HMGB2 is a negative regulator of telomerase activity in human embryonic stem and progenitor cells
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31661640
DOI
10.1096/fj.201901465rrr
Knihovny.cz E-zdroje
- Klíčová slova
- HMGB1, hESCs, neuroectodermal cells, telomeres,
- MeSH
- buněčná diferenciace MeSH
- genetická transkripce MeSH
- kmenové buňky cytologie enzymologie MeSH
- lidé MeSH
- lidské embryonální kmenové buňky cytologie enzymologie MeSH
- protein HMGB1 genetika MeSH
- protein HMGB2 genetika fyziologie MeSH
- telomerasa metabolismus MeSH
- transfekce MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- HMGB1 protein, human MeSH Prohlížeč
- protein HMGB1 MeSH
- protein HMGB2 MeSH
- telomerasa MeSH
High-mobility group box (HMGB)1 and HMGB2 proteins are the subject of intensive research because of their involvement in DNA replication, repair, transcription, differentiation, proliferation, cell signaling, inflammation, and tumor migration. Using inducible, stably transfected human embryonic stem cells (hESCs) capable of the short hairpin RNA-mediated knockdown (KD) of HMGB1 and HMGB2, we provide evidence that deregulation of HMGB1 or HMGB2 expression in hESCs and their differentiated derivatives (neuroectodermal cells) results in distinct modulation of telomere homeostasis. Whereas HMGB1 enhances telomerase activity, HMGB2 acts as a negative regulator of telomerase activity in the cell. Stimulation of telomerase activity in the HMGB2-deficient cells may be related to activation of the PI3K/protein kinase B/ glycogen synthase kinase-3β/β-catenin signaling pathways by HMGB1, augmented TERT/telomerase RNA subunit transcription, and possibly also because of changes in telomeric repeat-containing RNA (TERRA) and TERRA-polyA+ transcription. The impact of HMGB1/2 KD on telomerase transcriptional regulation observed in neuroectodermal cells is partially masked in hESCs by their pluripotent state. Our findings on differential roles of HMGB1 and HMGB2 proteins in regulation of telomerase activity may suggest another possible outcome of HMGB1 targeting in cells, which is currently a promising approach aiming at increasing the anticancer activity of cytotoxic agents.-Kučírek, M., Bagherpoor, A. J., Jaroš, J., Hampl, A., Štros, M. HMGB2 is a negative regulator of telomerase activity in human embryonic stem and progenitor cells.
Zobrazit více v PubMed
Štros, M. (2010) HMGB proteins: interactions with DNA and chromatin. Biochim. Biophys. Acta 1799, 101-113
Müller, S., Ronfani, L., and Bianchi, M. E. (2004) Regulated expression and subcellular localization of HMGB1, a chromatin protein with a cytokine function. J. Intern. Med. 255, 332-343
Malarkey, C. S., and Churchill, M. E. (2012) The high mobility group box: the ultimate utility player of a cell. Trends Biochem. Sci. 37, 553-562
Reeves, R. (2015) High mobility group (HMG) proteins: modulators of chromatin structure and DNA repair in mammalian cells. DNA Repair (Amst.) 36, 122-136
Livesey, K. M., Kang, R., Vernon, P., Buchser, W., Loughran, P., Watkins, S. C., Zhang, L., Manfredi, J. J., Zeh, H. J. III, Li, L., Lotze, M. T., and Tang, D. (2012) p53/HMGB1 complexes regulate autophagy and apoptosis. Cancer Res. 72, 1996-2005
Bianchi, M. E., Crippa, M. P., Manfredi, A.A., Mezzapelle, R., Rovere Querini, P., and Venereau, E. (2017) High-mobility group box 1 protein orchestrates responses to tissue damage via inflammation, innate and adaptive immunity, and tissue repair. Immunol. Rev. 280, 74-82
