Imaging Viral Infection by Fluorescence Microscopy: Focus on HIV-1 Early Stage

. 2021 Jan 30 ; 13 (2) : . [epub] 20210130

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33573241

During the last two decades, progresses in bioimaging and the development of various strategies to fluorescently label the viral components opened a wide range of possibilities to visualize the early phase of Human Immunodeficiency Virus 1 (HIV-1) life cycle directly in infected cells. After fusion of the viral envelope with the cell membrane, the viral core is released into the cytoplasm and the viral RNA (vRNA) is retro-transcribed into DNA by the reverse transcriptase. During this process, the RNA-based viral complex transforms into a pre-integration complex (PIC), composed of the viral genomic DNA (vDNA) coated with viral and host cellular proteins. The protective capsid shell disassembles during a process called uncoating. The viral genome is transported into the cell nucleus and integrates into the host cell chromatin. Unlike biochemical approaches that provide global data about the whole population of viral particles, imaging techniques enable following individual viruses on a single particle level. In this context, quantitative microscopy has brought original data shedding light on the dynamics of the viral entry into the host cell, the cytoplasmic transport, the nuclear import, and the selection of the integration site. In parallel, multi-color imaging studies have elucidated the mechanism of action of host cell factors implicated in HIV-1 viral cycle progression. In this review, we describe the labeling strategies used for HIV-1 fluorescence imaging and report on the main advancements that imaging studies have brought in the understanding of the infection mechanisms from the viral entry into the host cell until the provirus integration step.

Zobrazit více v PubMed

Chen B. Molecular Mechanism of HIV-1 Entry. Trends Microbiol. 2019;27:878–891. doi: 10.1016/j.tim.2019.06.002. PubMed DOI PMC

Hulme A.E., Hope T.J. Live Cell Imaging of Retroviral Entry. Annu. Rev. Virol. 2014;1:501–515. doi: 10.1146/annurev-virology-031413-085502. PubMed DOI

McDonald D., Vodicka M.A., Lucero G., Svitkina T.M., Borisy G.G., Emerman M., Hope T.J. Visualization of the intracellular behavior of HIV in living cells. J. Cell Biol. 2002;159:441–452. doi: 10.1083/jcb.200203150. PubMed DOI PMC

Dharan A., Talley S., Tripathi A., Mamede J.I., Majetschak M., Hope T., Campbell E.M. KIF5B and Nup358 Cooperatively Mediate the Nuclear Import of HIV-1 during Infection. PLoS Pathog. 2016;12:e1005700. doi: 10.1371/journal.ppat.1005700. PubMed DOI PMC

Malikov V., Da D.S.A.V., Jovasevic V., Bennett G., Vieira D.A.D.S.A., Schulte B., Diaz-Griffero F., Walsh D., Naghavi M.H. HIV-1 capsids bind and exploit the kinesin-1 adaptor FEZ1 for inward movement to the nucleus. Nat. Commun. 2015;6:1–13. doi: 10.1038/ncomms7660. PubMed DOI PMC

Lyonnais S., Gorelick R.J., Heniche-Boukhalfa F., Bouaziz S., Parissi V., Mouscadet J.-F., Restle T., Gatell J.M., Le Cam E., Mirambeau G. A protein ballet around the viral genome orchestrated by HIV-1 reverse transcriptase leads to an architectural switch: From nucleocapsid-condensed RNA to Vpr-bridged DNA. Virus Res. 2013;171:287–303. doi: 10.1016/j.virusres.2012.09.008. PubMed DOI PMC

Blanco-Rodriguez G., Gazi A., Monel B., Frabetti S., Scoca V., Mueller F., Schwartz O., Krijnse-Locker J., Charneau P., Di Nunzio F. Remodeling of the Core Leads HIV-1 Preintegration Complex into the Nucleus of Human Lymphocytes. J. Virol. 2020;94:00135-20. doi: 10.1128/JVI.00135-20. PubMed DOI PMC

Campbell E.M., Hope T.J. HIV-1 capsid: The multifaceted key player in HIV-1 infection. Nat. Rev. Genet. 2015;13:471–483. doi: 10.1038/nrmicro3503. PubMed DOI PMC

Arhel N.J. Revisiting HIV-1 uncoating. Retrovirology. 2010;7:96. doi: 10.1186/1742-4690-7-96. PubMed DOI PMC

Arhel N., Genovesio A., Kim K.-A., Miko S., Perret E., Olivo-Marin J.-C., Shorte S., Charneau P. Quantitative four-dimensional tracking of cytoplasmic and nuclear HIV-1 complexes. Nat. Methods. 2006;3:817–824. doi: 10.1038/nmeth928. PubMed DOI

