BIAS: Transparent reporting of biomedical image analysis challenges
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
Grantová podpora
R01 EB017230
NIBIB NIH HHS - United States
PubMed
32911207
PubMed Central
PMC7441980
DOI
10.1016/j.media.2020.101796
PII: S1361-8415(20)30160-2
Knihovny.cz E-zdroje
- Klíčová slova
- Biomedical challenges, Biomedical image analysis, Good scientific practice, Guideline,
- MeSH
- biomedicínský výzkum * MeSH
- kontrolní seznam * MeSH
- lidé MeSH
- prognóza MeSH
- reprodukovatelnost výsledků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
The number of biomedical image analysis challenges organized per year is steadily increasing. These international competitions have the purpose of benchmarking algorithms on common data sets, typically to identify the best method for a given problem. Recent research, however, revealed that common practice related to challenge reporting does not allow for adequate interpretation and reproducibility of results. To address the discrepancy between the impact of challenges and the quality (control), the Biomedical Image Analysis ChallengeS (BIAS) initiative developed a set of recommendations for the reporting of challenges. The BIAS statement aims to improve the transparency of the reporting of a biomedical image analysis challenge regardless of field of application, image modality or task category assessed. This article describes how the BIAS statement was developed and presents a checklist which authors of biomedical image analysis challenges are encouraged to include in their submission when giving a paper on a challenge into review. The purpose of the checklist is to standardize and facilitate the review process and raise interpretability and reproducibility of challenge results by making relevant information explicit.
Centre for Biomedical Image Analysis Masaryk University Botanická 68a Brno 60200 Czech Republic
Division of Computer Assisted Medical Interventions Im Neuenheimer Feld 223 Heidelberg 69120 Germany
Electrical Engineering Vanderbilt University Nashville Tennessee TN 37235 1679 USA
Zobrazit více v PubMed
Ayache N., Duncan J. 20th anniversary of the medical image analysis journal (MedIA) Med. Image Anal. 2016;33:1–3. doi: 10.1016/j.media.2016.07.004. PubMed DOI
Bora K., Chowdhury M., Mahanta L.B., Kundu M.K., Das A.K. Automated classification of pap smear images to detect cervical dysplasia. Comput. Methods Programs Biomed. 2017;138:31–47. doi: 10.1016/j.cmpb.2016.10.001. PubMed DOI
Bychkov D., Linder N., Turkki R., Nordling S., Kovanen P.E., Verrill C., Walliander M., Lundin M., Haglund C., Lundin J. Deep learning based tissue analysis predicts outcome in colorectal cancer. Sci. Rep. 2018;8(1):3395. doi: 10.1038/s41598-018-21758-3. PubMed DOI PMC
Chenouard N., Smal I., De Chaumont F., Maška M., Sbalzarini I.F., Gong Y., Cardinale J., Carthel C., Coraluppi S., Winter M., Cohen A.R., Godinez W.J., Rohr K., Kalaidzidis Y., Liang L., Duncan J., Shen H., Xu Y., Magnusson K.E.G., Jaldé, Blau H.M., Paul-Gilloteaux P., Roudot P., Kervrann C., Waharte F., Tinevez J.-Y., Shorte S.L., Willemse J., Celler K., van Wezel G.P., Dan H.-W., Tsai Y.-S., Ortiz de Solórzano C., Olivo-Marin J.-C., Meijering E. Objective comparison of particle tracking methods. Nat. Methods. 2014;11(3):281–289. doi: 10.1038/nmeth.2808. PubMed DOI PMC
crowdAI, 2018. crowdAI. www.crowdai.org/. Accessed: 2019-04-01.