Calogero, S., Grassi, F., Aguzzi, A., Voigtländer, T., Ferrier, P., Ferrari, S., and Bianchi, M. E. (1999) The lack of chromosomal protein Hmg1 does not disrupt cell growth but causes lethal hypoglycaemia in newborn mice. Nat. Genet. 22, 276-280
Ronfani, L., Ferraguti, M., Croci, L., Ovitt, C.E., Schöler, H. R., Consalez, G. G., and Bianchi, M. E. (2001) Reduced fertility and spermatogenesis defects in mice lacking chromosomal protein Hmgb2. Development 128, 1265-1273
Meneghini, V., Bortolotto, V., Francese, M. T., Dellarole, A., Carraro, L., Terzieva, S., and Grilli, M. (2013) High-mobility group box-1 protein and β-amyloid oligomers promote neuronal differentiation of adult hippocampal neural progenitors via receptor for advanced glycation end products/nuclear factor-KB axis: relevance for Alzheimer's disease. J. Neurosci. 33, 6047-6059
Shay, J. W., and Wright, W. E. (2019) Telomeres and telomerase: three decades of progress. Nat. Rev. Genet. 20, 299-309
Blackburn, E. H., Epel, E. S., and Lin, J. (2015) Human telomere biology: a contributory and interactive factor in aging, disease risks, and protection. Science 350, 1193-1198
Wu, R. A., Upton, H. E., Vogan, J. M., and Collins, K. (2017) Telomerase mechanism of telomere synthesis. Annu. Rev. Biochem. 86, 439-460
Weinrich, S. L., Pruzan, R., Ma, L., Ouellette, M., Tesmer, V. M., Holt, S. E., Bodnar, A. G., Lichtsteiner, S., Kim, N. W., Trager, J. B., Taylor, R.D., Carlos, R., Andrews, W.H., Wright, W.E., Shay, J.W., Harley, C. B., and Morin, G. B. (1997) Reconstitution of human telomerase with the template RNA component hTR and the catalytic protein subunit hTRT. Nat. Genet. 17, 498-502
Khattar, E., and Tergaonkar, V. (2017) Transcriptional regulation of telomerase reverse transcriptase (TERT) by MYC. Front. Cell Dev. Biol. 5, 1
Wang, L., Yao, J., Zhang, X., Guo, B., Le, X., Cubberly, M., Li, Z., Nan, K., Song, T., and Huang, C. (2014) miRNA-302b suppresses human hepatocellular carcinoma by targeting AKT2. Mol. Cancer Res. 12, 190-202
Wang, F., Li, L., Chen, Z., Zhu, M., and Gu, Y. (2016) MicroRNA-214 acts as a potential oncogene in breast cancer by targeting the PTEN-PI3K/Akt signaling pathway. Int. J. Mol. Med. 37, 1421-1428
Zhang, Y., Toh, L., Lau, P., and Wang, X. (2012) Human telomerase reverse transcriptase (hTERT) is a novel target of the Wnt/β-catenin pathway in human cancer. J. Biol. Chem. 287, 32494-32511
MacNeil, D. E., Bensoussan, H. J., and Autexier, C. (2016) Telomerase regulation from beginning to the end. Genes (Basel) 7, E64
Wang, C., Zhao, L., and Lu, S. (2015) Role of TERRAin the regulation of telomere length. Int. J. Biol. Sci. 11, 316-323
Hiyama, E., and Hiyama, K. (2007) Telomere and telomerase in stem cells. Br. J. Cancer 96, 1020-1024
Wu, S., Huang, P., Li, C., Huang, Y., Li, X., Wang, Y., Chen, C., Lv, Z., Tang, A., Sun, X., Lu, J., Li, W., Zhou, J., Gui, Y., Zhou, F., Wang, D., and Cai, Z. (2014) Telomerase reverse transcriptase gene promoter mutations help discern the origin of urogenital tumors: a genomic and molecular study. Eur. Urol. 65, 274-277
Bagherpoor, A. J., Dolezalova, D., Barta, T., Kučírek, M., Sani, S. A., Ešner, M., Kunova Bosakova, M., Vinarský, V., Peskova, L., Hampl, A., and Štros, M. (2017) Properties of human embryonic stem cells and their differentiated derivatives depend on nonhistone DNA-binding HMGB1 and HMGB2 proteins. Stem Cells Dev. 26, 328-340