Delaney M.K., Malikov V., Chai Q., Zhao G., Naghavi M.H. Distinct functions of diaphanous-related formins regulate HIV-1 uncoating and transport. Proc. Natl. Acad. Sci. USA. 2017;114:E6932–E6941. doi: 10.1073/pnas.1700247114. PubMed DOI PMC

Burdick R.C., Delviks-Frankenberry K., Chen J., Janaka S.K., Sastri J., Hu W.-S., Pathak V.K. Dynamics and regulation of nuclear import and nuclear movements of HIV-1 complexes. PLoS Pathog. 2017;13:e1006570. doi: 10.1371/journal.ppat.1006570. PubMed DOI PMC

Francis A.C., Melikyan G.B. Single HIV-1 Imaging Reveals Progression of Infection through CA-Dependent Steps of Docking at the Nuclear Pore, Uncoating, and Nuclear Transport. Cell Host Microbe. 2018;23:536–548.e6. doi: 10.1016/j.chom.2018.03.009. PubMed DOI PMC

Melikyan G.B. HIV entry: A game of hide-and-fuse? Curr. Opin. Virol. 2014;4:1–7. doi: 10.1016/j.coviro.2013.09.004. PubMed DOI PMC

Mamede J.I., Cianci G.C., Anderson M.R., Hope T. Early cytoplasmic uncoating is associated with infectivity of HIV-1. Proc. Natl. Acad. Sci. USA. 2017;114:E7169–E7178. doi: 10.1073/pnas.1706245114. PubMed DOI PMC

Xu H., Franks T., Gibson G.A., Huber K., Rahm N., Strambio-De-Castillia C., Luban J., Aiken C., Watkins S.C., Sluis-Cremer N., et al. Evidence for biphasic uncoating during HIV-1 infection from a novel imaging assay. Retrovirology. 2013;10:70. doi: 10.1186/1742-4690-10-70. PubMed DOI PMC

Francis A.C., Marin M., Shi J., Aiken C., Melikyan G.B. Time-Resolved Imaging of Single HIV-1 Uncoating In Vitro and in Living Cells. PLoS Pathog. 2016;12:e1005709. doi: 10.1371/journal.ppat.1005709. PubMed DOI PMC

Burdick R.C., Li C., Munshi M., Rawson J.M.O., Nagashima K., Hu W.-S., Pathak V.K. HIV-1 uncoats in the nucleus near sites of integration. Proc. Natl. Acad. Sci. USA. 2020;117:5486–5493. doi: 10.1073/pnas.1920631117. PubMed DOI PMC

Zila V., Mueller T.G., Laketa V., Mueller B., Kräusslich H.-G. Analysis of CA Content and CPSF6 Dependence of Early HIV-1 Replication Complexes in SupT1-R5 Cells. mBio. 2019;10 doi: 10.1128/mBio.02501-19. PubMed DOI PMC

Desai T.M., Marin M., Sood C., Shi J., Nawaz F., Aiken C., Melikyan G.B. Fluorescent protein-tagged Vpr dissociates from HIV-1 core after viral fusion and rapidly enters the cell nucleus. Retrovirology. 2015;12:88. doi: 10.1186/s12977-015-0215-z. PubMed DOI PMC

Borrenberghs D., Dirix L., De Wit F., Rocha S., Blokken J., De Houwer S., Gijsbers R., Christ F., Hofkens J., Hendrix J., et al. Dynamic Oligomerization of Integrase Orchestrates HIV Nuclear Entry. Sci. Rep. 2016;6:36485. doi: 10.1038/srep36485. PubMed DOI PMC

Zgheib S., Lysova I., Réal E., Dukhno O., Vauchelles R., Pires M., Anton H., Mély Y. Quantitative monitoring of the cytoplasmic release of NCp7 proteins from individual HIV-1 viral cores during the early steps of infection. Sci. Rep. 2019;9:945. doi: 10.1038/s41598-018-37150-0. PubMed DOI PMC

Ferns R.B., Tedder R.S., Weiss R.A. Characterization of Monoclonal Antibodies Against the Human Immunodeficiency Virus (HIV) gag Products and Their Use in Monitoring HIV Isolate Variation. J. Gen. Virol. 1987;68:1543–1551. doi: 10.1099/0022-1317-68-6-1543. PubMed DOI

Niedrig M., Rabanus J.-P., Stehr J.L., Gelderblom H.R., Pauli G. Monoclonal Antibodies Directed against Human Immunodeficiency Virus (HIV) gag Proteins with Specificity for Conserved Epitopes in HIV-1, HIV-2 and Simian Immunodeficiency Virus. J. Gen. Virol. 1988;69:2109–2114. doi: 10.1099/0022-1317-69-8-2109. PubMed DOI

