The ImageJ ecosystem: Open-source software for image visualization, processing, and analysis
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
P41 GM135019
NIGMS NIH HHS - United States
P41-GM135019
NIGMS NIH HHS - United States
PubMed
33166005
PubMed Central
PMC7737784
DOI
10.1002/pro.3993
Knihovny.cz E-zdroje
- Klíčová slova
- Fiji, ImageJ, image analysis, imaging, microscopy, open source software,
- MeSH
- počítačové zpracování obrazu * MeSH
- software * MeSH
- umělá inteligence * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
For decades, biologists have relied on software to visualize and interpret imaging data. As techniques for acquiring images increase in complexity, resulting in larger multidimensional datasets, imaging software must adapt. ImageJ is an open-source image analysis software platform that has aided researchers with a variety of image analysis applications, driven mainly by engaged and collaborative user and developer communities. The close collaboration between programmers and users has resulted in adaptations to accommodate new challenges in image analysis that address the needs of ImageJ's diverse user base. ImageJ consists of many components, some relevant primarily for developers and a vast collection of user-centric plugins. It is available in many forms, including the widely used Fiji distribution. We refer to this entire ImageJ codebase and community as the ImageJ ecosystem. Here we review the core features of this ecosystem and highlight how ImageJ has responded to imaging technology advancements with new plugins and tools in recent years. These plugins and tools have been developed to address user needs in several areas such as visualization, segmentation, and tracking of biological entities in large, complex datasets. Moreover, new capabilities for deep learning are being added to ImageJ, reflecting a shift in the bioimage analysis community towards exploiting artificial intelligence. These new tools have been facilitated by profound architectural changes to the ImageJ core brought about by the ImageJ2 project. Therefore, we also discuss the contributions of ImageJ2 to enhancing multidimensional image processing and interoperability in the ImageJ ecosystem.
Center for Systems Biology Dresden Dresden Germany
Department of Biomedical Engineering University of Wisconsin at Madison Madison Wisconsin USA
Department of Medical Physics University of Wisconsin at Madison Madison Wisconsin USA
Fondazione Human Technopole Milan Italy
IT4Innovations VŠB Technical University of Ostrava Ostrava Czech Republic
Max Planck Institute of Molecular Cell Biology and Genetics Dresden Germany
Zobrazit více v PubMed
Cardona A, Tomancak P. Current challenges in open‐source bioimage informatics. Nat Methods. 2012;9:661–665. PubMed
Guiet R, Burri O, Seitz A. Open source tools for biological image analysis In: Rebollo E, Bosch M, editors. Computer Optimized Microscopy: Methods and Protocols. Methods in Molecular Biology. New York, NY: Springer, 2019; p. 23–37. PubMed
Sahl SJ, Hell SW, Jakobs S. Fluorescence nanoscopy in cell biology. Nat Rev Mol Cell Biol. 2017;18:685–701. PubMed
Planchon TA, Gao L, Milkie DE, et al. Rapid three‐dimensional isotropic imaging of living cells using Bessel beam plane illumination. Nat Methods. 2011;8:417–423. PubMed PMC
Weber M, Mickoleit M, Huisken J. Light sheet microscopy. Methods Cell Biol. 2014;123:193–215. PubMed
Giepmans BNG, Adams SR, Ellisman MH, Tsien RY. The fluorescent toolbox for assessing protein location and function. Science. 2006;312:217–224. PubMed
Zipfel WR, Williams RM, Webb WW. Nonlinear magic: Multiphoton microscopy in the biosciences. Nat Biotechnol. 2003;21:1369–1377. PubMed