Daneshjou R., Wang Y., Bromberg Y., Bovo S., Martelli P.L., Babbi G., Lena P.D., Casadio R., Edwards M., Gifford D., Jones D.T., Sundaram L., Bhat R.R., Li X., Kundu K., Yin Y., Moult J., Jiang Y., Pejaver V., Pagel K.A., Li B., Mooney S.D., Radivojac P., Shah S., Carraro M., Gasparini A., Leonardi E., Giollo M., Ferrari C., Tosatto S.C.E., Bachar E., Azaria J.R., Ofran Y., Unger R., Niroula A., Vihinen M., Chang B., Wang M.H., Franke A., Petersen B.S., Prooznia M., Zandi P., McCombie R., Potash J.B., Altman R.B., Klein T.E., Hoskins R.A., Repo S., Brenner S.E., Morgan A.A. Working toward precision medicine: Predicting phenotypes from exomes in the critical assessment of genome interpretation (CAGI) challenges. Hum. Mut. 2017;38(9):1182–1192. doi: 10.1002/humu.23280. PubMed DOI PMC
Doğan R.I., Kim S., Chatr-aryamontri A., Wei C.-H., Comeau D.C., Antunes R., Matos S., Chen Q., Elangovan A., Panyam N.C., Verspoor K., Liu H., Wang Y., Liu Z., Altinel B., Hsnbeyi Z.M., Zgr A., Fergadis A., Wang C.-K., Dai H.-J., Tran T., Kavuluru R., Luo L., Steppi A., Zhang J., Qu J., Lu Z. Overview of the BioCreative VI precision medicine track: mining protein interactions and mutations for precision medicine. Database (Oxford) 2019;2019 doi: 10.1038/10.1093/database/bay147. PubMed DOI PMC
DREAM, 2006. Dream challenges. dreamchallenges.org/. Accessed: 2019-04-01.
Esteva A., Robicquet A., Ramsundar B., Kuleshov V., DePristo M., Chou K., Cui C., Corrado G., Thrun S., Dean J. A guide to deep learning in healthcare. Nat. Med. 2019;25(1):24. doi: 10.1038/s41591-018-0316-z. PubMed DOI
Guinney J., Saez-Rodriguez J. Alternative models for sharing confidential biomedical data. Nat. Biotechnol. 2018;36(5):391. doi: 10.1038/nbt.4128. PubMed DOI
Hosny A., Parmar C., Quackenbush J., Schwartz L.H., Aerts H.J. Artificial intelligence in radiology. Nat. Rev. Cancer. 2018;18:500. doi: 10.1038/s41568-018-0016-5. PubMed DOI PMC
Jannin P., Grova C., Maurer C.R. Model for defining and reporting reference-based validation protocols in medical image processing. Int. J. CARS. 2006;1(2):63–73. doi: 10.1007/s11548-006-0044-6. DOI
Kaggle, 2010. Your home for data science. www.kaggle.com/. Accessed: 2019-02-12.
Kohl S., Romera-Paredes B., Meyer C., De Fauw J., Ledsam J.R., Maier-Hein K., Eslami S.A., Rezende D.J., Ronneberger O. Adv. Neural Inf. Process. Syst. (NIPS 2018) Vol. 31. 2018. A probabilistic U-net for segmentation of ambiguous images; pp. 6965–6975.arXiv:1806.05034
Kozubek M. Focus Bio Image Inform. Springer; 2016. Challenges and benchmarks in bioimage analysis; pp. 231–262. PubMed DOI
Litjens G., Kooi T., Bejnordi B.E., Setio A.A.A., Ciompi F., Ghafoorian M., Van Der Laak J.A., Van Ginneken B., Sánchez C.I. A survey on deep learning in medical image analysis. Med. Image Anal. 2017;42:60–88. doi: 10.1016/j.media.2017.07.005. PubMed DOI