Apostolski S., McAlarney T., Quattrini A., Levison S.W., Rosoklija G., Lugaressi A., Corbo M., Sadiq S.A., Lederman S., Hays A.P., et al. The gp 120 glycoprotein of human immunodeficiency virus type 1 binds to sensory ganglion neurons. Ann. Neurol. 1993;34:855–863. doi: 10.1002/ana.410340616. PubMed DOI

Stauber R.H., Rulong S., Palm G., Tarasova N.I. Direct Visualization of HIV-1 Entry: Mechanisms and Role of Cell Surface Receptors. Biochem. Biophys. Res. Commun. 1999;258:695–702. doi: 10.1006/bbrc.1999.0511. PubMed DOI

Ma Y., He Z., Tan T., Li W., Zhang Z., Song S., Zhang X., Hu Q., Zhou P., Wu Y., et al. Real-Time Imaging of Single HIV-1 Disassembly with Multicolor Viral Particles. ACS Nano. 2016;10:6273–6282. doi: 10.1021/acsnano.6b02462. PubMed DOI

Bönisch I.Z., Dirix L., Lemmens V., Borrenberghs D., De Wit F., Vernaillen F., Rocha S., Christ F., Hendrix J., Hofkens J., et al. Capsid-Labelled HIV to Investigate the Role of Capsid during Nuclear Import and Integration. J. Virol. 2020;94 doi: 10.1128/jvi.01024-19. PubMed DOI PMC

Hulme A.E., Kelley Z.L., Foley D., Hope T.J. Complementary Assays Reveal a Low Level of CA Associated with Viral Complexes in the Nuclei of HIV-1-Infected Cells. J. Virol. 2015;89:5350–5361. doi: 10.1128/JVI.00476-15. PubMed DOI PMC

Albanese A., Arosio D., Terreni M., Cereseto A. HIV-1 Pre-Integration Complexes Selectively Target Decondensed Chromatin in the Nuclear Periphery. PLoS ONE. 2008;3:e2413. doi: 10.1371/journal.pone.0002413. PubMed DOI PMC

Francis A.C., Di Primio C., Quercioli V., Valentini P., Boll A., Girelli G., Demichelis F., Arosio D., Cereseto A. Second Generation Imaging of Nuclear/Cytoplasmic HIV-1 Complexes. AIDS Res. Hum. Retrovir. 2014;30:717–726. doi: 10.1089/aid.2013.0277. PubMed DOI PMC

Sood C., Francis A.C., Desai T.M., Melikyan G.B. An improved labeling strategy enables automated detection of single-virus fusion and assessment of HIV-1 protease activity in single virions. J. Biol. Chem. 2017;292:20196–20207. doi: 10.1074/jbc.M117.818088. PubMed DOI PMC

Hubner W., Chen P., Del Portillo A., Liu Y., Gordon R.E., Chen B.K. Sequence of Human Immunodeficiency Virus Type 1 (HIV-1) Gag Localization and Oligomerization Monitored with Live Confocal Imaging of a Replication-Competent, Fluorescently Tagged HIV-1. J. Virol. 2007;81:12596–12607. doi: 10.1128/jvi.01088-07. PubMed DOI PMC

Padilla-Parra S., Marin M., Gahlaut N., Suter R., Kondo N., Melikyan G.B. Fusion of Mature HIV-1 Particles Leads to Complete Release of a Gag-GFP-Based Content Marker and Raises the Intraviral pH. PLoS ONE. 2013;8:e71002. doi: 10.1371/journal.pone.0071002. PubMed DOI PMC

Pereira C.F., Ellenberg P.C., Jones K.L., Fernandez T.L., Smyth R.P., Hawkes D.J., Hijnen M., Vivet-Boudou V., Marquet R., Johnson I., et al. Labeling of Multiple HIV-1 Proteins with the Biarsenical-Tetracysteine System. PLoS ONE. 2011;6:e17016. doi: 10.1371/journal.pone.0017016. PubMed DOI PMC

Lysova I., Spiegelhalter C., Réal E., Zgheib S., Anton H., Mély Y. ReAsH/tetracystein-based correlative light-electron microscopy for HIV-1 imaging during the early stages of infection. Methods Appl. Fluoresc. 2018;6:045001. doi: 10.1088/2050-6120/aacec1. PubMed DOI

Burdick R.C., Hu W.-S., Pathak V.K. Nuclear import of APOBEC3F-labeled HIV-1 preintegration complexes. Proc. Natl. Acad. Sci. USA. 2013;110:E4780–E4789. doi: 10.1073/pnas.1315996110. PubMed DOI PMC

Chin C.R., Perreira J.M., Savidis G., Portmann J.M., Aker A.M., Feeley E.M., Smith M.C., Brass A.L. Direct Visualization of HIV-1 Replication Intermediates Shows that Capsid and CPSF6 Modulate HIV-1 Intra-nuclear Invasion and Integration. Cell Rep. 2015;13:1717–1731. doi: 10.1016/j.celrep.2015.10.036. PubMed DOI PMC

