Super-resolution fight club: assessment of 2D and 3D single-molecule localization microscopy software
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
Wellcome Trust - United Kingdom
MR/K01563X/1
Medical Research Council - United Kingdom
MR/K015826/1
Medical Research Council - United Kingdom
R15 GM128166
NIGMS NIH HHS - United States
PubMed
30962624
PubMed Central
PMC6684258
DOI
10.1038/s41592-019-0364-4
PII: 10.1038/s41592-019-0364-4
Knihovny.cz E-zdroje
- MeSH
- algoritmy MeSH
- počítačové zpracování obrazu metody MeSH
- software * MeSH
- zobrazení jednotlivé molekuly metody MeSH
- zobrazování trojrozměrné metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
With the widespread uptake of two-dimensional (2D) and three-dimensional (3D) single-molecule localization microscopy (SMLM), a large set of different data analysis packages have been developed to generate super-resolution images. In a large community effort, we designed a competition to extensively characterize and rank the performance of 2D and 3D SMLM software packages. We generated realistic simulated datasets for popular imaging modalities-2D, astigmatic 3D, biplane 3D and double-helix 3D-and evaluated 36 participant packages against these data. This provides the first broad assessment of 3D SMLM software and provides a holistic view of how the latest 2D and 3D SMLM packages perform in realistic conditions. This resource allows researchers to identify optimal analytical software for their experiments, allows 3D SMLM software developers to benchmark new software against the current state of the art, and provides insight into the current limits of the field.
Centre for Cancer Immunology University of Southampton Southampton UK
Department of Biomedical Engineering Texas A and M University College Station TX USA
Department of Imaging Physics Delft University of Technology Delft the Netherlands
Department of Radioelectronics FEE Czech Technical University Prague Czech Republic
Double Helix LLC Boulder CO USA
European Molecular Biology Laboratory Cell Biology and Biophysics Unit Heidelberg Germany
Harvard Center for Advanced Imaging Harvard University Cambridge MA USA
Interdisciplinary Institute for Neuroscience University of Bordeaux Bordeaux France
Istituto Italiano di Tecnologia Genova Italy
Laboratory of Experimental Biophysics École Polytechnique Fédérale de Lausanne Lausanne Switzerland
MRC Genome Damage and Stability Centre School of Life Sciences University of Sussex Brighton UK
UCCS Center for the Biofrontiers Institute University of Colorado Colorado Springs CO USA
University of Minnesota Informatics Institute University of Minnesota Twin Cities Minneapolis MN USA
Zobrazit více v PubMed
Betzig E et al. Imaging Intracellular Fluorescent Proteins at Nanometer Resolution. Science 313, 1642–1645 (2006). PubMed
Hess ST, Girirajan TPK & Mason MD Ultra-High Resolution Imaging by Fluorescence Photoactivation Localization Microscopy. Biophys. J. 91, 4258–4272 (2006). PubMed PMC
Rust MJ, Bates M & Zhuang X Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3, 793–795 (2006). PubMed PMC
Holden SJ, Uphoff S & Kapanidis AN DAOSTORM: an algorithm for high-density super-resolution microscopy. Nat Meth 8, 279–280 (2011). PubMed
Huang F, Schwartz SL, Byars JM & Lidke KA Simultaneous multiple-emitter fitting for single molecule super-resolution imaging. Biomed. Opt Express 2, 1377–1393 (2011). PubMed PMC
Huang F et al. Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms. Nat. Methods 10, 653–658 (2013). PubMed PMC
Sage D et al. Quantitative evaluation of software packages for single-molecule localization microscopy. Nat. Methods 12, 717–724 (2015). PubMed
Huang B, Jones SA, Brandenburg B & Zhuang X Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution. Nat Meth 5, 1047–1052 (2008). PubMed PMC
