The Impact of Lens Epithelium-Derived Growth Factor p75 Dimerization on Its Tethering Function
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
IDO/12/008-3E130241
KU Leuven Interdisciplinair onderzoeksprogramma (IDO) Program Grant
GA 22-03028S
GACR
CZ.02.1.01/0.0/0.0/16_019/0000729
European Regional Development Fund; OP RDE; the project Chemical Biology for Drugging Undruggable Targets (ChemBioDrug)
1S17818N
Research Foundation - Flanders
PubMed
38334618
PubMed Central
PMC10854676
DOI
10.3390/cells13030227
PII: cells13030227
Knihovny.cz E-zdroje
- Klíčová slova
- DNA-binding protein, DNA-induced protein binding, LEDGF/p75, chromatin structure, protein dynamic, protein–DNA interaction, protein–protein interaction,
- MeSH
- chromatin * MeSH
- dimerizace MeSH
- DNA metabolismus MeSH
- lidé MeSH
- mezibuněčné signální peptidy a proteiny * metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chromatin * MeSH
- DNA MeSH
- lens epithelium-derived growth factor MeSH Prohlížeč
- mezibuněčné signální peptidy a proteiny * MeSH
The transcriptional co-activator lens epithelium-derived growth factor/p75 (LEDGF/p75) plays an important role in the biology of the cell and in several human diseases, including MLL-rearranged acute leukemia, autoimmunity, and HIV-1 infection. In both health and disease, LEDGF/p75 functions as a chromatin tether that interacts with proteins such as MLL1 and HIV-1 integrase via its integrase-binding domain (IBD) and with chromatin through its N-terminal PWWP domain. Recently, dimerization of LEDGF/p75 was shown, mediated by a network of electrostatic contacts between amino acids from the IBD and the C-terminal α6-helix. Here, we investigated the functional impact of LEDGF/p75 variants on the dimerization using biochemical and cellular interaction assays. The data demonstrate that the C-terminal α6-helix folds back in cis on the IBD of monomeric LEDGF/p75. We discovered that the presence of DNA stimulates LEDGF/p75 dimerization. LEDGF/p75 dimerization enhances binding to MLL1 but not to HIV-1 integrase, a finding that was observed in vitro and validated in cell culture. Whereas HIV-1 replication was not dependent on LEDGF/p75 dimerization, colony formation of MLLr-dependent human leukemic THP-1 cells was. In conclusion, our data indicate that intricate changes in the quaternary structure of LEDGF/p75 modulate its tethering function.
Zobrazit více v PubMed
Ge H., Si Y., Roeder R.G. Isolation of CDNAs Encoding Novel Transcription Coactivators P52 and P75 Reveals an Alternate Regulatory Mechanism of Transcriptional Activation. EMBO J. 1998;17:6723–6729. doi: 10.1093/emboj/17.22.6723. PubMed DOI PMC
Shinohara T., Singh D.P., Fatma N. LEDGF, a Survival Factor, Activates Stress-Related Genes. Prog. Retin. Eye Res. 2002;21:341–358. doi: 10.1016/S1350-9462(02)00007-1. PubMed DOI
Sutherland H.G., Newton K., Brownstein D.G., Holmes M.C., Kress C., Semple C.A., Bickmore W.A. Disruption of Ledgf/Psip1 Results in Perinatal Mortality and Homeotic Skeletal Transformations. Mol. Cell. Biol. 2006;26:7201–7210. doi: 10.1128/MCB.00459-06. PubMed DOI PMC
Daugaard M., Baude A., Fugger K., Povlsen L.K., Beck H., Sørensen C.S., Petersen N.H.T., Sorensen P.H.B., Lukas C., Bartek J., et al. LEDGF (P75) Promotes DNA-End Resection and Homologous Recombination. Nat. Struct. Mol. Biol. 2012;19:803–810. doi: 10.1038/nsmb.2314. PubMed DOI