Eliceiri KW, Berthold MR, Goldberg IG, et al. Biological imaging software tools. Nat Methods. 2012;9:697–710. PubMed PMC
López‐Cano M, Fernández‐Dueñas V, Ciruela F. Proximity ligation assay image analysis protocol: Addressing receptor‐receptor interactions. Methods Mol Biol. 2019;2040:41–50. PubMed
Caldon CE, Burgess A. Label free, quantitative single‐cell fate tracking of time‐lapse movies. MethodsX. 2019;6:2468–2475. PubMed PMC
Grishagin IV. Automatic cell counting with ImageJ. Anal Biochem. 2015;473:63–65. PubMed
Pijuan J, Barceló C, Moreno DF, et al. In vitro cell migration, invasion, and adhesion assays: From cell imaging to data analysis. Front Cell Dev Biol. 2019;7:107. PubMed PMC
Della Mea V, Baroni GL, Pilutti D, Di Loreto C. SlideJ: An ImageJ plugin for automated processing of whole slide images. PLoS One. 2017;12:e0180540. PubMed PMC
Young K, Morrison H. Quantifying microglia morphology from photomicrographs of immunohistochemistry prepared tissue using ImageJ. J. Vis. Exp. 2018;136:57648. PubMed PMC
Preibisch S, Saalfeld S, Schindelin J, Tomancak P. Software for bead‐based registration of selective plane illumination microscopy data. Nat Methods. 2010;7:418–419. PubMed
Preibisch S, Amat F, Stamataki E, et al. Efficient Bayesian‐based multiview deconvolution. Nat Methods. 2014;11:645–648. PubMed PMC
Madabhushi A, Lee G. Image analysis and machine learning in digital pathology: Challenges and opportunities. Med Image Anal. 2016;33:170–175. PubMed PMC
Teigen LM, Kuchnia AJ, Nagel E, et al. Impact of software selection and ImageJ tutorial corrigendum on skeletal muscle measures at the third lumbar vertebra on computed Tomography scans in clinical populations. JPEN J Parenter Enteral Nutr. 2018;42:933–941. PubMed
Selvan AN, Cole LM, Spackman L, Naylor S, Wright C. Hierarchical cluster analysis to aid diagnostic image data visualization of MS and other medical imaging modalities. Methods Mol. Biol. 2017;1618:95–123. PubMed
Brookes SJ. Using ImageJ (Fiji) to analyze and present X‐ray CT images of enamel. Methods Mol. Biol. 2019;1922:267–291. PubMed
Domínguez C, Heras J, Pascual V. IJ‐OpenCV: Combining ImageJ and OpenCV for processing images in biomedicine. Comput Biol Med. 2017;84:189–194. PubMed
Meijering E, Cappellen G. van quantitative biological image analysis In: Shorte SL, Frischknecht F, editors. Imaging cellular and molecular biological functions. Principles and practice. Berlin, Heidelberg: Springer, 2007; p. 45–70.
Schneider CA, Rasband WS, Eliceiri KW. NIH image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:671–675. PubMed PMC
Schindelin J, Arganda‐Carreras I, Frise E, et al. Fiji: An open‐source platform for biological‐image analysis. Nat Methods. 2012;9:676–682. PubMed PMC
Anon Introduction to Fiji. Available from http://imagej.github.io/presentations/fiji-introduction/#/2
Pietzsch T, Preibisch S, Tomančák P, Saalfeld S. ImgLib2—Generic image processing in Java. Bioinformatics. 2012;28:3009–3011. PubMed PMC
Rueden CT, Schindelin J, Hiner MC, et al. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinf. 2017;18:529. PubMed PMC
Schindelin J. The ImageJ ecosystem: An open platform for biomedical image analysis; 2015. Available from http://onlinelibrary.wiley.com/doi/10.1002/mrd.22489/full PubMed DOI PMC
Arena ET, Rueden CT, Hiner MC, Wang S, Yuan M, Eliceiri KW. Quantitating the cell: Turning images into numbers with ImageJ. WIREs Dev Biol. 2017;6:e260. PubMed
Pietzsch T, Saalfeld S, Preibisch S, Tomancak P. BigDataViewer: Visualization and processing for large image data sets. Nat Methods. 2015;12:481–483. PubMed
