, U.M., and Zimmermann, S. (2013) Quantitative proteomic profiling of tumor cell response to telomere dysfunction using isotope-coded protein labeling (ICPL) reveals interaction network of candidate senescence markers. J. Proteomics 91, 515-535

Abraham, A. B., Bronstein, R., Reddy, A. S., Maletic-Savatic, M., Aguirre, A., and Tsirka, S. E. (2013) Aberrant neural stem cell proliferation and increased adult neurogenesis in mice lacking chromatin protein HMGB2. PLoS One 8, e84838

Cai, X., Ding, H., Liu, Y., Pan, G., Li, Q., Yang, Z., and Liu, W. (2017) Expression of HMGB2 indicates worse survival of patients and is required for the maintenance of Warburg effect in pancreatic cancer. Acta Biochim. Biophys. Sin. (Shanghai) 49, 119-127

Cui, G., Cai, F., Ding, Z., and Gao, L. (2019) HMGB2 promotes the malignancy of human gastric Cancer and indicates poor survival outcome. Hum. Pathol. 84, 133-141

Fu, D., Li, J., Wei, J., Zhang, Z., Luo, Y., Tan, H., and Ren, C. (2018) HMGB2 is associated with malignancy and regulates Warburg effect by targeting LDHB and FBP1 in breast cancer. Cell Commun. Signal. 16, 8

He, S. J., Cheng, J., Feng, X., Yu, Y., Tian, L., and Huang, Q. (2017) The dual role and therapeutic potential of high-mobility group box 1 in cancer. Oncotarget 8, 64534-64550

Štros, M., Ozaki, T., Bacikova, A., Kageyama, H., and Nakagawara, A. (2002) HMGB1 and HMGB2 cell-specifically down-regulate the p53- and p73-dependent sequence-specific transactivation from the human Bax gene promoter. J. Biol. Chem. 277, 7157-7164

Campbell, P. A., and Rudnicki, M.A. (2013) Oct4 interaction with Hmgb2 regulates Akt signaling and pluripotency. Stem Cells 31, 1107-1120

Sato, M., Miyata, K., Tian, Z., Kadomatsu, T., Ujihara, Y., Morinaga, J., Horiguchi, H., Endo, M., Zhao, J., Zhu, S., Sugizaki, T., Igata, K., Muramatsu, M., Minami, T., Ito, T., Bianchi, M. E., Mohri, S., Araki, K., Node, K., and Oike, Y. (2019) Loss of endogenous HMGB2 promotes cardiac dysfunction and pressure overload-induced heart failure in mice. Circ. J. 83, 368-378

Yuan, T. L., and Cantley, L. C. (2008) P13K pathway alterations in cancer: variations on a theme. Oncogene 27, 5497-5510

Manning, B.D., and Toker, A. (2017) AKT/PKB signaling:navigating the network. Cell 169, 381-405

Kang, S. S., Kwon, T., Kwon, D. Y., and Do, S. I. (1999) Akt protein kinase enhances human telomerase activity through phosphorylation of telomerase reverse transcriptase subunit. J. Biol. Chem. 274, 13085-13090

Sasaki, T., Kuniyasu, H., Luo, Y., Kitayoshi, M., Tanabe, E., Kato, D., Shinya, S., Fujii, K., Ohmori, H., and Yamashita, Y. (2014) AKT activation and telomerase reverse transcriptase expression are concurrently associated with prognosis of gastric cancer. Pathobiology 81, 36-41

Chang, J. T., Lu, Y. C., Chen, Y. J., Tseng, C. P., Chen, Y. L., Fang, C. W., and Cheng, A. J. (2006) hTERT phosphorylation by PKC is essential for telomerase holoprotein integrity and enzyme activity in head neck cancer cells. Br. J. Cancer 94, 870-878

Pagano, B., Margarucci, L., Zizza, P., Amato, J., Iaccarino, N., Cassiano, C., Salvati, E., Novellino, E., Biroccio, A., Casapullo, A., and Randazzo, A. (2015) Identification of novel interactors of human telomeric G-quadruplex DNA. Chem. Commun. (Camb.) 51, 2964-2967

Taniguchi, N., Caramés, B., Kawakami, Y., Amendt, B. A., Komiya, S., and Lotz, M. (2009) Chromatin protein HMGB2 regulates articular cartilage surface maintenance via beta-catenin pathway. Proc. Natl. Acad. Sci. USA 106, 16817-16822

Zhou, X., Hu, X., Xie, J., Xu, C., Xu, W., and Jiang, H. (2012) Exogenous high-mobility group box 1 protein injection improves cardiac function after myocardial infarction: involvement of Wnt signaling activation. J. Biomed. Biotechnol. 2012, 743879

Wang, S., Du, S., Lv, Y., Zhang, F., and Wang, W. (2019) MicroRNA-665 inhibits the oncogenicity of retinoblastoma by directly targeting high-mobility group box 1 and inactivating the Wnt/ β-catenin pathway. Cancer Manag. Res. 11, 3111-3123

Chen, R. J., Wu, P. H., Ho, C. T., Way, T. D., Pan, M. H., Chen, H. M., Ho, Y. S., and Wang, Y. J. (2017) P53-dependent downregulation of hTERT protein expression and telomerase activity induces senescence in lung cancer cells as a result of pterostilbene treatment. Cell Death Dis. 8, e2985

Trotman, L. C., and Pandolfi, P. P. (2003) PTEN and p53: who will get the upper hand? Cancer Cell 3, 97-99

Nakanishi, A., Kitagishi, Y., Ogura, Y., and Matsuda, S. (2014) The tumor suppressor PTEN interacts with p53 in hereditary cancer (Review). Int. J. Oncol. 44, 1813-1819

Redon, S., Reichenbach, P., and Lingner, J. (2010) The non-coding RNA TERRA is a natural ligand and direct inhibitor of human telomerase. Nucleic Acids Res. 38, 5797-5806

Bandaria, J. N., Qin, P., Berk, V., Chu, S., and Yildiz, A. (2016) Shelterin protects chromosome ends by compacting telomeric chromatin. Cell 164, 735-746

Ke, S., Zhou, F., Yang, H., Wei, Y., Gong, J., Mei, Z., Wu, L., Yu, H., and Zhou, Y. (2015) Downregulation of high mobility group box 1 modulates telomere homeostasis and increases the radiosensitivity of human breast cancer cells. Int. J. Oncol. 46, 1051-1058

Giavara, S., Kosmidou, E., Hande, M. P., Bianchi, M. E., Morgan, A., d'Adda di Fagagna, F., and Jackson, S. P. (2005) Yeast Nhp6A/B and mammalian Hmgb1 facilitate the maintenance of genome stability. Curr. Biol. 15, 68-72

Kang, R., Zhang, Q., Zeh H. J. III, Lotze, M. T., and Tang, D. (2013) HMGB1 in cancer: good, bad, orboth? Clin. Cancer Res. 19, 4046-4057

Liu, L., Yang, M., Kang, R., Wang, Z., Zhao, Y., Yu, Y., Xie, M., Yin, X., Livesey, K. M., Lotze, M. T., Tang, D., and Cao, L. (2011) HMGB1-induced autophagy promotes chemotherapy resistance in leukemia cells. Leukemia 25, 23-31

Tang, D., Loze, M.T., Zeh, H. J., and Kang, R. (2010) The redox protein HMGB1 regulates cell death and survival in cancer treatment. Autophagy 6, 1181-1183

Beurel, E., Grieco, S. F., and Jope, R. S. (2015) Glycogen synthase kinase-3 (GSK3): regulation, actions, and diseases. Pharmacol. Ther. 148, 114-131

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...