SOFI Simulation Tool: A Software Package for Simulating and Testing Super-Resolution Optical Fluctuation Imaging

. 2016 ; 11 (9) : e0161602. [epub] 20160901

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27583365

Super-resolution optical fluctuation imaging (SOFI) allows one to perform sub-diffraction fluorescence microscopy of living cells. By analyzing the acquired image sequence with an advanced correlation method, i.e. a high-order cross-cumulant analysis, super-resolution in all three spatial dimensions can be achieved. Here we introduce a software tool for a simple qualitative comparison of SOFI images under simulated conditions considering parameters of the microscope setup and essential properties of the biological sample. This tool incorporates SOFI and STORM algorithms, displays and describes the SOFI image processing steps in a tutorial-like fashion. Fast testing of various parameters simplifies the parameter optimization prior to experimental work. The performance of the simulation tool is demonstrated by comparing simulated results with experimentally acquired data.

Zobrazit více v PubMed

Hell SW, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Optics letters. 1994;19(11):780–782. 10.1364/OL.19.000780 PubMed DOI

Huang B, Bates M, Zhuang X. Super resolution fluorescence microscopy. Annual Review of Biochemistry. 2010;78:993–1016. 10.1146/annurev.biochem.77.061906.092014 PubMed DOI PMC

Patterson G, Davidson M, Manley S, Lippincott-Schwartz J. Superresolution Imaging using Single-Molecule Localization. Amnu Rev Phys Chem. 2013;(3):345–367. PubMed PMC

Schermelleh L, Heintzmann R, Leonhardt H. A guide to super-resolution fluorescence microscopy. Journal of Cell Biology. 2010;190(2):165–175. 10.1083/jcb.201002018 PubMed DOI PMC

Vandenberg W, Leutenegger M, Lasser T, Hofkens J, Dedecker P. Diffraction-unlimited imaging: from pretty pictures to hard numbers. Cell and Tissue Research. 2015; 10.1007/s00441-014-2109-0 PubMed DOI

Abbe E. Beitrage zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Archiv für mikroskopische Anatomie. 1873;9(1):413–418. 10.1007/BF02956173 DOI

Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science (New York, NY). 2006;313(September):1642–1645. 10.1126/science.1127344 PubMed DOI

Rust MJ, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nature methods. 2006;3(10):793–795. 10.1038/nmeth929 PubMed DOI PMC

Dertinger T, Colyer R, Iyer G, Weiss S, Enderlein J. Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI). Proceedings of the National Academy of Sciences of the United States of America. 2009;106(52):22287–22292. 10.1073/pnas.0907866106 PubMed DOI PMC

Dertinger T, Colyer R, Vogel R, Enderlein J, Weiss S. Achieving increased resolution and more pixels with Superresolution Optical Fluctuation Imaging (SOFI). Optics express. 2010;18(18):18875–18885. 10.1364/OE.18.018875 PubMed DOI PMC

Geissbuehler S, Sharipov A, Godinat A, Bocchio NL, Sandoz PA, Huss A, et al. Live-cell multiplane three-dimensional super-resolution optical fluctuation imaging. Nature Communications. 2014;5:5830 10.1038/ncomms6830 PubMed DOI PMC

Geissbuehler S, Bocchio NL, Dellagiacoma C, Berclaz C, Leutenegger M, Lasser T. Mapping molecular statistics with balanced super-resolution optical fluctuation imaging (bSOFI). Optical Nanoscopy. 2012;1:4 10.1186/2192-2853-1-4 DOI

Mendel JM. Tutorial on higher-order statistics (spectra) in signal processing and system theory: theoretical results and some applications. Proceedings of the IEEE. 1991;79(3):278–305. 10.1109/5.75086 DOI

Scherer WF, Syverton JT, Gey GO. Studies on the propagation in vitro of poliomyelitis viruses. IV. Viral multiplication in a stable strain of human malignant epithelial cells (strain HeLa) derived from an epidermoid carcinoma of the cervix. The Journal of experimental medicine. 1953;97:695–710 10.1084/jem.97.5.695 PubMed DOI PMC

Brakemann T, Stiel AC, Weber G, Andresen M, Testa I, Grotjohann T, et al. A reversibly photoswitchable GFP-like protein with fluorescence excitation decoupled from switching. Nature Biotechnology. 2011;29(10):942–947. 10.1038/nbt.1952 PubMed DOI

Girsault A, Lukes T. MATLAB codes for SOFI optimization tool; 2016. http://lob.epfl.ch/sofitool/

Ovesný M, Křížek P, Borkovec J, Švindrych Z, Hagen GM. ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging. Bioinformatics (Oxford, England). 2014;30(16):2389–2390. 10.1093/bioinformatics/btu202 PubMed DOI PMC

Geissbuehler S, Dellagiacoma C, Lasser T. Comparison between SOFI and STORM. Biomedical optics express. 2011;2(3):408–420. 10.1364/BOE.2.000408 PubMed DOI PMC

Min J, Vonesch C, Kirshner H, Carlini L, Olivier N, Holden S, et al. FALCON: fast and unbiased reconstruction of high-density super-resolution microscopy data_ SI. Scientific reports. 2014;4:4577 10.1038/srep04577 PubMed DOI PMC

Dempsey GT, Vaughan JC, Chen KH, Bates M, Zhuang X. Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging. Nature Methods. 2011;8(12):1027–1036. 10.1038/nmeth.1768 PubMed DOI PMC

Šonka M, Hlaváč V, Boyle R. Image Processing Analysis and Machine Vision. 2nd ed. PWS Publishing. 1998;

Lukeš T, Hagen GM, Křížek P, Švindrych Z, Fliegel K, Klíma M. Comparison of image reconstruction methods for structured illumination microscopy. Proc SPIE 9129. 2014; PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...