Hörl D, Rojas Rusak F, Preusser F, et al. BigStitcher: Reconstructing high‐resolution image datasets of cleared and expanded samples. Nat Methods. 2019;16:870–874. PubMed
Bogovic JA Robust registration of calcium images by learned contrast synthesis. 2016. Available from https://ieeexplore.ieee.org/document/7493463
Linkert M, Rueden CT, Allan C, et al. Metadata matters: Access to image data in the real world. J Cell Biol. 2010;189:777–782. PubMed PMC
Royer LA, Weigert M, Günther U, et al. ClearVolume: Open‐source live 3D visualization for light‐sheet microscopy. Nat Methods. 2015;12:480–481. PubMed
Weigert M, Schmidt U, Boothe T, et al. Content‐aware image restoration: Pushing the limits of fluorescence microscopy. Nat Methods. 2018;15:1090–1097. PubMed
Gómez‐de‐Mariscal E, García‐López‐de‐Haro C, Donati L, Unser M, Muñoz‐Barrutia A, Sage D. DeepImageJ: A user‐friendly plugin to run deep learning models in ImageJ. bioRxiv:799270; 2019. PubMed
Fernandez R, Moisy C. Fijiyama: A registration tool for 3D multimodal time‐lapse imaging. Bioinformatics. 2020;btaa846 10.1093/bioinformatics/btaa846 PubMed DOI
Gao D, Barber PR, Chacko JV, Sagar MAK, Rueden CT, Grislis AR, Hiner MC, Eliceiri KW (2020) FLIMJ: An open‐source ImageJ toolkit for fluorescence lifetime image data analysis. bioRxiv:2020.08.17.253625. PubMed PMC
Anon FLIMJ . ImageJ. Available from https://imagej.net/FLIMJ
Wolff C Multi‐view light‐sheet imaging and tracking with the MaMuT software reveals the cell lineage of a direct developing arthropod limb; 2018. Available from https://elifesciences.org/articles/34410 PubMed PMC
Anon mastodon‐sc/mastodon . Mastodon Science; 2020. Available from https://github.com/mastodon-sc/mastodon
Hiner MC, Rueden CT, Eliceiri KW. SCIFIO: An extensible framework to support scientific image formats. BMC Bioinf. 2016;17:521. PubMed PMC
Anon SciView . ImageJ. Available from https://imagej.net/SciView
Günther U, Harrington KIS (2020) Tales from the Trenches: Developing SciView, a new 3D viewer for the ImageJ community. ArXiv200411897 Cs. Available from http://arxiv.org/abs/2004.11897
Arganda‐Carreras I, Kaynig V, Rueden C, et al. Trainable Weka segmentation: A machine learning tool for microscopy pixel classification. Bioinf Oxf Engl. 2017;33:2424–2426. PubMed
Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH. The WEKA data mining software: An update. ACM SIGKDD Explor Newslett. 2009;11:10–18.
Cardona A, Saalfeld S, Schindelin J, et al. TrakEM2 software for neural circuit reconstruction. PLoS One. 2012;7:e38011. PubMed PMC
Martiel J‐L, Leal A, Kurzawa L, et al. Measurement of cell traction forces with ImageJ. Methods Cell Biol. 2015;125:269–287. PubMed
Brazill JM, Zhu Y, Li C, Zhai RG. Quantitative cell biology of neurodegeneration in drosophila through unbiased analysis of fluorescently tagged proteins using ImageJ. J. Vis. Exp. 2018;138:58041. PubMed PMC
Patel A, Li Z, Canete P, et al. AxonTracer: A novel ImageJ plugin for automated quantification of axon regeneration in spinal cord tissue. BMC Neurosci. 2018;19:8. PubMed PMC
Hayes JA, Papagiakoumou E, Ruffault P‐L, Emiliani V, Fortin G. Computer‐aided neurophysiology and imaging with open‐source PhysImage. J Neurophysiol. 2018;120:23–36. PubMed
Lormand C, Zellmer GF, Németh K, et al. Weka trainable segmentation plugin in ImageJ: A semi‐automatic tool applied to crystal size distributions of Microlites in volcanic rocks. Microsc Microanal Off J Microsc Soc Am Microbeam Anal Soc Microsc Soc Can. 2018;24:667–675. PubMed
Collins KA, Kielkopf JF, Stassun KG, Hessman FV. ASTROIMAGEJ: Image processing and photometric extraction for ultra‐precise astronomical light curves. Astron J. 2017;153:77.