Liedtke V., Schröder C., Roggenbuck D., Weiss R., Stohwasser R., Schierack P., Rödiger S., Schenk L. LEDGF/P75 Is Required for an Efficient Dna Damage Response. Int. J. Mol. Sci. 2021;22:5866. doi: 10.3390/ijms22115866. PubMed DOI PMC
LeRoy G., Oksuz O., Descostes N., Aoi Y., Ganai R.A., Kara H.O., Yu J.-R., Lee C.-H., Stafford J., Shilatifard A., et al. LEDGF and HDGF2 Relieve the Nucleosome-Induced Barrier to Transcription in Differentiated Cells. Sci. Adv. 2019;5:eaay3068. doi: 10.1126/sciadv.aay3068. PubMed DOI PMC
De Rijck J., Vandekerckhove L., Gijsbers R., Hombrouck A., Hendrix J., Vercammen J., Engelborghs Y., Christ F., Debyser Z. Overexpression of the Lens Epithelium-Derived Growth Factor/P75 Integrase Binding Domain Inhibits Human Immunodeficiency Virus Replication. J. Virol. 2006;80:11498–11509. doi: 10.1128/JVI.00801-06. PubMed DOI PMC
Yokoyama A., Cleary M.L. Menin Critically Links MLL Proteins with LEDGF on Cancer-Associated Target Genes. Cancer Cell. 2008;14:36–46. doi: 10.1016/j.ccr.2008.05.003. PubMed DOI PMC
Poeschla E.M. Integrase, LEDGF/P75 and HIV Replication. Cell. Mol. Life Sci. 2008;65:1403. doi: 10.1007/s00018-008-7540-5. PubMed DOI PMC
Ciuffi A., Llano M., Poeschla E., Hoffmann C., Leipzig J., Shinn P., Ecker J.R., Bushman F. A Role for LEDGF/P75 in Targeting HIV DNA Integration. Nat. Med. 2005;11:1287–1289. doi: 10.1038/nm1329. PubMed DOI
Llano M., Saenz D.T., Meehan A., Wongthida P., Peretz M., Walker W.H., Teo W., Poeschla E.M. An Essential Role for LEDGF/P75 in HIV Integration. Science. 2006;314:461–464. doi: 10.1126/science.1132319. PubMed DOI
Pradeepa M.M., Grimes G.R., Taylor G.C.A., Sutherland H.G., Bickmore W.A. Psip1/Ledgf P75 Restrains Hox Gene Expression by Recruiting Both Trithorax and Polycomb Group Proteins. Nucleic Acids Res. 2014;42:9021–9032. doi: 10.1093/nar/gku647. PubMed DOI PMC
Singh D.K., Gholamalamdari O., Jadaliha M., Li X.L., Lin Y.C., Zhang Y., Guang S., Hashemikhabir S., Tiwari S., Zhu Y.J., et al. PSIP1/P75 Promotes Tumorigenicity in Breast Cancer Cells by Promoting the Transcription of Cell Cycle Genes. Carcinogenesis. 2017;38:966–975. doi: 10.1093/carcin/bgx062. PubMed DOI PMC
Yin X.H., Wang Z.Q., Guo Q.H., Wu H., Shi M. Overexpressed LEDGF Is a Novel Biomarker of Poor Prognosis in Patients with Cervical Cancer. Eur. J. Gynaecol. Oncol. 2017;38:245–250. doi: 10.12892/ejgo3520.2017. PubMed DOI
Daniels T., Zhang J., Gutierrez I., Elliot M.L., Yamada B., Heeb M.J., Sheets S.M., Wu X., Casiano C.A. Antinuclear Autoantibodies in Prostate Cancer: Immunity to LEDGF/P75, a Survival Protein Highly Expressed in Prostate Tumors and Cleaved during Apoptosis. Prostate. 2005;62:14–26. doi: 10.1002/pros.20112. PubMed DOI
Ortiz-Hernandez G.L., Sanchez-Hernandez E.S., Ochoa P.T., Elix C.C., Alkashgari H.R., McMullen J.R.W., Soto U., Martinez S.R., Diaz Osterman C.J., Mahler M., et al. The LEDGF/P75 Integrase Binding Domain Interactome Contributes to the Survival, Clonogenicity, and Tumorsphere Formation of Docetaxel-Resistant Prostate Cancer Cells. Cells. 2021;10:2723. doi: 10.3390/cells10102723. PubMed DOI PMC
Van Nuland R., Van Schaik F.M.A., Simonis M., Van Heesch S., Cuppen E., Boelens R., Timmers H.T.M., Van Ingen H. Nucleosomal DNA Binding Drives the Recognition of H3K36-Methylated Nucleosomes by the PSIP1-PWWP Domain. Epigenetics Chromatin. 2013;6:12. doi: 10.1186/1756-8935-6-12. PubMed DOI PMC