Puray-Chavez M., Tedbury P.R., Huber A.D., Ukah O.B., Yapo V., Liu D., Ji J., Wolf J.J., Engelman A.N., Sarafianos S.G. Multiplex single-cell visualization of nucleic acids and protein during HIV infection. Nat. Commun. 2017;8:1–11. doi: 10.1038/s41467-017-01693-z. PubMed DOI PMC

Stultz R.D., Cenker J.J., McDonald D. Imaging HIV-1 Genomic DNA from Entry through Productive Infection. J. Virol. 2017;91 doi: 10.1128/JVI.00034-17. PubMed DOI PMC

Peng K., Muranyi W., Glass B., Laketa V., Yant S.R., Tsai L., Cihlar T., Müller B., Kräusslich H.-G. Quantitative microscopy of functional HIV post-entry complexes reveals association of replication with the viral capsid. eLife. 2014;3:e04114. doi: 10.7554/eLife.04114. PubMed DOI PMC

Oum Y.H., Desai T.M., Marin M., Melikyan G.B. Click labeling of unnatural sugars metabolically incorporated into viral envelope glycoproteins enables visualization of single particle fusion. J. Virol. Methods. 2016;233:62–71. doi: 10.1016/j.jviromet.2016.02.016. PubMed DOI PMC

Jouvenet N., Simon S.M., Bieniasz P.D. Imaging the interaction of HIV-1 genomes and Gag during assembly of individual viral particles. Proc. Natl. Acad. Sci. USA. 2009;106:19114–19119. doi: 10.1073/pnas.0907364106. PubMed DOI PMC

Li Q., Li W., Yin W., Guo J., Zhang Z.-P., Zeng D., Zhang X., Wu Y., Zhang X.-E., Cui Z. Single-Particle Tracking of Human Immunodeficiency Virus Type 1 Productive Entry into Human Primary Macrophages. ACS Nano. 2017;11:3890–3903. doi: 10.1021/acsnano.7b00275. PubMed DOI

Miyauchi K., Kim Y., Latinovic O., Morozov V., Melikyan G.B. HIV Enters Cells via Endocytosis and Dynamin-Dependent Fusion with Endosomes. Cell. 2009;137:433–444. doi: 10.1016/j.cell.2009.02.046. PubMed DOI PMC

Di Primio C., Quercioli V., Allouch A., Gijsbers R., Christ F., Debyser Z., Arosio D., Cereseto A. Single-Cell Imaging of HIV-1 Provirus (SCIP) Proc. Natl. Acad. Sci. USA. 2013;110:5636–5641. doi: 10.1073/pnas.1216254110. PubMed DOI PMC

Ma Y., Wang M., Li W., Zhang Z., Zhang X., Wu G., Tan T., Cui Z., Zhang M. Live Visualization of HIV-1 Proviral DNA Using a Dual-Color-Labeled CRISPR System. Anal. Chem. 2017;89:12896–12901. doi: 10.1021/acs.analchem.7b03584. PubMed DOI

Campbell E.M., Perez O., Melar M., Hope T.J. Labeling HIV-1 virions with two fluorescent proteins allows identification of virions that have productively entered the target cell. Virology. 2007;360:286–293. doi: 10.1016/j.virol.2006.10.025. PubMed DOI PMC

Markosyan R.M., Cohen F.S., Melikyan G.B. Time-resolved Imaging of HIV-1 Env-mediated Lipid and Content Mixing between a Single Virion and Cell Membrane. Mol. Biol. Cell. 2005;16:5502–5513. doi: 10.1091/mbc.e05-06-0496. PubMed DOI PMC

Miyauchi K., Marin M., Melikyan G.B. Visualization of retrovirus uptake and delivery into acidic endosomes. Biochem. J. 2011;434:559–569. doi: 10.1042/BJ20101588. PubMed DOI PMC

Nathan L., Daniel S. Single Virion Tracking Microscopy for the Study of Virus Entry Processes in Live Cells and Biomimetic Platforms. Adv. Exp. Med. Biol. 2019;1215:13–43. doi: 10.1007/978-3-030-14741-9_2. PubMed DOI PMC

Cavrois M., De Noronha C., Greene W.C. A sensitive and specific enzyme-based assay detecting HIV-1 virion fusion in primary T lymphocytes. Nat. Biotechnol. 2002;20:1151–1154. doi: 10.1038/nbt745. PubMed DOI

Andres I.C., Padilla-Parra S. Quantitative FRET-FLIM-BlaM to Assess the Extent of HIV-1 Fusion in Live Cells. Viruses. 2020;12:206. doi: 10.3390/v12020206. PubMed DOI PMC