Voras ZE (2017) Binding Medium Alteration and its Effect on Fine Art Paintings as Observed by Surface Analysis. Available from https://search.proquest.com/docview/1972679309/abstract/5F652F1A30D44387PQ/1
Kapitany K, Somogyi A, Barsi A. Inspection of a medieval WOOD sculpture using computer TOMOGRAPHY. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016;XLI‐B5:287–291.
Williams C, Wu Y, Bowers DF. ImageJ analysis of dentin tubule distribution in human teeth. Tissue Cell. 2015;47:343–348. PubMed
Rueden CT, Ackerman J, Arena ET, et al. Scientific community image forum: A discussion forum for scientific image software. PLoS Biol. 2019;17:e3000340. PubMed PMC
Anon How to contribute to an existing plugin or library. ImageJ. Available from https://imagej.net/How_to_contribute_to_an_existing_plugin_or_library
Abadi M. TensorFlow: Large‐scale machine learning on heterogeneous distributed systems; 2016. Available from https://arxiv.org/abs/1603.04467
Anon CSBDeep . ImageJ. Available from https://imagej.net/CSBDeep
Anon CSBDeep . CSBDeep. Available from https://csbdeep.bioimagecomputing.com/tools
Čepa M. Segmentation of total cell area in brightfield microscopy images. Methods Protoc. 2018;1:43. PubMed PMC
Miller KE, Liu X‐A, Puthanveettil SV. Automated measurement of fast mitochondrial transport in neurons. Front Cell Neurosci. 2015;9:435. PubMed PMC
Murtin C, Frindel C, Rousseau D, Ito K. Image processing for precise three‐dimensional registration and stitching of thick high‐resolution laser‐scanning microscopy image stacks. Comput Biol Med. 2018;92:22–41. PubMed
Saalfeld S. Computational methods for stitching, alignment, and artifact correction of serial section data. Methods Cell Biol. 2019;152:261–276. PubMed
Anon SciJava. ImageJ. Available from https://imagej.net/SciJava
Chenouard N, Smal I, de Chaumont F, et al. Objective comparison of particle tracking methods. Nat Methods. 2014;11:281–289. PubMed PMC
Meijering E. Cell segmentation: 50 years down the road [life sciences]. IEEE Signal Process Mag. 2012;29:140–145.
Jaqaman K, Loerke D, Mettlen M, et al. Robust single particle tracking in live cell time‐lapse sequences. Nat Methods. 2008;5:695–702. PubMed PMC
Tinevez J‐Y, Perry N, Schindelin J, et al. TrackMate: An open and extensible platform for single‐particle tracking. Methods. 2017;115:80–90. PubMed
Cardona A TrakEM2 software for neural circuit reconstruction; 2012. Available from 10.1371/journal.pone.0038011 PubMed DOI PMC
Anon Fijiyama . ImageJ. Available from https://imagej.net/Fijiyama
Schmid B A high‐level 3D visualization API for Java and ImageJ. 2010. Available from http://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-11-274 PubMed DOI PMC
Anon Introduction into Macro Programming. ImageJ. Available from https://imagej.net/Introduction_into_Macro_Programming
Mutterer J, Rasband W. ImageJ Macro Language Programmer's Reference Guide v1.46d.:45.