Polanská, E., Dobšáková, Z., DvořáCková, M., Fajkus, J., and Štros, M. (2012) HMGB1 gene knockout in mouse embryonic fibroblasts results in reduced telomerase activity and telomere dysfunction. Chromosoma 121, 419-431
Adewumi, O., Aflatoonian, B., Ahrlund-Richter, L., Amit, M., Andrews, P. W., Beighton, G., Bello, P.A., Benvenisty, N., Berry, L.S., Bevan, S., Blum, B., Brooking, J., Chen, K.G., Choo, A.B., Churchill, G.A., Corbel, M., Damjanov, I., Draper, J. S., Dvorak, P., Emanuelsson, K., Fleck, R. A., Ford, A., Gertow, K., Gertsenstein, M., Gokhale, P. J., Hamilton, R. S., Hampl, A., Healy, L.E., Hovatta, O., Hyllner, J., Imreh, M.P., Itskovitz-Eldor, J., Jackson, J., Johnson, J.L., Jones, M., Kee, K., King, B. L., Knowles, B.B., Lako, M., Lebrin, F., Mallon, B.S., Manning, D., Mayshar, Y., McKay, R.D., Michalska, A.E., Mikkola, M., Mileikovsky, M., Minger, S.L., Moore, H. D., Mummery, C. L., Nagy, A., Nakatsuji, N., O'Brien, C. M., Oh, S. K., Olsson, C., Otonkoski, T., Park, K. Y., Passier, R., Patel, H., Patel, M., Pedersen, R., Pera, M. F., Piekarczyk, M. S., Pera, R. A., Reubinoff, B. E., Robins, A. J., Rossant, J., Rugg-Gunn, P., Schulz, T. C., Semb, H., Sherrer, E.S., Siemen, H., Stacey, G.N., Stojkovic, M., Suemori, H., Szatkiewicz, J., Turetsky, T., Tuuri, T., vandenBrink, S., Vintersten, K., Vuoristo, S., Ward, D., Weaver, T.A., Young, L. A., and Zhang, W.; International Stem Cell Initiative. (2007) Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nat. Biotechnol. 25, 803-816
Kamentsky, L., Jones, T. R., Fraser, A., Bray, M. A., Logan, D. J., Madden, K.L., Ljosa, V., Rueden, C., Eliceiri, K.W., and Carpenter, A. E. (2011) Improved structure, function and compatibility for CellProfiler: modular high-throughput image analysis software. Bioinformatics 27, 1179-1180
Polanská, E., Pospíšilová, Š., and Štros, M. (2014) Binding of histone H1 to DNA is differentially modulated by redox state of HMGB1. PLoS One 9, e89070
Štros, M., Kučírek, M., Sani, S. A., and Polanská, E. (2018) HMGB1-mediated DNA bending: distinct roles in increasing p53 binding to DNA and the transactivation of p53-responsive gene promoters. Biochim. Biophys. Acta. Gene Regul. Mech. 1861, 200-210
Fajkus, J., Koppová, K., and Kunická, Z. (2003) Dual-color real-time telomeric repeat amplification protocol. Biotechniques 35, 912-914
Kong, D., Jin, Y., Yin, Y., Mi, H., and Shen, H. (2007) Real-time PCR detection of telomerase activity using specific molecular beacon probes. Anal. Bioanal. Chem. 388, 699-709
Saleh, S., Lam, A. K., and Ho, Y. H. (2008) Real-time PCR quantification of human telomerase reverse transcriptase (hTERT) in colorectal cancer. Pathology 40, 25-30
Mansour, F. H., and Pestov, D. G. (2013) Separation of long RNA by agarose-formaldehyde gel electrophoresis. Anal. Biochem. 441, 18-20
Mender, I., and Shay, J. W. (2015) Telomere restriction fragment (TRF) analysis. Bio Protoc. 5, e1658
Koh, C. M. (2013) Isolation of genomic DNA from mammalian cells. Methods Enzymol. 529, 161-169
Xu, D., Wang, Q., Gruber, A., Björkholm, M., Chen, Z., Zaid, A., Selivanova, G., Peterson, C., Wiman, K. G., and Pisa, P. (2000) Downregulation of telomerase reverse transcriptase mRNA expression by wild type p53 in human tumor cells. Oncogene 19, 5123-5133
Feretzaki, M., and Lingner, J. (2017) A practical qPCR approach to detect TERRA, the elusive telomeric repeat-containing RNA. Methods 114, 39-45
