The Impact of Lens Epithelium-Derived Growth Factor p75 Dimerization on Its Tethering Function

. 2024 Jan 25 ; 13 (3) : . [epub] 20240125

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid38334618

Grantová podpora
IDO/12/008-3E130241 KU Leuven Interdisciplinair onderzoeksprogramma (IDO) Program Grant
GA 22-03028S GACR
CZ.02.1.01/0.0/0.0/16_019/0000729 European Regional Development Fund; OP RDE; the project Chemical Biology for Drugging Undruggable Targets (ChemBioDrug)
1S17818N Research Foundation - Flanders

The transcriptional co-activator lens epithelium-derived growth factor/p75 (LEDGF/p75) plays an important role in the biology of the cell and in several human diseases, including MLL-rearranged acute leukemia, autoimmunity, and HIV-1 infection. In both health and disease, LEDGF/p75 functions as a chromatin tether that interacts with proteins such as MLL1 and HIV-1 integrase via its integrase-binding domain (IBD) and with chromatin through its N-terminal PWWP domain. Recently, dimerization of LEDGF/p75 was shown, mediated by a network of electrostatic contacts between amino acids from the IBD and the C-terminal α6-helix. Here, we investigated the functional impact of LEDGF/p75 variants on the dimerization using biochemical and cellular interaction assays. The data demonstrate that the C-terminal α6-helix folds back in cis on the IBD of monomeric LEDGF/p75. We discovered that the presence of DNA stimulates LEDGF/p75 dimerization. LEDGF/p75 dimerization enhances binding to MLL1 but not to HIV-1 integrase, a finding that was observed in vitro and validated in cell culture. Whereas HIV-1 replication was not dependent on LEDGF/p75 dimerization, colony formation of MLLr-dependent human leukemic THP-1 cells was. In conclusion, our data indicate that intricate changes in the quaternary structure of LEDGF/p75 modulate its tethering function.

Zobrazit více v PubMed

Ge H., Si Y., Roeder R.G. Isolation of CDNAs Encoding Novel Transcription Coactivators P52 and P75 Reveals an Alternate Regulatory Mechanism of Transcriptional Activation. EMBO J. 1998;17:6723–6729. doi: 10.1093/emboj/17.22.6723. PubMed DOI PMC

Shinohara T., Singh D.P., Fatma N. LEDGF, a Survival Factor, Activates Stress-Related Genes. Prog. Retin. Eye Res. 2002;21:341–358. doi: 10.1016/S1350-9462(02)00007-1. PubMed DOI

Sutherland H.G., Newton K., Brownstein D.G., Holmes M.C., Kress C., Semple C.A., Bickmore W.A. Disruption of Ledgf/Psip1 Results in Perinatal Mortality and Homeotic Skeletal Transformations. Mol. Cell. Biol. 2006;26:7201–7210. doi: 10.1128/MCB.00459-06. PubMed DOI PMC

Daugaard M., Baude A., Fugger K., Povlsen L.K., Beck H., Sørensen C.S., Petersen N.H.T., Sorensen P.H.B., Lukas C., Bartek J., et al. LEDGF (P75) Promotes DNA-End Resection and Homologous Recombination. Nat. Struct. Mol. Biol. 2012;19:803–810. doi: 10.1038/nsmb.2314. PubMed DOI

Liedtke V., Schröder C., Roggenbuck D., Weiss R., Stohwasser R., Schierack P., Rödiger S., Schenk L. LEDGF/P75 Is Required for an Efficient Dna Damage Response. Int. J. Mol. Sci. 2021;22:5866. doi: 10.3390/ijms22115866. PubMed DOI PMC

LeRoy G., Oksuz O., Descostes N., Aoi Y., Ganai R.A., Kara H.O., Yu J.-R., Lee C.-H., Stafford J., Shilatifard A., et al. LEDGF and HDGF2 Relieve the Nucleosome-Induced Barrier to Transcription in Differentiated Cells. Sci. Adv. 2019;5:eaay3068. doi: 10.1126/sciadv.aay3068. PubMed DOI PMC

De Rijck J., Vandekerckhove L., Gijsbers R., Hombrouck A., Hendrix J., Vercammen J., Engelborghs Y., Christ F., Debyser Z. Overexpression of the Lens Epithelium-Derived Growth Factor/P75 Integrase Binding Domain Inhibits Human Immunodeficiency Virus Replication. J. Virol. 2006;80:11498–11509. doi: 10.1128/JVI.00801-06. PubMed DOI PMC

