• This record comes from PubMed

Assessment of the Concentration of Transforming Growth Factor Beta 1-3 in Degenerated Intervertebral Discs of the Lumbosacral Region of the Spine

. 2024 Nov 11 ; 46 (11) : 12813-12829. [epub] 20241111

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

The purpose of this study was to evaluate the feasibility of using the expression profile of transforming growth factor beta (TGF-β-1-3) to assess the progression of L/S spine degenerative disease. The study group consisted of 113 lumbosacral (L/S) intervertebral disc (IVD) degenerative disease patients from whom IVDs were collected during a microdiscectomy, whereas the control group consisted of 81 participants from whom IVDs were collected during a forensic autopsy or organ harvesting. Hematoxylin and eosin staining was performed to exclude degenerative changes in the IVDs collected from the control group. The molecular analysis consisted of reverse-transcription real-time quantitative polymerase chain reaction (RT-qPCR), an enzyme-linked immunosorbent assay (ELISA), Western blotting, and an immunohistochemical analysis (IHC). In degenerated IVDs, we noted an overexpression of all TGF-β-1-3 mRNA isoforms with the largest changes observed for TGF-β3 isoforms (fold change (FC) = 19.52 ± 2.87) and the smallest for TGF-β2 (FC = 2.26 ± 0.16). Changes in the transcriptional activity of TGF-β-1-3 were statistically significant (p < 0.05). Significantly higher concentrations of TGF-β1 (2797 ± 132 pg/mL vs. 276 ± 19 pg/mL; p < 0.05), TGF-β2 (1918 ± 176 pg/mL vs. 159 ± 17 pg/mL; p < 0.05), and TGF-β3 (2573 ± 102 pg/mL vs. 152 ± 11 pg/mL) were observed in degenerative IVDs compared with the control samples. Determining the concentration profiles of TGF-β1-3 appears to be a promising monitoring tool for the progression of degenerative disease as well as for evaluating its treatment or developing new treatment strategies with molecular targets.

See more in PubMed

Oichi T., Taniguchi Y., Oshima Y., Tanaka S., Saito T. Pathomechanism of Intervertebral Disc Degeneration. JOR SPINE. 2020;3:e1076. doi: 10.1002/jsp2.1076. PubMed DOI PMC

Lyu F.-J., Cui H., Pan H., MC Cheung K., Cao X., Iatridis J.C., Zheng Z. Painful Intervertebral Disc Degeneration and Inflammation: From Laboratory Evidence to Clinical Interventions. Bone Res. 2021;9:1–14. doi: 10.1038/s41413-020-00125-x. PubMed DOI PMC

Kirnaz S., Capadona C., Wong T., Goldberg J.L., Medary B., Sommer F., McGrath Jr L.B., Härtl R. Fundamentals of Intervertebral Disc Degeneration. World Neurosurg. 2022;157:264–273. doi: 10.1016/j.wneu.2021.09.066. PubMed DOI

Ciapetti G., Granchi D., Devescovi V., Leonardi E., Greggi T., Di Silvestre M., Baldini N. Ex Vivo Observation of Human Intervertebral Disc Tissue and Cells Isolated from Degenerated Intervertebral Discs. Eur. Spine. J. 2012;21:10–19. doi: 10.1007/s00586-012-2234-y. PubMed DOI PMC

Yamabe D., Murakami H., Chokan K., Endo H., Oikawa R., Sawamura S., Doita M. Evaluation of Water Content in Lumbar Intervertebral Discs and Facet Joints Before and After Physiological Loading Using T2 Mapping MRI. Spine. 2017;42:E1423–E1428. doi: 10.1097/BRS.0000000000002204. PubMed DOI

Abu-Awwad A., Folescu R., Pop D.L., Motoc A.G.M., Oprea D.M., Tudoran M., Zamfir C.L., Faur C.I., Vermesan D., Deleanu B.N. Morphometric Characteristics of Fibrocartilaginous Tissue in the Herniated Intervertebral Disc. Rom. J. Morphol. Embryol. 2019;60:629–634. PubMed