Yin W., Li W., Li Q., Liu Y., Liu J., Ren M., Ma Y., Zhang Z., Zhang X., Wu Y., et al. Real-time imaging of individual virion-triggered cortical actin dynamics for human immunodeficiency virus entry into resting CD4 T cells. Nanoscale. 2019;12:115–129. doi: 10.1039/C9NR07359K. PubMed DOI

Herold N., Anders-Osswein M., Glass B., Eckhardt M., Müller B., Kräusslich H.-G., Anders-Ößwein M. HIV-1 Entry in SupT1-R5, CEM-ss, and Primary CD4+ T Cells Occurs at the Plasma Membrane and Does Not Require Endocytosis. J. Virol. 2014;88:13956–13970. doi: 10.1128/JVI.01543-14. PubMed DOI PMC

Fortin J.F., Cantin R., Lamontagne G., Tremblay M. Host-derived ICAM-1 glycoproteins incorporated on human immunodeficiency virus type 1 are biologically active and enhance viral infectivity. J. Virol. 1997;71:3588–3596. doi: 10.1128/JVI.71.5.3588-3596.1997. PubMed DOI PMC

Sood C., Marin M., Mason C.S., Melikyan G.B. Visualization of Content Release from Cell Surface-Attached Single HIV-1 Particles Carrying an Extra-Viral Fluorescent pH-Sensor. PLoS ONE. 2016;11:e0148944. doi: 10.1371/journal.pone.0148944. PubMed DOI PMC

Jakobsdottir G.M., Iliopoulou M., Nolan R., Alvarez L., Compton A.A., Padilla-Parra S. On the Whereabouts of HIV-1 Cellular Entry and Its Fusion Ports. Trends Mol. Med. 2017;23:932–944. doi: 10.1016/j.molmed.2017.08.005. PubMed DOI

Valle-Casuso J.C., Angin M., Volant S., Passaes C., Monceaux V., Mikhailova A., Bourdic K., Avettand-Fenoel V., Boufassa F., Sitbon M., et al. Cellular Metabolism Is a Major Determinant of HIV-1 Reservoir Seeding in CD4+ T Cells and Offers an Opportunity to Tackle Infection. Cell Metab. 2019;29:611.e5–626.e5. doi: 10.1016/j.cmet.2018.11.015. PubMed DOI

A Coomer C., Carlon-Andres I., Iliopoulou M., Dustin M.L., Compeer E.B., Compton A.A., Padilla-Parra S. Single-cell glycolytic activity regulates membrane tension and HIV-1 fusion. PLoS Pathog. 2020;16:e1008359. doi: 10.1371/journal.ppat.1008359. PubMed DOI PMC

Li W., Yu X., Xie F., Zhang B., Shao S., Geng C., Aziz A.U.R., Liao X., Liu B. A Membrane-Bound Biosensor Visualizes Shear Stress-Induced Inhomogeneous Alteration of Cell Membrane Tension. iScience. 2018;7:180–190. doi: 10.1016/j.isci.2018.09.002. PubMed DOI PMC

Yang S.-T., Kreutzberger A.J.B., Kiessling V., Ganser-Pornillos B.K., White J.M., Tamm L.K. HIV virions sense plasma membrane heterogeneity for cell entry. Sci. Adv. 2017;3:e1700338. doi: 10.1126/sciadv.1700338. PubMed DOI PMC

Mitra S., Shanmugapriya S., Da Silva E.S., Naghavi M.H. HIV-1 Exploits CLASP2 To Induce Microtubule Stabilization and Facilitate Virus Trafficking to the Nucleus. J. Virol. 2020;94 doi: 10.1128/JVI.00404-20. PubMed DOI PMC

Rust M.J., Bates M., Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) Nat. Methods. 2006;3:793–796. doi: 10.1038/nmeth929. PubMed DOI PMC

Pereira C., Rossy J., Owen D.M., Mak J., Gaus K. HIV taken by STORM: Super-resolution fluorescence microscopy of a viral infection. Virol. J. 2012;9:84. doi: 10.1186/1743-422X-9-84. PubMed DOI PMC

Briggs J.A.G., Kräusslich H.-G. The Molecular Architecture of HIV. J. Mol. Biol. 2011;410:491–500. doi: 10.1016/j.jmb.2011.04.021. PubMed DOI

Miller M.D., Farnet C.M., Bushman F.D. Human immunodeficiency virus type 1 preintegration complexes: Studies of organization and composition. J. Virol. 1997;71:5382–5390. doi: 10.1128/JVI.71.7.5382-5390.1997. PubMed DOI PMC

Panté N., Kann M. Nuclear Pore Complex Is Able to Transport Macromolecules with Diameters of ∼39 nm. Mol. Biol. Cell. 2002;13:425–434. doi: 10.1091/mbc.01-06-0308. PubMed DOI PMC