Shtengel G et al. Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure. Proc. Natl. Acad. Sci 106, 3125–3130 (2009). PubMed PMC
Huang B, Wang W, Bates M & Zhuang X Three-Dimensional Super-Resolution Imaging by Stochastic Optical Reconstruction Microscopy. Science 319, 810–813 (2008). PubMed PMC
Babcock H, Sigal YM & Zhuang X A high-density 3D localization algorithm for stochastic optical reconstruction microscopy. Opt. Nanoscopy 1, 1–10 (2012). PubMed PMC
Ovesný M, Křížek P, Švindrych Z & Hagen GM High density 3D localization microscopy using sparse support recovery. Opt. Express 22, 31263–31276 (2014). PubMed
Min J et al. 3D high-density localization microscopy using hybrid astigmatic/ biplane imaging and sparse image reconstruction. Biomed. Opt. Express 5, 3935–3948 (2014). PubMed PMC
Zhang S, Chen D & Niu H 3D localization of high particle density images using sparse recovery. Appl. Opt 54, 7859–7864 (2015). PubMed
Juette MF et al. Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples. Nat. Methods 5, 527–529 (2008). PubMed
Pavani SRP et al. Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function. Proc. Natl. Acad. Sci 106, 2995–2999 (2009). PubMed PMC
Collaboration through competition. Nat. Methods 11, 695 (2014). PubMed
Annibale P, Vanni S, Scarselli M, Rothlisberger U & Radenovic A Quantitative Photo Activated Localization Microscopy: Unraveling the Effects of Photoblinking. PLOS ONE 6, e22678 (2011). PubMed PMC
Li Y et al. Real-time 3D single-molecule localization using experimental point spread functions. Nat. Methods (2018). doi:10.1038/nmeth.4661 PubMed DOI PMC
Loot A , Valdmann A, Eltermann M, Kree M, Pärs M SMolPhot Software. Available at: https://bitbucket.org/ardiloot/ (Accessed: 28th January 2019)
Grover G, DeLuca K, Quirin S, DeLuca J & Piestun R Super-resolution photon-efficient imaging by nanometric double-helix point spread function localization of emitters (SPINDLE). Opt. Express 20, 26681–26695 (2012). PubMed PMC
Babcock HP & Zhuang X Analyzing Single Molecule Localization Microscopy Data Using Cubic Splines. Sci. Rep 7, 552 (2017). PubMed PMC
Boyd N, Schiebinger G & Recht B The Alternating Descent Conditional Gradient Method for Sparse Inverse Problems. SIAM J. Optim. 27, 616–639 (2017).
Henriques R et al. QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ. Nat Meth 7, 339–340 (2010). PubMed
Takeshima T, Takahashi T, Yamashita J, Okada Y & Watanabe S A multi-emitter fitting algorithm for potential live cell super-resolution imaging over a wide range of molecular densities. J. Microsc 271, 266–281 (2018). PubMed
Kechkar A, Nair D, Heilemann M, Choquet D & Sibarita J-B Real-Time Analysis and Visualization for Single-Molecule Based Super-Resolution Microscopy. PLOS ONE 8, e62918 (2013). PubMed PMC
Ovesný M, Křížek P, Borkovec J, Švindrych Z & Hagen GM ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging. Bioinformatics 30, 2389–2390 (2014). PubMed PMC
Soubies E, Blanc-Féraud L & Aubert G A Continuous Exact l0 Penalty (CEL0) for Least Squares Regularized Problem. SIAM J. Imaging Sci. 8, 1607–1639 (2015).
Babcock HP, Moffitt JR, Cao Y & Zhuang X Fast compressed sensing analysis for superresolution imaging using L1-homotopy. Opt. Express 21, 28583–28596 (2013). PubMed PMC
Min J et al. FALCON: fast and unbiased reconstruction of high-density super-resolution microscopy data. Sci. Rep. 4, 4577 (2014). PubMed PMC
Huang J, Sun M, Ma J & Chi Y Super-Resolution Image Reconstruction for High-Density Three-Dimensional Single-Molecule Microscopy. IEEE Trans. Comput. Imaging 3, 763–773 (2017).
Pan H, Simeoni M, Hurley P, Blu T & Vetterli M LEAP: Looking beyond pixels with continuous-space EstimAtion of Point sources. Astron. Astrophys. 608, A136 (2017).