Adams M.A., Roughley P.J. What Is Intervertebral Disc Degeneration, and What Causes It? Spine. 2006;31:2151–2161. doi: 10.1097/01.brs.0000231761.73859.2c. PubMed DOI

Groen G.J., Baljet B., Drukker J. Nerves and Nerve Plexuses of the Human Vertebral Column. Am. J. Anat. 1990;188:282–296. doi: 10.1002/aja.1001880307. PubMed DOI

Chapman K.B., Groenen P.S., Vissers K.C., van Helmond N., Stanton-Hicks M.D. The Pathways and Processes Underlying Spinal Transmission of Low Back Pain: Observations From Dorsal Root Ganglion Stimulation Treatment. Neuromodulation. 2021;24:610–621. doi: 10.1111/ner.13150. PubMed DOI

Yoshimura N., Dennison E., Wilman C., Hashimoto T., Cooper C. Epidemiology of Chronic Disc Degeneration and Osteoarthritis of the Lumbar Spine in Britain and Japan: A Comparative Study. J. Rheumatol. 2000;27:429–433. PubMed

Kettler A., Wilke H.-J. Review of Existing Grading Systems for Cervical or Lumbar Disc and Facet Joint Degeneration. Eur. Spine J. 2006;15:705–718. doi: 10.1007/s00586-005-0954-y. PubMed DOI PMC

Brazill J.M., Beeve A.T., Craft C.S., Ivanusic J.J., Scheller E.L. Nerves in Bone: Evolving Concepts in Pain and Anabolism. J. Bone Miner. Res. 2019;34:1393–1406. doi: 10.1002/jbmr.3822. PubMed DOI PMC

Kennon J.C., Awad M.E., Chutkan N., DeVine J., Fulzele S. Current Insights on Use of Growth Factors as Therapy for Intervertebral Disc Degeneration. Biomol. Concepts. 2018;9:43–52. doi: 10.1515/bmc-2018-0003. PubMed DOI

Mahyudin F., Prakoeswa C.R.S., Notobroto H.B., Tinduh D., Ausrin R., Rantam F.A., Suroto H., Utomo D.N., Rhatomy S. An Update of Current Therapeutic Approach for Intervertebral Disc Degeneration: A Review Article. Ann. Med. Surg. 2022;77:103619. PubMed PMC

Skaper S.D. Neurotrophic Factors: An Overview. In: Skaper S.D., editor. Neurotrophic Factors: Methods and Protocols. Springer; New York, NY, USA: 2018. pp. 1–17. Methods in Molecular Biology.

Sahay A.S., Jadhav A.T., Sundrani D.P., Wagh G.N., Joshi S.R. Differential Expression of Nerve Growth Factor (NGF) and Brain Derived Neurotrophic Factor (BDNF) in Different Regions of Normal and Preeclampsia Placentae. Clin. Exp. Hypertens. 2020;42:360–364. doi: 10.1080/10641963.2019.1665677. PubMed DOI

Hsiao S.J., Zehir A., Sireci A.N., Aisner D.L. Detection of Tumor NTRK Gene Fusions to Identify Patients Who May Benefit from Tyrosine Kinase (TRK) Inhibitor Therapy. J. Mol. Diagn. 2019;21:553–571. doi: 10.1016/j.jmoldx.2019.03.008. PubMed DOI PMC

Kirkeby A., Barker R.A. Parkinson Disease and Growth Factors - Is GDNF Good Enough? Nat. Rev. Neurol. 2019;15:312–314. doi: 10.1038/s41582-019-0180-6. PubMed DOI

Cintrón-Colón A.F., Almeida-Alves G., Boynton A.M., Spitsbergen J.M. GDNF Synthesis, Signaling, and Retrograde Transport in Motor Neurons. Cell Tissue Res. 2020;382:47–56. doi: 10.1007/s00441-020-03287-6. PubMed DOI PMC