Wang H., Farnung L., Dienemann C., Cramer P. Structure of H3K36-Methylated Nucleosome-PWWP Complex Reveals Multivalent Cross-Gyre Binding. Nat. Struct. Mol. Biol. 2020;27:8–13. doi: 10.1038/s41594-019-0345-4. PubMed DOI PMC
Koutná E., Lux V., Kouba T., Škerlová J., Nováček J., Srb P., Hexnerová R., Šváchová H., Kukačka Z., Novák P., et al. Multivalency of Nucleosome Recognition by LEDGF. Nucleic Acids Res. 2023;51:10011. doi: 10.1093/nar/gkad674. PubMed DOI PMC
Eidahl J.O., Crowe B.L., North J.A., McKee C.J., Shkriabai N., Feng L., Plumb M., Graham R.L., Gorelick R.J., Hess S., et al. Structural Basis for High-Affinity Binding of LEDGF PWWP to Mononucleosomes. Nucleic Acids Res. 2013;41:3924–3936. doi: 10.1093/nar/gkt074. PubMed DOI PMC
Turlure F., Maertens G., Rahman S., Cherepanov P., Engelman A. A Tripartite DNA-Binding Element, Comprised of the Nuclear Localization Signal and Two AT-Hook Motifs, Mediates the Association of LEDGF/P75 with Chromatin in Vivo. Nucleic Acids Res. 2006;34:1653. doi: 10.1093/nar/gkl052. PubMed DOI PMC
Llano M., Vanegas M., Hutchins N., Thompson D., Delgado S., Poeschla E.M. Identification and Characterization of the Chromatin-Binding Domains of the HIV-1 Integrase Interactor LEDGF/P75. J. Mol. Biol. 2006;360:760–773. doi: 10.1016/j.jmb.2006.04.073. PubMed DOI
Tsutsui K.M., Sano K., Hosoya O., Miyamoto T., Tsutsui K. Nuclear Protein LEDGF/P75 Recognizes Supercoiled DNA by a Novel DNA-Binding Domain. Nucleic Acids Res. 2011;39:5067–5081. doi: 10.1093/nar/gkr088. PubMed DOI PMC
Tesina P., Čermáková K., Hořejší M., Procházková K., Fábry M., Sharma S., Christ F., Demeulemeester J., Debyser Z., De Rijck J., et al. Multiple Cellular Proteins Interact with LEDGF/P75 through a Conserved Unstructured Consensus Motif. Nat. Commun. 2015;6:7968. doi: 10.1038/ncomms8968. PubMed DOI
Van Roey K., Uyar B., Weatheritt R.J., Dinkel H., Seiler M., Budd A., Gibson T.J., Davey N.E. Short Linear Motifs: Ubiquitous and Functionally Diverse Protein Interaction Modules Directing Cell Regulation. Chem. Rev. 2014;114:6733–6778. doi: 10.1021/cr400585q. PubMed DOI
Sharma S., Čermáková K., De Rijck J., Demeulemeester J., Fábry M., El Ashkar S., Van Belle S., Lepšík M., Tesina P., Duchoslav V., et al. Affinity Switching of the LEDGF/P75 IBD Interactome Is Governed by Kinase-Dependent Phosphorylation. Proc. Natl. Acad. Sci. USA. 2018;115:E7053–E7062. doi: 10.1073/pnas.1803909115. PubMed DOI PMC
Vanderlinden W., Lipfert J., Demeulemeester J., Debyser Z., De Feyter S. Structure, Mechanics, and Binding Mode Heterogeneity of LEDGF/P75–DNA Nucleoprotein Complexes Revealed by Scanning Force Microscopy. Nanoscale. 2014;6:4611–4619. doi: 10.1039/C4NR00022F. PubMed DOI
Lux V., Brouns T., Čermáková K., Srb P., Fábry M., Mádlíková M., Hořejší M., Kukačka Z., Novák P., Kugler M., et al. Molecular Mechanism of LEDGF/P75 Dimerization. Structure. 2020;28:1288–1299.e7. doi: 10.1016/j.str.2020.08.012. PubMed DOI
McNeely M., Hendrix J., Busschots K., Boons E., Deleersnijder A., Gerard M., Christ F., Debyser Z. In Vitro DNA Tethering of HIV-1 Integrase by the Transcriptional Coactivator LEDGF/P75. J. Mol. Biol. 2011;410:811–830. doi: 10.1016/j.jmb.2011.03.073. PubMed DOI
Chiu J., March P.E., Lee R., Tillett D. Site-Directed, Ligase-Independent Mutagenesis (SLIM): A Single-Tube Methodology Approaching 100% Efficiency in 4 h. Nucleic Acids Res. 2004;32:e174. doi: 10.1093/nar/gnh172. PubMed DOI PMC