Montero, J. J., López de Silanes, I., Graña, O., and Blasco, M. A. (2016) Telomeric RNAs are essential to maintain telomeres. Nat. Commun. 7, 12534
Koch, L. (2017) Non-coding RNA: a protective role for TERRA at telomeres. Nat. Rev. Genet. 18, 453
Porro, A., Feuerhahn, S., Reichenbach, P., and Lingner, J. (2010) Molecular dissection of telomeric repeat-containing RNA biogenesis unveils the presence of distinct and multiple regulatory pathways. Mol. Cell. Biol. 30, 4808-4817
Moravec, M., Wischnewski, H., Bah, A., Hu, Y., Liu, N., Lafranchi, L., King, M.C., and Azzalin, C. M. (2016) TERRA promotes telomerase-mediated telomere elongation in Schizosaccharomyces pombe. EMBO Rep. 17, 999-1012
Scheibe, M., Arnoult, N., Kappei, D., Buchholz, F., Decottignies, A., Butter, F., and Mann, M. (2013) Quantitative interaction screen of telomeric repeat-containing RNA reveals novel TERRA regulators. Genome Res. 23, 2149-2157
Stambolic, V., MacPherson, D., Sas, D., Lin, Y., Snow, B., Jang, Y., Benchimol, S., and Mak, T. W. (2001) Regulation of PTEN transcription by p53. Mol. Cell 8, 317-325
Carracedo, A., and Pandolfi, P. P. (2008) The PTEN-PI3K pathway: of feedbacks and cross-talks. Oncogene 27, 5527-5541
Shang, S., Hua, F., and Hu, Z. W. (2017) The regulation of β-catenin activity and function in cancer: therapeutic opportunities. Oncotarget 8, 33972-33989
Wu, D., and Pan, W. (2010) GSK3: a multifaceted kinase in Wnt signaling. Trends Biochem. Sci. 35, 161-168
Hoffmeyer, K., Raggioli, A., Rudloff, S., Anton, R., Hierholzer, A., Del Valle, I., Hein, K., Vogt, R., and Kemler, R. (2012) Wnt/β-catenin signaling regulates telomerase in stem cells and cancer cells. Science 336, 1549-1554
Takai, H., Smogorzewska, A., and de Lange, T. (2003) DNA damage foci at dysfunctional telomeres. Curr. Biol. 13, 1549-1556
Smogorzewska, A., van Steensel, B., Bianchi, A., Oelmann, S., Schaefer, M. R., Schnapp, G., and de Lange, T. (2000) Control of human telomere length by TRF1 and TRF2. Mol. Cell. Biol. 20, 1659-1668
Barreiro-Alonso, A., Lamas-Maceiras, M., Rodríguez-Belmonte, E., Vizoso-Vázquez, Á., Quindós, M., and Cerdán, M. E. (2016) High mobility group B proteins, their partners, and other redox sensors in ovarian and prostate cancer. Oxid. Med. Cell. Longev. 2016, 5845061
Kimura, A., Matsuda, T., Sakai, A., Murao, N., and Nakashima, K. (2018) HMGB2 expression is associated with transition from a quiescent to an activated state of adult neural stem cells. Dev. Dyn. 247, 229-238
Agresti, A., and Bianchi, M. E. (2003) HMGB proteins and gene expression. Curr. Opin. Genet. Dev. 13, 170-178
Laurent, B., Randrianarison-Huetz, V., Maréchal, V., Mayeux, P., Dusanter-Fourt, I., and Duménil, D. (2010) High-mobility group protein HMGB2 regulates human erythroid differentiation through trans-activation of GF11B transcription. Blood 115, 687-695; erratum: 116, 1627
Taniguchi, N., Caramés, B., Hsu, E., Cherqui, S., Kawakami, Y., and Lotz, M. (2011) Expression patterns and function of chromatin protein HMGB2 during mesenchymal stem cell differentiation. J. Biol. Chem. 286, 41489-41498
Zhao, Y., Yang, Z., Wu, J., Wu, R., Keshipeddy, S. K., Wright, D., and Wang, L. (2017) High-mobility-group protein 2 regulated by microRNA-127 and small heterodimer partner modulates pluripotency of mouse embryonic stem cells and liver tumor initiating cells. Hepatol. Commun. 1, 816-830
Shin, Y. J., Kim, M. S., Kim, M. S., Lee, J., Kang, M., and Jeong, J. H. (2013) High-mobility group box 2 (HMGB2) modulates radio-response and is downregulated by p53 in colorectal cancer cell. Cancer Biol. Ther. 14, 213-221