Chen S., Liu S., Ma K., Zhao L., Lin H., Shao Z. TGF-β Signaling in Intervertebral Disc Health and Disease. Osteoarthr. Cartil. 2019;27:1109–1117. doi: 10.1016/j.joca.2019.05.005. PubMed DOI

Cui L., Wei H., Li Z.-M., Dong X.-B., Wang P.-Y. TGF-Β1 Aggravates Degenerative Nucleus Pulposus Cells Inflammation and Fibrosis through the Upregulation of Angiopoietin-like Protein 2 Expression. Eur. Rev. Med. Pharmacol. Sci. 2020;24:12025–12033. PubMed

Lee Y.-J., Kong M.-H., Song K.-Y., Lee K.-H., Heo S.-H. The Relation Between Sox9, TGF-Β1, and Proteoglycan in Human Intervertebral Disc Cells. J. Korean Neurosurg. Soc. 2008;43:149–154. doi: 10.3340/jkns.2008.43.3.149. PubMed DOI PMC

Nerlich A., Bachmeier B., Boos N. Expression of Fibronectin and TGF-SS1 mRNA and Protein Suggest Altered Regulation of Extracellular Matrix in Degenerated Disc Tissue. Eur. Spine J. 2005;14:17–26. doi: 10.1007/s00586-004-0745-x. PubMed DOI PMC

Tolonen J., Grönblad M., Virri J., Seitsalo S., Rytömaa T., Karaharju E. Transforming Growth Factor Beta Receptor Induction in Herniated Intervertebral Disc Tissue: An Immunohistochemical Study. Eur. Spine J. 2001;10:172–176. doi: 10.1007/s005860000213. PubMed DOI PMC

Wu Q., Wang J., Skubutyte R., Kepler C.K., Huang Z., Anderson D.G., Shapiro I.M., Risbud M.V. Smad3 Controls β-1,3-Glucuronosyltransferase 1 Expression in Rat Nucleus Pulposus Cells: Implications of Dysregulated Expression in Disc Disease. Arthritis Rheum. 2012;64:3324–3333. doi: 10.1002/art.34570. PubMed DOI PMC

Schroeder M., Viezens L., Schaefer C., Friedrichs B., Algenstaedt P., Rüther W., Wiesner L., Hansen-Algenstaedt N. Chemokine Profile of Disc Degeneration with Acute or Chronic Pain: Laboratory Investigation. J. Neurosurg. Spine. 2013;18:496–503. doi: 10.3171/2013.1.SPINE12483. PubMed DOI

Abbott R.D., Purmessur D., Monsey R.D., Brigstock D.R., Laudier D.M., Iatridis J.C. Degenerative Grade Affects the Responses of Human Nucleus Pulposus Cells to Link-N, CTGF, and TGFβ3. J. Spinal Disord. Tech. 2013;26:E86–E94. doi: 10.1097/BSD.0b013e31826e0ca4. PubMed DOI PMC

Tsarouhas A., Soufla G., Tsarouhas K., Katonis P., Pasku D., Vakis A., Tsatsakis A.M., Spandidos D.A. Molecular Profile of Major Growth Factors in Lumbar Intervertebral Disc Herniation: Correlation with Patient Clinical and Epidemiological Characteristics. Mol. Med. Rep. 2017;15:2195–2203. doi: 10.3892/mmr.2017.6221. PubMed DOI PMC

Wan Z.Y., Shan H., Liu T.F., Song F., Zhang J., Liu Z.H., Ma K.L., Wang H.Q. Emerging Issues Questioning the Current Treatment Strategies for Lumbar Disc Herniation. Front. Surg. 2022;9:814531. doi: 10.3389/fsurg.2022.814531. PubMed DOI PMC

Yang Y., He X., Li Y., Feng J., Pang H., Wang J., Liu Q. Association of transforming growth factor-β1 with pathological grading of intervertebral disc degeneration. Nan Fang Yi Ke Da Xue Xue Bao. 2012;32:897–900. PubMed