Yokoyama A., Cleary M.L. Menin Critically Links MLL Proteins with LEDGF on Cancer-Associated Target Genes. Cancer Cell. 2008;14:36–46. doi: 10.1016/j.ccr.2008.05.003. PubMed DOI PMC

Poeschla E.M. Integrase, LEDGF/P75 and HIV Replication. Cell. Mol. Life Sci. 2008;65:1403. doi: 10.1007/s00018-008-7540-5. PubMed DOI PMC

Ciuffi A., Llano M., Poeschla E., Hoffmann C., Leipzig J., Shinn P., Ecker J.R., Bushman F. A Role for LEDGF/P75 in Targeting HIV DNA Integration. Nat. Med. 2005;11:1287–1289. doi: 10.1038/nm1329. PubMed DOI

Llano M., Saenz D.T., Meehan A., Wongthida P., Peretz M., Walker W.H., Teo W., Poeschla E.M. An Essential Role for LEDGF/P75 in HIV Integration. Science. 2006;314:461–464. doi: 10.1126/science.1132319. PubMed DOI

Pradeepa M.M., Grimes G.R., Taylor G.C.A., Sutherland H.G., Bickmore W.A. Psip1/Ledgf P75 Restrains Hox Gene Expression by Recruiting Both Trithorax and Polycomb Group Proteins. Nucleic Acids Res. 2014;42:9021–9032. doi: 10.1093/nar/gku647. PubMed DOI PMC

Singh D.K., Gholamalamdari O., Jadaliha M., Li X.L., Lin Y.C., Zhang Y., Guang S., Hashemikhabir S., Tiwari S., Zhu Y.J., et al. PSIP1/P75 Promotes Tumorigenicity in Breast Cancer Cells by Promoting the Transcription of Cell Cycle Genes. Carcinogenesis. 2017;38:966–975. doi: 10.1093/carcin/bgx062. PubMed DOI PMC

Yin X.H., Wang Z.Q., Guo Q.H., Wu H., Shi M. Overexpressed LEDGF Is a Novel Biomarker of Poor Prognosis in Patients with Cervical Cancer. Eur. J. Gynaecol. Oncol. 2017;38:245–250. doi: 10.12892/ejgo3520.2017. PubMed DOI

Daniels T., Zhang J., Gutierrez I., Elliot M.L., Yamada B., Heeb M.J., Sheets S.M., Wu X., Casiano C.A. Antinuclear Autoantibodies in Prostate Cancer: Immunity to LEDGF/P75, a Survival Protein Highly Expressed in Prostate Tumors and Cleaved during Apoptosis. Prostate. 2005;62:14–26. doi: 10.1002/pros.20112. PubMed DOI

Ortiz-Hernandez G.L., Sanchez-Hernandez E.S., Ochoa P.T., Elix C.C., Alkashgari H.R., McMullen J.R.W., Soto U., Martinez S.R., Diaz Osterman C.J., Mahler M., et al. The LEDGF/P75 Integrase Binding Domain Interactome Contributes to the Survival, Clonogenicity, and Tumorsphere Formation of Docetaxel-Resistant Prostate Cancer Cells. Cells. 2021;10:2723. doi: 10.3390/cells10102723. PubMed DOI PMC

Van Nuland R., Van Schaik F.M.A., Simonis M., Van Heesch S., Cuppen E., Boelens R., Timmers H.T.M., Van Ingen H. Nucleosomal DNA Binding Drives the Recognition of H3K36-Methylated Nucleosomes by the PSIP1-PWWP Domain. Epigenetics Chromatin. 2013;6:12. doi: 10.1186/1756-8935-6-12. PubMed DOI PMC

Wang H., Farnung L., Dienemann C., Cramer P. Structure of H3K36-Methylated Nucleosome-PWWP Complex Reveals Multivalent Cross-Gyre Binding. Nat. Struct. Mol. Biol. 2020;27:8–13. doi: 10.1038/s41594-019-0345-4. PubMed DOI PMC

Koutná E., Lux V., Kouba T., Škerlová J., Nováček J., Srb P., Hexnerová R., Šváchová H., Kukačka Z., Novák P., et al. Multivalency of Nucleosome Recognition by LEDGF. Nucleic Acids Res. 2023;51:10011. doi: 10.1093/nar/gkad674. PubMed DOI PMC