Lelek M., Di Nunzio F., Henriques R., Charneau P., Arhel N.J., Zimmer C. Superresolution imaging of HIV in infected cells with FlAsH-PALM. Proc. Natl. Acad. Sci. USA. 2012;109:8564–8569. doi: 10.1073/pnas.1013267109. PubMed DOI PMC

Betzig E., Patterson G.H., Sougrat R., Lindwasser O.W., Olenych S., Bonifacino J.S., Davidson M.W., Lippincott-Schwartz J., Hess H.F. Imaging Intracellular Fluorescent Proteins at Nanometer Resolution. Science. 2006;313:1642–1645. doi: 10.1126/science.1127344. PubMed DOI

Diaz-Griffero F. The Role of TNPO3 in HIV-1 Replication. Mol. Biol. Int. 2012;2012:868597. doi: 10.1155/2012/868597. PubMed DOI PMC

Ciuffi A., Llano M., Poeschla E., Hoffmann C., Leipzig J., Shinn P., Ecker J.R., Bushman F. A role for LEDGF/p75 in targeting HIV DNA integration. Nat. Med. 2005;11:1287–1289. doi: 10.1038/nm1329. PubMed DOI

Francis A.C., Marin M., Prellberg M.J., Palermino-Rowland K., Melikyan G.B. HIV-1 Uncoating and Nuclear Import Precede the Completion of Reverse Transcription in Cell Lines and in Primary Macrophages. Viruses. 2020;12:1234. doi: 10.3390/v12111234. PubMed DOI PMC

Dharan A., Bachmann N., Talley S., Zwikelmaier V., Campbell E.M. Nuclear pore blockade reveals that HIV-1 completes reverse transcription and uncoating in the nucleus. Nat. Microbiol. 2020;5:1–8. doi: 10.1038/s41564-020-0735-8. PubMed DOI PMC

Bejarano D.A., Peng K., Laketa V., Boerner K., Jost K.L., Lucic B., Glass B., Lusic M., Mueller B., Kräusslich H.-G. HIV-1 nuclear import in macrophages is regulated by CPSF6-capsid interactions at the nuclear pore complex. eLife. 2019;8 doi: 10.7554/eLife.41800. PubMed DOI PMC

Francis A.C., Marin M., Singh P.K., Achuthan V., Prellberg M.J., Palermino-Rowland K., Lan S., Tedbury P.R., Sarafianos S.G., Engelman A.N., et al. HIV-1 replication complexes accumulate in nuclear speckles and integrate into speckle-associated genomic domains. Nat. Commun. 2020;11:3505. doi: 10.1038/s41467-020-17256-8. PubMed DOI PMC

Mattei S., Glass B., Hagen W.J.H., Kräusslich H.-G., Briggs J.A.G. The structure and flexibility of conical HIV-1 capsids determined within intact virions. Science. 2016;354:1434–1437. doi: 10.1126/science.aah4972. PubMed DOI

Ganser-Pornillos B.K., Cheng A., Yeager M. Structure of Full-Length HIV-1 CA: A Model for the Mature Capsid Lattice. Cell. 2007;131:70–79. doi: 10.1016/j.cell.2007.08.018. PubMed DOI

Hulme A.E., Perez O., Hope T. Complementary assays reveal a relationship between HIV-1 uncoating and reverse transcription. Proc. Natl. Acad. Sci. USA. 2011;108:9975–9980. doi: 10.1073/pnas.1014522108. PubMed DOI PMC

Rankovic S., Varadarajan J., Ramalho R., Aiken C., Rousso I. Reverse Transcription Mechanically Initiates HIV-1 Capsid Disassembly. J. Virol. 2017;91:e00289-17. doi: 10.1128/JVI.00289-17. PubMed DOI PMC

Strunze S., Engelke M.F., Wang I.-H., Puntener D., Boucke K., Schleich S., Way M., Schoenenberger P., Burckhardt C.J., Greber U.F. Kinesin-1-Mediated Capsid Disassembly and Disruption of the Nuclear Pore Complex Promote Virus Infection. Cell Host Microbe. 2011;10:210–223. doi: 10.1016/j.chom.2011.08.010. PubMed DOI

Revelo N.H., Kamin D., Truckenbrodt S., Wong A.B., Reuter-Jessen K., Reisinger E., Moser T., Rizzoli S.O. A new probe for super-resolution imaging of membranes elucidates trafficking pathways. J. Cell Biol. 2014;205:591–606. doi: 10.1083/jcb.201402066. PubMed DOI PMC

Jayappa K.D., Ao Z., Yao X. The HIV-1 passage from cytoplasm to nucleus: The process involving a complex exchange between the components of HIV-1 and cellular machinery to access nucleus and successful integration. Int. J. Biochem. Mol. Boil. 2012;3:70–85. PubMed PMC