Durisic N, Laparra-Cuervo L, Sandoval-Alvarez A, Borbely JS & Lakadamyali M Single-molecule evaluation of fluorescent protein photoactivation efficiency using an in vivo nanotemplate. Nat. Methods 11, 156–162 (2014). PubMed
Chao J, Ward ES & Ober RJ A software framework for the analysis of complex microscopy image data. IEEE Trans. Inf. Technol. Biomed. Publ. IEEE Eng. Med. Biol. Soc. 14, 1075–1087 (2010). PubMed PMC
Martens KJA, Bader AN, Baas S, Rieger B & Hohlbein J Phasor based single-molecule localization microscopy in 3D (pSMLM-3D): An algorithm for MHz localization rates using standard CPUs. J. Chem. Phys 148, 123311 (2017). PubMed
Marsh RJ et al. Artifact-free high-density localization microscopy analysis. Nat. Methods 15, 689 (2018). PubMed
Ouyang W, Aristov A, Lelek M, Hao X & Zimmer C Deep learning massively accelerates super-resolution localization microscopy. Nat. Biotechnol 36, 460 (2018). PubMed
Zhang P et al. Analyzing complex single-molecule emission patterns with deep learning. Nat. Methods 15, 913 (2018). PubMed PMC
Boyd N, Jonas E, Babcock HP & Recht B DeepLoco: Fast 3D Localization Microscopy Using Neural Networks. bioRxiv 267096 (2018). doi:10.1101/267096 DOI
Nehme E, Weiss LE, Michaeli T & Shechtman Y Deep-STORM: super-resolution single-molecule microscopy by deep learning. Optica 5, 458–464 (2018).
Cox S et al. Bayesian localization microscopy reveals nanoscale podosome dynamics. Nat. Methods 9, 195–200 (2012). PubMed PMC
Dertinger T, Colyer R, Iyer G, Weiss S & Enderlein J Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI). Proc. Natl. Acad. Sci 106, 22287–22292 (2009). PubMed PMC
Gustafsson N et al. Fast live-cell conventional fluorophore nanoscopy with ImageJ through super-resolution radial fluctuations. Nat. Commun 7, (2016). PubMed PMC
Gustafsson MGL Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. SHORT COMMUNICATION. J. Microsc 198, 82–87 (2000). PubMed
Carlini L & Manley S Live Intracellular Super-Resolution Imaging Using Site-Specific Stains. ACS Chem. Biol. 8, 2643–2648 (2013). PubMed
Shim S-H et al. Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes. Proc. Natl. Acad. Sci 109, 13978–13983 (2012). PubMed PMC
Hanser BM, Gustafsson MGL, Agard DA & Sedat JW Phase-retrieved pupil functions in wide-field fluorescence microscopy. J. Microsc 216, 32–48 (2004). PubMed
Izeddin I et al. PSF shaping using adaptive optics for three-dimensional single-molecule super-resolution imaging and tracking. Opt. Express 20, 4957–4967 (2012). PubMed
McGorty R, Schnitzbauer J, Zhang W & Huang B Correction of depth-dependent aberrations in 3D single-molecule localization and super-resolution microscopy. Opt. Lett 39, 275–278 (2014). PubMed PMC
Hirsch M, Wareham RJ, Martin-Fernandez ML, Hobson MP & Rolfe DJ A Stochastic Model for Electron Multiplication Charge-Coupled Devices – From Theory to Practice. PLOS ONE 8, e53671 (2013). PubMed PMC
Basden AG, Haniff CA & Mackay CD Photon counting strategies with low-light-level CCDs. Mon. Not. R. Astron. Soc 345, 985–991 (2003).
Carlini L, Holden SJ, Douglass KM & Manley S Correction of a Depth-Dependent Lateral Distortion in 3D Super-Resolution Imaging. PLoS ONE 10, e0142949 (2015). PubMed PMC
Baddeley D & Bewersdorf J Biological Insight from Super-Resolution Microscopy: What We Can Learn from Localization-Based Images. Annu. Rev. Biochem 87, 965–989 (2018). PubMed