Eidahl J.O., Crowe B.L., North J.A., McKee C.J., Shkriabai N., Feng L., Plumb M., Graham R.L., Gorelick R.J., Hess S., et al. Structural Basis for High-Affinity Binding of LEDGF PWWP to Mononucleosomes. Nucleic Acids Res. 2013;41:3924–3936. doi: 10.1093/nar/gkt074. PubMed DOI PMC

Turlure F., Maertens G., Rahman S., Cherepanov P., Engelman A. A Tripartite DNA-Binding Element, Comprised of the Nuclear Localization Signal and Two AT-Hook Motifs, Mediates the Association of LEDGF/P75 with Chromatin in Vivo. Nucleic Acids Res. 2006;34:1653. doi: 10.1093/nar/gkl052. PubMed DOI PMC

Llano M., Vanegas M., Hutchins N., Thompson D., Delgado S., Poeschla E.M. Identification and Characterization of the Chromatin-Binding Domains of the HIV-1 Integrase Interactor LEDGF/P75. J. Mol. Biol. 2006;360:760–773. doi: 10.1016/j.jmb.2006.04.073. PubMed DOI

Tsutsui K.M., Sano K., Hosoya O., Miyamoto T., Tsutsui K. Nuclear Protein LEDGF/P75 Recognizes Supercoiled DNA by a Novel DNA-Binding Domain. Nucleic Acids Res. 2011;39:5067–5081. doi: 10.1093/nar/gkr088. PubMed DOI PMC

Tesina P., Čermáková K., Hořejší M., Procházková K., Fábry M., Sharma S., Christ F., Demeulemeester J., Debyser Z., De Rijck J., et al. Multiple Cellular Proteins Interact with LEDGF/P75 through a Conserved Unstructured Consensus Motif. Nat. Commun. 2015;6:7968. doi: 10.1038/ncomms8968. PubMed DOI

Van Roey K., Uyar B., Weatheritt R.J., Dinkel H., Seiler M., Budd A., Gibson T.J., Davey N.E. Short Linear Motifs: Ubiquitous and Functionally Diverse Protein Interaction Modules Directing Cell Regulation. Chem. Rev. 2014;114:6733–6778. doi: 10.1021/cr400585q. PubMed DOI

Sharma S., Čermáková K., De Rijck J., Demeulemeester J., Fábry M., El Ashkar S., Van Belle S., Lepšík M., Tesina P., Duchoslav V., et al. Affinity Switching of the LEDGF/P75 IBD Interactome Is Governed by Kinase-Dependent Phosphorylation. Proc. Natl. Acad. Sci. USA. 2018;115:E7053–E7062. doi: 10.1073/pnas.1803909115. PubMed DOI PMC

Vanderlinden W., Lipfert J., Demeulemeester J., Debyser Z., De Feyter S. Structure, Mechanics, and Binding Mode Heterogeneity of LEDGF/P75–DNA Nucleoprotein Complexes Revealed by Scanning Force Microscopy. Nanoscale. 2014;6:4611–4619. doi: 10.1039/C4NR00022F. PubMed DOI

Lux V., Brouns T., Čermáková K., Srb P., Fábry M., Mádlíková M., Hořejší M., Kukačka Z., Novák P., Kugler M., et al. Molecular Mechanism of LEDGF/P75 Dimerization. Structure. 2020;28:1288–1299.e7. doi: 10.1016/j.str.2020.08.012. PubMed DOI

McNeely M., Hendrix J., Busschots K., Boons E., Deleersnijder A., Gerard M., Christ F., Debyser Z. In Vitro DNA Tethering of HIV-1 Integrase by the Transcriptional Coactivator LEDGF/P75. J. Mol. Biol. 2011;410:811–830. doi: 10.1016/j.jmb.2011.03.073. PubMed DOI

Chiu J., March P.E., Lee R., Tillett D. Site-Directed, Ligase-Independent Mutagenesis (SLIM): A Single-Tube Methodology Approaching 100% Efficiency in 4 h. Nucleic Acids Res. 2004;32:e174. doi: 10.1093/nar/gnh172. PubMed DOI PMC

Vranckx L.S., Demeulemeester J., Saleh S., Boll A., Vansant G., Schrijvers R., Weydert C., Battivelli E., Verdin E., Cereseto A., et al. LEDGIN-Mediated Inhibition of Integrase-LEDGF/P75 Interaction Reduces Reactivation of Residual Latent HIV. EBioMedicine. 2016;8:248–264. doi: 10.1016/j.ebiom.2016.04.039. PubMed DOI PMC