Vranckx L.S., Demeulemeester J., Saleh S., Boll A., Vansant G., Schrijvers R., Weydert C., Battivelli E., Verdin E., Cereseto A., et al. LEDGIN-Mediated Inhibition of Integrase-LEDGF/P75 Interaction Reduces Reactivation of Residual Latent HIV. EBioMedicine. 2016;8:248–264. doi: 10.1016/j.ebiom.2016.04.039. PubMed DOI PMC
Cermakova K., Tesina P., Demeulemeester J., El Ashkar S., Méreau H., Schwaller J., vRezáčová P., Veverka V., De Rijck J. Validation and Structural Characterization of the LEDGF/P75-MLL Interface as a New Target for the Treatment of MLL-Dependent Leukemia. Cancer Res. 2014;74:5139–5151. doi: 10.1158/0008-5472.CAN-13-3602. PubMed DOI
Shun M.C., Raghavendra N.K., Vandegraaff N., Daigle J.E., Hughes S., Kellam P., Cherepanov P., Engelman A. LEDGF/P75 Functions Downstream from Preintegration Complex Formation to Effect Gene-Specific HIV-1 Integration. Genes. Dev. 2007;21:1767–1778. doi: 10.1101/gad.1565107. PubMed DOI PMC
El Ashkar S., Schwaller J., Pieters T., Goossens S., Demeulemeester J., Christ F., Van Belle S., Juge S., Boeckx N., Engelman A., et al. LEDGF/P75 Is Dispensable for Hematopoiesis but Essential for MLL-Rearranged Leukemogenesis. Blood. 2018;131:95–107. doi: 10.1182/blood-2017-05-786962. PubMed DOI PMC
Sabari B.R., Agnese A.D., Boija A., Klein I.A., Coffey E.L., Shrinivas K., Abraham B.J., Hannett N.M., Zamudio A.V., Manteiga J.C., et al. Coactivator Condensation at Super-Enhancers Links Phase Separation and Gene Control. Science. 2018;3958 doi: 10.1126/science.aar3958. PubMed DOI PMC
Larson A.G., Elnatan D., Keenen M.M., Trnka M.J., Johnston J.B., Burlingame A.L., Agard D.A., Redding S., Narlikar G.J. Liquid Droplet Formation by HP1a Suggests a Role for Phase Separation in Heterochromatin. Nature. 2017;547:236–240. doi: 10.1038/nature22822. PubMed DOI PMC
Li C.H., Coffey E.L., Agnese A.D., Hannett N.M., Tang X., Henninger J.E., Platt J.M., Oksuz O., Zamudio A.V., Afeyan L.K., et al. MeCP2 Links Heterochromatin Condensates and Neurodevelopmental Disease. Nature. 2020;586:440–444. doi: 10.1038/s41586-020-2574-4. PubMed DOI PMC
Tsiang M., Jones G.S., Hung M., Mukund S., Han B., Liu X., Babaoglu K., Lansdon E., Chen X., Todd J., et al. Affinities between the Binding Partners of the HIV-1 Integrase Dimer-Lens Epithelium-Derived Growth Factor (IN Dimer-LEDGF) Complex. J. Biol. Chem. 2009;284:33580–33599. doi: 10.1074/jbc.M109.040121. PubMed DOI PMC
Cherepanov P., Ambrosio A.L.B.B., Rahman S., Ellenberger T., Engelman A. Structural Basis for the Recognition between HIV-1 Integrase and Transcriptional Coactivator P75. Proc. Natl. Acad. Sci. USA. 2005;102:17308–17313. doi: 10.1073/pnas.0506924102. PubMed DOI PMC
Huang J., Gurung B., Wan B., Matkar S., Veniaminova N.A., Wan K., Merchant J.L., Hua X., Lei M. The Same Pocket in Menin Binds Both MLL and JUND but Has Opposite Effects on Transcription. Nature. 2012;482:542–546. doi: 10.1038/nature10806. PubMed DOI PMC
Mukherjee S., Boutant E., Réal E., Mély Y., Anton H. Imaging Viral Infection by Fluorescence Microscopy: Focus on HIV-1 Early Stage. Viruses. 2021;13:213. doi: 10.3390/v13020213. PubMed DOI PMC
Maertens G.N., Cherepanov P., Engelman A. Transcriptional Co-Activator P75 Binds and Tethers the Myc-Interacting Protein JPO2 to Chromatin. J. Cell Sci. 2006;119:2563–2571. doi: 10.1242/jcs.02995. PubMed DOI
Chan T.S.Y., Hawkins C., Krieger J.R., McGlade C.J., Huang A. JPO2/CDCA7L and LEDGF/P75 Are Novel Mediators of PI3K/AKT Signaling and Aggressive Phenotypes in Medulloblastoma. Cancer Res. 2016;76:2802–2812. doi: 10.1158/0008-5472.CAN-15-2194. PubMed DOI