Kim, H. K., Kang, M.A, Kim, M. S., Shin, Y. J., Chi, S. G., and Jeong, J. H. (2018) Transcriptional repression of high-mobility group box 2 by p21 in radiation-induced senescence. Mol. Cells 41, 362-372
Taniguchi, N., Caramés, B., Ronfani, L., Ulmer, U., Komiya, S., Bianchi, M. E., and Lotz, M. (2009) Aging-related loss of the chromatin protein HMGB2 in articular cartilage is linked to reduced cellularity and osteoarthritis. Proc. Natl. Acad. Sci. USA 106, 1181-1186
Aird, K. M., Iwasaki, O., Kossenkov, A. V., Tanizawa, H., Fatkhutdinov, N., Bitler, B.G., Le, L., Alicea, G., Yang, T.L., Johnson, F.B., Noma, K. I., and Zhang, R. (2016) HMGB2 orchestrates the chromatin landscape of senescence-associated secretory phenotype gene loci. J. Cell Biol. 215, 325-334
Biniossek, M.L., Lechel, A., Rudolph, K.L., Martens, U.M., and Zimmermann, S. (2013) Quantitative proteomic profiling of tumor cell response to telomere dysfunction using isotope-coded protein labeling (ICPL) reveals interaction network of candidate senescence markers. J. Proteomics 91, 515-535
Abraham, A. B., Bronstein, R., Reddy, A. S., Maletic-Savatic, M., Aguirre, A., and Tsirka, S. E. (2013) Aberrant neural stem cell proliferation and increased adult neurogenesis in mice lacking chromatin protein HMGB2. PLoS One 8, e84838
Cai, X., Ding, H., Liu, Y., Pan, G., Li, Q., Yang, Z., and Liu, W. (2017) Expression of HMGB2 indicates worse survival of patients and is required for the maintenance of Warburg effect in pancreatic cancer. Acta Biochim. Biophys. Sin. (Shanghai) 49, 119-127
Cui, G., Cai, F., Ding, Z., and Gao, L. (2019) HMGB2 promotes the malignancy of human gastric Cancer and indicates poor survival outcome. Hum. Pathol. 84, 133-141
Fu, D., Li, J., Wei, J., Zhang, Z., Luo, Y., Tan, H., and Ren, C. (2018) HMGB2 is associated with malignancy and regulates Warburg effect by targeting LDHB and FBP1 in breast cancer. Cell Commun. Signal. 16, 8
He, S. J., Cheng, J., Feng, X., Yu, Y., Tian, L., and Huang, Q. (2017) The dual role and therapeutic potential of high-mobility group box 1 in cancer. Oncotarget 8, 64534-64550
Štros, M., Ozaki, T., Bacikova, A., Kageyama, H., and Nakagawara, A. (2002) HMGB1 and HMGB2 cell-specifically down-regulate the p53- and p73-dependent sequence-specific transactivation from the human Bax gene promoter. J. Biol. Chem. 277, 7157-7164
Campbell, P. A., and Rudnicki, M.A. (2013) Oct4 interaction with Hmgb2 regulates Akt signaling and pluripotency. Stem Cells 31, 1107-1120
Sato, M., Miyata, K., Tian, Z., Kadomatsu, T., Ujihara, Y., Morinaga, J., Horiguchi, H., Endo, M., Zhao, J., Zhu, S., Sugizaki, T., Igata, K., Muramatsu, M., Minami, T., Ito, T., Bianchi, M. E., Mohri, S., Araki, K., Node, K., and Oike, Y. (2019) Loss of endogenous HMGB2 promotes cardiac dysfunction and pressure overload-induced heart failure in mice. Circ. J. 83, 368-378
Yuan, T. L., and Cantley, L. C. (2008) P13K pathway alterations in cancer: variations on a theme. Oncogene 27, 5497-5510
Manning, B.D., and Toker, A. (2017) AKT/PKB signaling:navigating the network. Cell 169, 381-405
Kang, S. S., Kwon, T., Kwon, D. Y., and Do, S. I. (1999) Akt protein kinase enhances human telomerase activity through phosphorylation of telomerase reverse transcriptase subunit. J. Biol. Chem. 274, 13085-13090