Maier-Hein K.H., Neher P.F., Houde J.-C., Côté M.-A., Garyfallidis E., Zhong J., Chamberland M., Yeh F.-C., Lin Y.-C., Ji Q., Reddick W.E., Glass J.O., Qixiang Chen D., Feng Y., Gao C., Wu Y., Ma J., Renjie H., Li Q., Westin C.-F., Deslauriers-Gauthier S., Omar Ocegueda González J., Paquette M., St-Jean S., Girard G., Rheault F., Sidhu J., Tax C.M.W., Guo F., Mesri H.Y., Dávid S., Froeling M., Heemskerk A.M., Leemans A., Boré A., Pinsard B., Bedetti C., Desrosiers M., Brambati S., Doyon J., Sarica A., Vasta R., Cerasa A., Quattrone A., Yeatman J., Khan A.R., Hodges W., Alexander S., Romascano D., Barakovic M., Auría A., Esteban O., Lemkaddem A., Thiran J.-P., Cetingul H.E., Odry B.L., Mailhe B., Nadar M.S., Pizzagalli F., Prasad G., Villalon-Reina J.E., Galvis J., Thompson P.M., De Santiago Requejo F., Laguna P.L., Lacerda L.M., Barrett R., Dell’cqua F., Catani M., Petit L., Caruyer E., Daducci A., Dyrby T.B., Holland-Letz T., Hilgetag C.C., Bram S., Descoteaux M. The challenge of mapping the human connectome based on diffusion tractography. Nat. Commun. 2017;8(1):1349. doi: 10.1038/s41467-017-01285-x. PubMed DOI PMC
Maier-Hein L., Eisenmann M., Reinke A., Onogur S., Stankovic M., Scholz P., Arbel T., Bogunovic H., Bradley A.P., Carass A., Feldmann C., Frangi A.F., Full P.M., van Ginneken B., Hanbury A., Honauer K., Kozubek M., Landman B.A., Mrz K., Maier O., Maier-Hein K., Menze B.H., Müller H., Neher P.F., Niessen W., Rajpoot N., Sharp G.C., Sirinukunwattana K., Speidel S., Stock C., Stoyanov D., Taha A.A., van der Sommen F., Wang C.-W., Weber M.-A., Zheng G., Jannin P., Kopp-Schneider A. Why rankings of biomedical image analysis competitions should be interpreted with care. Nat. Commun. 2018;9(1):5217. doi: 10.1038/s41467-019-08563-w. PubMed DOI PMC
Maier-Hein L., Mersmann S., Kondermann D., Stock C., Kenngott H.G., Sanchez A., Wagner M., Preukschas A., Wekerle A.-L., Helfert S., Bodenstedt S., Speidel S. Int. Conf. Med. Image Comput. Comp. Assis. Interv. Springer; 2014. Crowdsourcing for reference correspondence generation in endoscopic images; pp. 349–356. PubMed DOI
Maier-Hein L., Reinke A., Kozubek M., Martel A.L., Arbel T., Eisenmann M., Hanbury A., Jannin P., Müller H., Onogur S., Saez-Rodriguez J., van Ginneken B., Kopp-Schneider A., Landman B.A. Biomedical Image Analysis Challenges (BIAS) Reporting Guideline. Zenodo. 2020 doi: 10.5281/zenodo.4008953. PubMed DOI PMC
Meldrum M.L. A brief history of the randomized controlled trial: From oranges and lemons to the gold standard. Hematol. Oncol. Clin. North Am. 2000;14(4):745–760. doi: 10.1016/S0889-8588(05)70309-9. PubMed DOI
Menze B.H., Jakab A., Bauer S., Kalpathy-Cramer J., Farahani K., Kirby J., Burren Y., Porz N., Slotboom J., Wiest R., Lanczi L., Gerstner E., Weber M.-A., Arbel T., Avants B.B., Ayache N., Buendia P., Collins D.L., Cordier N., Corso J.J., Criminisi A., Das T., Delingette H., Demiralp C., Durst C.R., Dojat M., Doyle S., Festa J., Forbes F., Geremia E. The multimodal brain tumor image segmentation benchmark (BRATS) IEEE Trans. Med. Imaging. 2015;34(10):1993–2024. doi: 10.1109/TMI.2014.2377694. PubMed DOI PMC