Di Nunzio F., Danckaert A., Fricke T., Perez P., Fernandez J., Perret E., Roux P., Shorte S., Charneau P., Diaz-Griffero F., et al. Human Nucleoporins Promote HIV-1 Docking at the Nuclear Pore, Nuclear Import and Integration. PLoS ONE. 2012;7:e46037. doi: 10.1371/journal.pone.0046037. PubMed DOI PMC

Di Nunzio F., Fricke T., Miccio A., Valle-Casuso J.C., Perez P., Souque P., Rizzi E., Severgnini M., Mavilio F., Charneau P., et al. Nup153 and Nup98 bind the HIV-1 core and contribute to the early steps of HIV-1 replication. Virology. 2013;440:8–18. doi: 10.1016/j.virol.2013.02.008. PubMed DOI PMC

Bin Hamid F., Kim J., Shin C.-G. Cellular and viral determinants of retroviral nuclear entry. Can. J. Microbiol. 2016;62:1–15. doi: 10.1139/cjm-2015-0350. PubMed DOI

Matreyek K.A., Yücel S.S., Li X., Engelman A.N. Nucleoporin NUP153 Phenylalanine-Glycine Motifs Engage a Common Binding Pocket within the HIV-1 Capsid Protein to Mediate Lentiviral Infectivity. PLoS Pathog. 2013;9:e1003693. doi: 10.1371/journal.ppat.1003693. PubMed DOI PMC

Buffone C., Martinez-Lopez A., Fricke T., Opp S., Severgnini M., Cifola I., Petiti L., Frabetti S., Skorupka K., Zadrozny K.K., et al. Nup153 Unlocks the Nuclear Pore Complex for HIV-1 Nuclear Translocation in Nondividing Cells. J. Virol. 2018;92 doi: 10.1128/JVI.00648-18. PubMed DOI PMC

De Iaco A., Santoni F., Vannier A., Guipponi M., Antonarakis S.E., Luban J. TNPO3 protects HIV-1 replication from CPSF6-mediated capsid stabilization in the host cell cytoplasm. Retrovirology. 2013;10:20. doi: 10.1186/1742-4690-10-20. PubMed DOI PMC

Demeulemeester J., Blokken J., De Houwer S., Dirix L., Klaassen H., Marchand A., Chaltin P., Christ F., Debyser Z. Inhibitors of the integrase-transportin-SR2 interaction block HIV nuclear import. Retrovirology. 2018;15:5. doi: 10.1186/s12977-018-0389-2. PubMed DOI PMC

Fernandez J., Machado A.K., Lyonnais S., Chamontin C., Gärtner K., Léger T., Henriquet C., Garcia C., Portilho D.M., Pugnière M., et al. Transportin-1 binds to the HIV-1 capsid via a nuclear localization signal and triggers uncoating. Nat. Microbiol. 2019;4:1840–1850. doi: 10.1038/s41564-019-0575-6. PubMed DOI

Marini B., Kertesz-Farkas A., Ali H., Lucic B., Lisek K., Manganaro L., Pongor S., Luzzati R., Recchia A., Mavilio F., et al. Nuclear architecture dictates HIV-1 integration site selection. Nat. Cell Biol. 2015;521:227–231. doi: 10.1038/nature14226. PubMed DOI

Quercioli V., Di Primio C., Casini A., Mulder L.C.F., Vranckx L.S., Borrenberghs D., Gijsbers R., Debyser Z., Cereseto A. Comparative Analysis of HIV-1 and Murine Leukemia Virus Three-Dimensional Nuclear Distributions. J. Virol. 2016;90:5205–5209. doi: 10.1128/JVI.03188-15. PubMed DOI PMC

Lelek M., Casartelli N., Pellin D., Rizzi E., Souque P., Severgnini M., Di Serio C., Fricke T., Diaz-Griffero F., Zimmer C., et al. Chromatin organization at the nuclear pore favours HIV replication. Nat. Commun. 2015;6:6483. doi: 10.1038/ncomms7483. PubMed DOI PMC

Fricke T., Diaz-Griffero F. HIV-1 Capsid Stabilization Assay. Adv. Struct. Saf. Stud. 2016;1354:39–47. doi: 10.1007/978-1-4939-3046-3_3. PubMed DOI PMC

Lee K., Ambrose Z., Martin T.D., Oztop I., Mulky A., Julias J.G., Vandegraaff N., Baumann J.G., Wang R., Yuen W., et al. Flexible Use of Nuclear Import Pathways by HIV-1. Cell Host Microbe. 2010;7:221–233. doi: 10.1016/j.chom.2010.02.007. PubMed DOI PMC

Müller B., Heilemann M. Shedding new light on viruses: Super-resolution microscopy for studying human immunodeficiency virus. Trends Microbiol. 2013;21:522–533. doi: 10.1016/j.tim.2013.06.010. PubMed DOI