Leoh L.S., Van Heertum B., De Rijck J., Filippova M., Rios-Colon L., Basu A., Martinez S.R., Tungteakkhun S.S., Filippov V., Christ F., et al. The Stress Oncoprotein LEDGF/P75 Interacts with the Methyl CpG Binding Protein MeCP2 and Influences Its Transcriptional Activity. Mol. Cancer Res. 2012;10:378–391. doi: 10.1158/1541-7786.MCR-11-0314. PubMed DOI PMC
Li R., Dong Q., Yuan X., Zeng X., Gao Y., Chiao C., Li H., Zhao X., Keles S., Wang Z., et al. Misregulation of Alternative Splicing in a Mouse Model of Rett Syndrome. PLoS Genet. 2016;12:e1006129. doi: 10.1371/journal.pgen.1006129. PubMed DOI PMC
Stessman H.A.F., Willemsen M.H., Fenckova M., Penn O., Hoischen A., Xiong B., Wang T., Hoekzema K., Vives L., Vogel I., et al. Disruption of POGZ Is Associated with Intellectual Disability and Autism Spectrum Disorders. Am. J. Hum. Genet. 2016;98:541. doi: 10.1016/j.ajhg.2016.02.004. PubMed DOI PMC
Basu A., Rojas H., Banerjee H., Cabrera I.B., Perez K.Y., de León M., Casiano C.A. Expression of the Stress Response Oncoprotein LEDGF/P75 in Human Cancer: A Study of 21 Tumor Types. PLoS ONE. 2012;7:e30132. doi: 10.1371/journal.pone.0030132. PubMed DOI PMC
Ríos-Colón L., Cajigas-Du Ross C.K., Basu A., Elix C., Alicea-Polanco I., Sanchez T.W., Radhakrishnan V., Chen C.S., Casiano C.A. Targeting the Stress Oncoprotein LEDGF/P75 to Sensitize Chemoresistant Prostate Cancer Cells to Taxanes. Oncotarget. 2017;8:24915–24931. doi: 10.18632/oncotarget.15323. PubMed DOI PMC
Huang T.S., Myklebust L.M., Kjarland E., Gjertsen B.T., Pendino F., Bruserud Ø., Døskeland S.O., Lillehaug J.R. LEDGF/P75 Has Increased Expression in Blasts from Chemotherapy-Resistant Human Acute Myelogenic Leukemia Patients and Protects Leukemia Cells from Apoptosis in Vitro. Mol. Cancer. 2007;6:31. doi: 10.1186/1476-4598-6-31. PubMed DOI PMC
Zhang Y., Guo W., Feng Y., Yang L., Lin H., Zhou P., Zhao K., Jiang L., Yao B., Feng N. Identification of the H3K36me3 Reader LEDGF/P75 in the Pancancer Landscape and Functional Exploration in Clear Cell Renal Cell Carcinoma. Comput. Struct. Biotechnol. J. 2023;21:4134. doi: 10.1016/j.csbj.2023.08.023. PubMed DOI PMC
Ganapathy V., Casiano C.A. Autoimmunity to the Nuclear Autoantigen DFS70 (LEDGF): What Exactly Are the Autoantibodies Trying to Tell Us? Arthritis Rheum. 2004;50:684–688. doi: 10.1002/art.20095. PubMed DOI
Ortiz-Hernandez G.L., Sanchez-Hernandez E.S., Casiano C.A. Twenty Years of Research on the DFS70/LEDGF Autoantibody-Autoantigen System: Many Lessons Learned but Still Many Questions. Autoimmun. Highlights. 2020;11:3. doi: 10.1186/s13317-020-0126-4. PubMed DOI PMC
Wu X., Daniels T., Molinaro C., Lilly M.B., Casiano C.A. Caspase Cleavage of the Nuclear Autoantigen LEDGF/P75 Abrogates Its pro-Survival Function: Implications for Autoimmunity in Atopic Disorders. Cell Death Differ. 2002;9:915–925. doi: 10.1038/sj.cdd.4401063. PubMed DOI
Li F., Aljahdali I.A.M., Ling X. Molecular Glues: Capable Protein-Binding Small Molecules That Can Change Protein–Protein Interactions and Interactomes for the Potential Treatment of Human Cancer and Neurodegenerative Diseases. Int. J. Mol. Sci. 2022;23:6206. doi: 10.3390/ijms23116206. PubMed DOI PMC
Hill Z.B., Martinko A.J., Nguyen D.P., Wells J.A. Human Antibody-Based Chemically Induced Dimerizers for Cell Therapeutic Applications. Nat. Chem. Biol. 2017;14:112–117. doi: 10.1038/nchembio.2529. PubMed DOI PMC