Cermakova K., Tesina P., Demeulemeester J., El Ashkar S., Méreau H., Schwaller J., vRezáčová P., Veverka V., De Rijck J. Validation and Structural Characterization of the LEDGF/P75-MLL Interface as a New Target for the Treatment of MLL-Dependent Leukemia. Cancer Res. 2014;74:5139–5151. doi: 10.1158/0008-5472.CAN-13-3602. PubMed DOI

Shun M.C., Raghavendra N.K., Vandegraaff N., Daigle J.E., Hughes S., Kellam P., Cherepanov P., Engelman A. LEDGF/P75 Functions Downstream from Preintegration Complex Formation to Effect Gene-Specific HIV-1 Integration. Genes. Dev. 2007;21:1767–1778. doi: 10.1101/gad.1565107. PubMed DOI PMC

El Ashkar S., Schwaller J., Pieters T., Goossens S., Demeulemeester J., Christ F., Van Belle S., Juge S., Boeckx N., Engelman A., et al. LEDGF/P75 Is Dispensable for Hematopoiesis but Essential for MLL-Rearranged Leukemogenesis. Blood. 2018;131:95–107. doi: 10.1182/blood-2017-05-786962. PubMed DOI PMC

Sabari B.R., Agnese A.D., Boija A., Klein I.A., Coffey E.L., Shrinivas K., Abraham B.J., Hannett N.M., Zamudio A.V., Manteiga J.C., et al. Coactivator Condensation at Super-Enhancers Links Phase Separation and Gene Control. Science. 2018;3958 doi: 10.1126/science.aar3958. PubMed DOI PMC

Larson A.G., Elnatan D., Keenen M.M., Trnka M.J., Johnston J.B., Burlingame A.L., Agard D.A., Redding S., Narlikar G.J. Liquid Droplet Formation by HP1a Suggests a Role for Phase Separation in Heterochromatin. Nature. 2017;547:236–240. doi: 10.1038/nature22822. PubMed DOI PMC

Li C.H., Coffey E.L., Agnese A.D., Hannett N.M., Tang X., Henninger J.E., Platt J.M., Oksuz O., Zamudio A.V., Afeyan L.K., et al. MeCP2 Links Heterochromatin Condensates and Neurodevelopmental Disease. Nature. 2020;586:440–444. doi: 10.1038/s41586-020-2574-4. PubMed DOI PMC

Tsiang M., Jones G.S., Hung M., Mukund S., Han B., Liu X., Babaoglu K., Lansdon E., Chen X., Todd J., et al. Affinities between the Binding Partners of the HIV-1 Integrase Dimer-Lens Epithelium-Derived Growth Factor (IN Dimer-LEDGF) Complex. J. Biol. Chem. 2009;284:33580–33599. doi: 10.1074/jbc.M109.040121. PubMed DOI PMC

Cherepanov P., Ambrosio A.L.B.B., Rahman S., Ellenberger T., Engelman A. Structural Basis for the Recognition between HIV-1 Integrase and Transcriptional Coactivator P75. Proc. Natl. Acad. Sci. USA. 2005;102:17308–17313. doi: 10.1073/pnas.0506924102. PubMed DOI PMC

Huang J., Gurung B., Wan B., Matkar S., Veniaminova N.A., Wan K., Merchant J.L., Hua X., Lei M. The Same Pocket in Menin Binds Both MLL and JUND but Has Opposite Effects on Transcription. Nature. 2012;482:542–546. doi: 10.1038/nature10806. PubMed DOI PMC

Mukherjee S., Boutant E., Réal E., Mély Y., Anton H. Imaging Viral Infection by Fluorescence Microscopy: Focus on HIV-1 Early Stage. Viruses. 2021;13:213. doi: 10.3390/v13020213. PubMed DOI PMC

Maertens G.N., Cherepanov P., Engelman A. Transcriptional Co-Activator P75 Binds and Tethers the Myc-Interacting Protein JPO2 to Chromatin. J. Cell Sci. 2006;119:2563–2571. doi: 10.1242/jcs.02995. PubMed DOI

Chan T.S.Y., Hawkins C., Krieger J.R., McGlade C.J., Huang A. JPO2/CDCA7L and LEDGF/P75 Are Novel Mediators of PI3K/AKT Signaling and Aggressive Phenotypes in Medulloblastoma. Cancer Res. 2016;76:2802–2812. doi: 10.1158/0008-5472.CAN-15-2194. PubMed DOI