Moher D., Schulz K.F., Altman D.G. The consort statement: revised recommendations for improving the quality of reports of parallel group randomized trials. BMC Med. Res. Methodol. 2001;1(1):2. PubMed PMC
Moult J., Fidelis K., Kryshtafovych A., Schwede T., Tramontano A. Critical assessment of methods of protein structure prediction (CASP) – Round XII. Proteins. 2017;86:7–15. doi: 10.1002/prot.25415. PubMed DOI PMC
Saez-Rodriguez J., Costello J.C., Friend S.H., Kellen M.R., Mangravite L., Meyer P., Norman T., Stolovitzky G. Crowdsourcing biomedical research: leveraging communities as innovation engines. Nat. Rev. Genet. 2016;17(8):470–486. doi: 10.1038/nrg.2016.69. PubMed DOI PMC
Sage D., Kirshner H., Pengo T., Stuurman N., Min J., Manley S., Unser M. Quantitative evaluation of software packages for single-molecule localization microscopy. Nat. Methods. 2015;12(8):717–724. doi: 10.1038/nmeth.3442. PubMed DOI
Schulz K.F., Altman D.G., Moher D. Consort 2010 statement: updated guidelines for reporting parallel group randomised trials. BMC Med. 2010;8(1):18. PubMed PMC
Setio A.A.A., Traverso A., De Bel T., Berens M.S., van den Bogaard C., Cerello P., Chen H., Dou Q., Fantacci M.E., Geurts B., van der Gugten R., Heng P.A., Jansen B., de Kaste M.M.J., Kotov V., Lin J.Y.-H., Manders J.T.M.C., Sóñora Mengana A., García-Naranjo J.C., Papavasileiou E., Prokop M., Saletta M., Schaefer-Prokop C.M., Scholten E.T., Scholten L., Snoeren M.M., Torres E.L., Vandemeulebroucke J., Walasek N., Zuidhof G.C.A., van Ginneken B., Jacobs C. Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: the LUNA16 challenge. Med. Image Anal. 2017;42:1–13. doi: 10.1016/j.media.2017.06.015. PubMed DOI
TheEQUATORNetwork, 2008. The EQUATOR network – Enhancing the QUAlity and Transparency Of health Research. http://www.equator-network.org. Accessed: 2019-09-12.
Topol E.J. High-performance medicine: the convergence of human and artificial intelligence. Nat. Med. 2019;25(1):44. doi: 10.1038/s41591-018-0300-7. PubMed DOI
Wiesenfarth M., Reinke A., Landman B.A., Cardoso M.J., Maier-Hein L., Kopp-Schneider A. Methods and open-source toolkit for analyzing and visualizing challenge results. arXiv preprint arXiv:1910.05121. 2019 Submitted for publication. PubMed PMC
Yu K.-H., Zhang C., Berry G.J., Altman R.B., Ré C., Rubin D.L., Snyder M. Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features. Nat. Commun. 2016;7:12474. doi: 10.1038/ncomms12474. PubMed DOI PMC
Zenodo, 2013. https://zenodo.org/(accessed: June 2020).
Zheng G., Chu C., Belavỳ D.L., Ibragimov B., Korez R., Vrtovec T., Hutt H., Everson R., Meakin J., Andrade I.L.A., Glocker B., Chen H., Dou Q., Heng P.-A., Qang C., Forsberg D., Neubert A., Fripp J., Urschler M., Stern D., Wimmer M., Novikov A.A., Cheng H., Armbrecht G., Felsenberg D., Li S. Evaluation and comparison of 3D intervertebral disc localization and segmentation methods for 3D T2 MR data: A grand challenge. Med. Image Anal. 2017;35:327–344. doi: 10.1016/j.media.2016.08.005. PubMed DOI
BIAS: Transparent reporting of biomedical image analysis challenges