Anon ImageJ. Available from. https://imagej.nih.gov/ij/macros/
Anon Scripting . ImageJ. Available from https://imagej.net/Scripting
Anon BigStitcher . ImageJ. Available from https://imagej.net/BigStitcher
Anon The bh TCSPC Handbook 8th ed. Becker Hickl GmbH. Available from. https://www.becker-hickl.com/literature/handbooks/the-bh-tcspc-handbook/
Berezin MY, Achilefu S. Fluorescence lifetime measurements and biological imaging. Chem Rev. 2010;110:2641–2684. PubMed PMC
Lakowicz JR, Szmacinski H, Nowaczyk K, Johnson ML. Fluorescence lifetime imaging of free and protein‐bound NADH. Proc Natl Acad Sci U S A. 1992;89:1271–1275. PubMed PMC
Bird DK, Eliceiri KW, Fan C‐H, White JG. Simultaneous two‐photon spectral and lifetime fluorescence microscopy. Appl Optics. 2004;43:5173–5182. PubMed
Bi Q, Goodman KE, Kaminsky J, Lessler J. What is machine learning? A primer for the epidemiologist. Am J Epidemiol. 2019;188:2222–2239. PubMed
Ballard DH, Brown CM. Computer Vision. Englewood Cliffs, NJ: Prenice‐Hall, 1982.
Yang SJ Assessing microscope image focus quality with deep learning; 2018. Available from 10.1186/s12859-018-2087-4 PubMed DOI PMC
Anon OpenCV . ImageJ. Available from https://imagej.net/OpenCV
Anon imagej/imagej‐opencv. ImageJ; 2020. Available from https://github.com/imagej/imagej-opencv
Zhang YC, Kagen AC. Machine learning Interface for medical image analysis. J Digit Imaging. 2017;30:615–621. PubMed PMC
Ahn JM, Kim S, Ahn K‐S, Cho S‐H, Lee KB, Kim US. A deep learning model for the detection of both advanced and early glaucoma using fundus photography. PLoS One. 2018;13:e0207982. PubMed PMC
Cai S, Tian Y, Lui H, Zeng H, Wu Y, Chen G. Dense‐UNet: A novel multiphoton in vivo cellular image segmentation model based on a convolutional neural network. Quant Imaging Med Surg. 2020;10:1275–1285. PubMed PMC
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436–444. PubMed
Krull A, Buchholz T‐O, Jug F. Noise2Void ‐ learning denoising from single noisy images. Paper presented at: Conference on Computer Vision and Pattern Recognition (CVPR); 2019; pp. 2129–2137.
Maier A, Syben C, Lasser T, Riess C. A gentle introduction to deep learning in medical image processing. Z Für Med Phys. 2019;29:86–101. PubMed
Wang H, Rivenson Y, Jin Y, et al. Deep learning enables cross‐modality super‐resolution in fluorescence microscopy. Nat Methods. 2019;16:103–110. PubMed PMC
Rivenson Y, Wang H, Wei Z, et al. Virtual histological staining of unlabelled tissue‐autofluorescence images via deep learning. Nat Biomed Eng. 2019;3:466–477. PubMed
Falk T, Mai D, Bensch R, et al. Author correction: U‐net: Deep learning for cell counting, detection, and morphometry. Nat Methods. 2019;16:351. PubMed
Buchholz T‐O, Prakash M, Krull A, Jug F (2020) DenoiSeg: Joint denoising and segmentation. ArXiv200502987 Cs . Available from http://arxiv.org/abs/2005.02987
Schmidt U, Weigert M, Broaddus C, Myers G (2018) Cell detection with star‐convex polygons. ArXiv180603535 Cs 11071:265–273.
McQuilken M, Mehta SB, Verma A, Harris G, Oldenbourg R, Gladfelter AS. Polarized fluorescence microscopy to study cytoskeleton assembly and organization in live cells. Curr Protoc Cell Biol. 2015;67:4.29.1–4.29.13. PubMed PMC
Pitrone PG, Schindelin J, Stuyvenberg L, et al. OpenSPIM: An open‐access light‐sheet microscopy platform. Nat Methods. 2013;10:598–599. PubMed PMC
Anon ImageJ Ops. ImageJ. Available from https://imagej.net/ImageJ_Ops
High efficiency of laser energy conversion with cavity pressure acceleration