Leoh L.S., Van Heertum B., De Rijck J., Filippova M., Rios-Colon L., Basu A., Martinez S.R., Tungteakkhun S.S., Filippov V., Christ F., et al. The Stress Oncoprotein LEDGF/P75 Interacts with the Methyl CpG Binding Protein MeCP2 and Influences Its Transcriptional Activity. Mol. Cancer Res. 2012;10:378–391. doi: 10.1158/1541-7786.MCR-11-0314. PubMed DOI PMC

Li R., Dong Q., Yuan X., Zeng X., Gao Y., Chiao C., Li H., Zhao X., Keles S., Wang Z., et al. Misregulation of Alternative Splicing in a Mouse Model of Rett Syndrome. PLoS Genet. 2016;12:e1006129. doi: 10.1371/journal.pgen.1006129. PubMed DOI PMC

Stessman H.A.F., Willemsen M.H., Fenckova M., Penn O., Hoischen A., Xiong B., Wang T., Hoekzema K., Vives L., Vogel I., et al. Disruption of POGZ Is Associated with Intellectual Disability and Autism Spectrum Disorders. Am. J. Hum. Genet. 2016;98:541. doi: 10.1016/j.ajhg.2016.02.004. PubMed DOI PMC

Basu A., Rojas H., Banerjee H., Cabrera I.B., Perez K.Y., de León M., Casiano C.A. Expression of the Stress Response Oncoprotein LEDGF/P75 in Human Cancer: A Study of 21 Tumor Types. PLoS ONE. 2012;7:e30132. doi: 10.1371/journal.pone.0030132. PubMed DOI PMC

Ríos-Colón L., Cajigas-Du Ross C.K., Basu A., Elix C., Alicea-Polanco I., Sanchez T.W., Radhakrishnan V., Chen C.S., Casiano C.A. Targeting the Stress Oncoprotein LEDGF/P75 to Sensitize Chemoresistant Prostate Cancer Cells to Taxanes. Oncotarget. 2017;8:24915–24931. doi: 10.18632/oncotarget.15323. PubMed DOI PMC

Huang T.S., Myklebust L.M., Kjarland E., Gjertsen B.T., Pendino F., Bruserud Ø., Døskeland S.O., Lillehaug J.R. LEDGF/P75 Has Increased Expression in Blasts from Chemotherapy-Resistant Human Acute Myelogenic Leukemia Patients and Protects Leukemia Cells from Apoptosis in Vitro. Mol. Cancer. 2007;6:31. doi: 10.1186/1476-4598-6-31. PubMed DOI PMC

Zhang Y., Guo W., Feng Y., Yang L., Lin H., Zhou P., Zhao K., Jiang L., Yao B., Feng N. Identification of the H3K36me3 Reader LEDGF/P75 in the Pancancer Landscape and Functional Exploration in Clear Cell Renal Cell Carcinoma. Comput. Struct. Biotechnol. J. 2023;21:4134. doi: 10.1016/j.csbj.2023.08.023. PubMed DOI PMC

Ganapathy V., Casiano C.A. Autoimmunity to the Nuclear Autoantigen DFS70 (LEDGF): What Exactly Are the Autoantibodies Trying to Tell Us? Arthritis Rheum. 2004;50:684–688. doi: 10.1002/art.20095. PubMed DOI

Ortiz-Hernandez G.L., Sanchez-Hernandez E.S., Casiano C.A. Twenty Years of Research on the DFS70/LEDGF Autoantibody-Autoantigen System: Many Lessons Learned but Still Many Questions. Autoimmun. Highlights. 2020;11:3. doi: 10.1186/s13317-020-0126-4. PubMed DOI PMC

Wu X., Daniels T., Molinaro C., Lilly M.B., Casiano C.A. Caspase Cleavage of the Nuclear Autoantigen LEDGF/P75 Abrogates Its pro-Survival Function: Implications for Autoimmunity in Atopic Disorders. Cell Death Differ. 2002;9:915–925. doi: 10.1038/sj.cdd.4401063. PubMed DOI

Li F., Aljahdali I.A.M., Ling X. Molecular Glues: Capable Protein-Binding Small Molecules That Can Change Protein–Protein Interactions and Interactomes for the Potential Treatment of Human Cancer and Neurodegenerative Diseases. Int. J. Mol. Sci. 2022;23:6206. doi: 10.3390/ijms23116206. PubMed DOI PMC

Hill Z.B., Martinko A.J., Nguyen D.P., Wells J.A. Human Antibody-Based Chemically Induced Dimerizers for Cell Therapeutic Applications. Nat. Chem. Biol. 2017;14:112–117. doi: 10.1038/nchembio.2529. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...