Chojnacki J., Eggeling C. Super-resolution fluorescence microscopy studies of human immunodeficiency virus. Retrovirology. 2018;15:1–16. doi: 10.1186/s12977-018-0424-3. PubMed DOI PMC

Juillerat A., Heinis C., Sielaff I., Barnikow J., Jaccard H., Kunz B., Terskikh A., Johnsson K. Engineering Substrate Specificity of O6-Alkylguanine-DNA Alkyltransferase for Specific Protein Labeling in Living Cells. ChemBioChem. 2005;6:1263–1269. doi: 10.1002/cbic.200400431. PubMed DOI

Gautier A., Juillerat A., Heinis C., Corrêa I.R., Kindermann M., Beaufils F., Johnsson K. An Engineered Protein Tag for Multiprotein Labeling in Living Cells. Chem. Biol. 2008;15:128–136. doi: 10.1016/j.chembiol.2008.01.007. PubMed DOI

Vicidomini G., Bianchini P., Diaspro A. STED super-resolved microscopy. Nat. Methods. 2018;15:173–182. doi: 10.1038/nmeth.4593. PubMed DOI

Sahl S.J., Hell S.W., Bille J.F. High-Resolution 3D Light Microscopy with STED and RESOLFT. High Resolut. Imaging Microsc. Ophthalmol. 2019:3–32. PubMed

Ries J. SMAP: A modular super-resolution microscopy analysis platform for SMLM data. Nat. Methods. 2020;17:1–2. doi: 10.1038/s41592-020-0938-1. PubMed DOI

Sage D., Pham T.-A., Babcock H., Lukes T., Pengo T., Chao J., Velmurugan R., Herbert A., Agrawal A., Colabrese S., et al. Super-resolution fight club: Assessment of 2D and 3D single-molecule localization microscopy software. Nat. Methods. 2019;16:387–395. doi: 10.1038/s41592-019-0364-4. PubMed DOI PMC

Blanc T., El Beheiry M., Caporal C., Masson J.-B., Hajj B. Genuage: Visualize and analyze multidimensional single-molecule point cloud data in virtual reality. Nat. Methods. 2020;17:1100–1102. doi: 10.1038/s41592-020-0946-1. PubMed DOI

Schnitzbauer J., Strauss M.T., Schlichthaerle T., Schueder F., Jungmann R. Super-resolution microscopy with DNA-PAINT. Nat. Protoc. 2017;12:1198–1228. doi: 10.1038/nprot.2017.024. PubMed DOI

Khater I.M., Nabi I.R., Hamarneh G. A Review of Super-Resolution Single-Molecule Localization Microscopy Cluster Analysis and Quantification Methods. Gene Expr. Patterns. 2020;1:100038. doi: 10.1016/j.patter.2020.100038. PubMed DOI PMC

Manley S., Gillette J.M., Patterson G.H., Shroff H., Hess H.F., Betzig E., Lippincott-Schwartz J. High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nat. Methods. 2008;5:155–157. doi: 10.1038/nmeth.1176. PubMed DOI

Jun J.V., Chenoweth D.M., Petersson E.J. Rational design of small molecule fluorescent probes for biological applications. Org. Biomol. Chem. 2020;18:5747–5763. doi: 10.1039/D0OB01131B. PubMed DOI PMC

AshokKumar P., Ashoka A.H., Collot M., Das A., Klymchenko A.S. A fluorogenic BODIPY molecular rotor as an apoptosis marker. Chem. Commun. 2019;55:6902–6905. doi: 10.1039/C9CC03242H. PubMed DOI

Collot M., AshokKumar P., Anton H., Boutant E., Faklaris O., Galli T., Mély Y., Danglot L., Klymchenko A.S. MemBright: A Family of Fluorescent Membrane Probes for Advanced Cellular Imaging and Neuroscience. Cell Chem. Biol. 2019;26:600.e7–614.e7. doi: 10.1016/j.chembiol.2019.01.009. PubMed DOI

Danylchuk D.I., Moon S., Xu K., Klymchenko A.S. Switchable Solvatochromic Probes for Live-Cell Super-resolution Imaging of Plasma Membrane Organization. Angew. Chem. Int. Ed. 2019;58:14920–14924. doi: 10.1002/anie.201907690. PubMed DOI

Despras G., Zamaleeva A.I., Dardevet L., Tisseyre C., Magalhaes J.G., Garner C., Waard M., Amigorena S., Feltz A., Mallet J.-M., et al. H-Rubies, a new family of red emitting fluorescent pH sensors for living cells. Chem. Sci. 2015;6:5928–5937. doi: 10.1039/C5SC01113B. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

The Impact of Lens Epithelium-Derived Growth Factor p75 Dimerization on Its Tethering Function

. 2024 Jan 25 ; 13 (3) : . [epub] 20240125

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...