Sasaki, T., Kuniyasu, H., Luo, Y., Kitayoshi, M., Tanabe, E., Kato, D., Shinya, S., Fujii, K., Ohmori, H., and Yamashita, Y. (2014) AKT activation and telomerase reverse transcriptase expression are concurrently associated with prognosis of gastric cancer. Pathobiology 81, 36-41
Chang, J. T., Lu, Y. C., Chen, Y. J., Tseng, C. P., Chen, Y. L., Fang, C. W., and Cheng, A. J. (2006) hTERT phosphorylation by PKC is essential for telomerase holoprotein integrity and enzyme activity in head neck cancer cells. Br. J. Cancer 94, 870-878
Pagano, B., Margarucci, L., Zizza, P., Amato, J., Iaccarino, N., Cassiano, C., Salvati, E., Novellino, E., Biroccio, A., Casapullo, A., and Randazzo, A. (2015) Identification of novel interactors of human telomeric G-quadruplex DNA. Chem. Commun. (Camb.) 51, 2964-2967
Taniguchi, N., Caramés, B., Kawakami, Y., Amendt, B. A., Komiya, S., and Lotz, M. (2009) Chromatin protein HMGB2 regulates articular cartilage surface maintenance via beta-catenin pathway. Proc. Natl. Acad. Sci. USA 106, 16817-16822
Zhou, X., Hu, X., Xie, J., Xu, C., Xu, W., and Jiang, H. (2012) Exogenous high-mobility group box 1 protein injection improves cardiac function after myocardial infarction: involvement of Wnt signaling activation. J. Biomed. Biotechnol. 2012, 743879
Wang, S., Du, S., Lv, Y., Zhang, F., and Wang, W. (2019) MicroRNA-665 inhibits the oncogenicity of retinoblastoma by directly targeting high-mobility group box 1 and inactivating the Wnt/ β-catenin pathway. Cancer Manag. Res. 11, 3111-3123
Chen, R. J., Wu, P. H., Ho, C. T., Way, T. D., Pan, M. H., Chen, H. M., Ho, Y. S., and Wang, Y. J. (2017) P53-dependent downregulation of hTERT protein expression and telomerase activity induces senescence in lung cancer cells as a result of pterostilbene treatment. Cell Death Dis. 8, e2985
Trotman, L. C., and Pandolfi, P. P. (2003) PTEN and p53: who will get the upper hand? Cancer Cell 3, 97-99
Nakanishi, A., Kitagishi, Y., Ogura, Y., and Matsuda, S. (2014) The tumor suppressor PTEN interacts with p53 in hereditary cancer (Review). Int. J. Oncol. 44, 1813-1819
Redon, S., Reichenbach, P., and Lingner, J. (2010) The non-coding RNA TERRA is a natural ligand and direct inhibitor of human telomerase. Nucleic Acids Res. 38, 5797-5806
Bandaria, J. N., Qin, P., Berk, V., Chu, S., and Yildiz, A. (2016) Shelterin protects chromosome ends by compacting telomeric chromatin. Cell 164, 735-746
Ke, S., Zhou, F., Yang, H., Wei, Y., Gong, J., Mei, Z., Wu, L., Yu, H., and Zhou, Y. (2015) Downregulation of high mobility group box 1 modulates telomere homeostasis and increases the radiosensitivity of human breast cancer cells. Int. J. Oncol. 46, 1051-1058
Giavara, S., Kosmidou, E., Hande, M. P., Bianchi, M. E., Morgan, A., d'Adda di Fagagna, F., and Jackson, S. P. (2005) Yeast Nhp6A/B and mammalian Hmgb1 facilitate the maintenance of genome stability. Curr. Biol. 15, 68-72
Kang, R., Zhang, Q., Zeh H. J. III, Lotze, M. T., and Tang, D. (2013) HMGB1 in cancer: good, bad, orboth? Clin. Cancer Res. 19, 4046-4057
Liu, L., Yang, M., Kang, R., Wang, Z., Zhao, Y., Yu, Y., Xie, M., Yin, X., Livesey, K. M., Lotze, M. T., Tang, D., and Cao, L. (2011) HMGB1-induced autophagy promotes chemotherapy resistance in leukemia cells. Leukemia 25, 23-31
Tang, D., Loze, M.T., Zeh, H. J., and Kang, R. (2010) The redox protein HMGB1 regulates cell death and survival in cancer treatment. Autophagy 6, 1181-1183
Beurel, E., Grieco, S. F., and Jope, R. S. (2015) Glycogen synthase kinase-3 (GSK3): regulation, actions, and diseases. Pharmacol. Ther. 148, 114-131