Koroth J., Buko E.O., Abbott R., Johnson C.P., Ogle B.M., Stone L.S., Ellingson A.M., Bradley E.W. Macrophages and Intervertebral Disc Degeneration. Int. J. Mol. Sci. 2023;24:1367. doi: 10.3390/ijms24021367. PubMed DOI PMC

Yang H., Cao C., Wu C., Yuan C., Gu Q., Shi Q., Zou J. TGF-Βl Suppresses Inflammation in Cell Therapy for Intervertebral Disc Degeneration. Sci. Rep. 2015;5:13254. doi: 10.1038/srep13254. PubMed DOI PMC

Yang H., Yuan C., Wu C., Qian J., Shi Q., Li X., Zhu X., Zou J. The Role of TGF-β1/Smad2/3 Pathway in Platelet-rich Plasma in Retarding Intervertebral Disc Degeneration. J. Cell Mol. Med. 2016;20:1542–1549. doi: 10.1111/jcmm.12847. PubMed DOI PMC

Stich S., Jagielski M., Fleischmann A., Meier C., Bussmann P., Kohl B., Schmidt J., Krüger J.-P., Endres M., Cabraja M. Degeneration of Lumbar Intervertebral Discs: Characterization of Anulus Fibrosus Tissue and Cells of Different Degeneration Grades. Int. J. Mol. Sci. 2020;21:2165. doi: 10.3390/ijms21062165. PubMed DOI PMC

An H.S., Masuda K., Inoue N. Intervertebral Disc Degeneration: Biological Biomechanical Factors. J. Orthop. Sci. 2006;11:541–552. doi: 10.1007/s00776-006-1055-4. PubMed DOI PMC

Ustawa z Dnia 1 Lipca 2005 r. o Pobieraniu, Przechowywaniu i Przeszczepianiu Komórek, Tkanek i Narządów. [(accessed on 13 February 2024)]; Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=wdu20051691411.

Staszkiewicz R., Gralewski M., Gładysz D., Bryś K., Garczarek M., Gadzieliński M., Marcol W., Sobański D., Grabarek B.O. Evaluation of the Concentration of Growth Associated Protein-43 and Glial Cell-Derived Neurotrophic Factor in Degenerated Intervertebral Discs of the Lumbosacral Region of the Spine. Mol. Pain. 2023;19:17448069231158287. doi: 10.1177/17448069231158287. PubMed DOI PMC

Staszkiewicz R., Gładysz D., Bryś K., Garczarek M., Gadzieliński M., Marcol W., Sobański D., Grabarek B.O. Usefulness of Detecting Brain-Derived Neurotrophic Factor in Intervertebral Disc Degeneration of the Lumbosacral Spine. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2023;29:e938663. doi: 10.12659/MSM.938663. PubMed DOI PMC

Pfirrmann C.W., Metzdorf A., Zanetti M., Hodler J., Boos N. Magnetic Resonance Classification of Lumbar Intervertebral Disc Degeneration. Spine. 2001;26:1873–1878. doi: 10.1097/00007632-200109010-00011. PubMed DOI

Yu L.-P., Qian W.-W., Yin G.-Y., Ren Y.-X., Hu Z.-Y. MRI Assessment of Lumbar Intervertebral Disc Degeneration with Lumbar Degenerative Disease Using the Pfirrmann Grading Systems. PLoS ONE. 2012;7:e48074. doi: 10.1371/journal.pone.0048074. PubMed DOI PMC

Hasanović-Vučković S., Jusufbegović M., Vegar-Zubović S., Milišić L., Šehić A., Hasanbegović I., Beganović A. Assessment of Lumbar Spine Disc Degeneration in Coherence to Pfirrman Grades and Oswestry Disability Index. J. Health Sci. 2020;10:191–195. doi: 10.17532/jhsci.2020.1064. DOI

Pagani S., Maglio M., Sicuro L., Fini M., Giavaresi G., Brogini S. RNA Extraction from Cartilage: Issues, Methods, Tips. Int. J. Mol. Sci. 2023;24:2120. doi: 10.3390/ijms24032120. PubMed DOI PMC

Peirson S.N., Butler J.N. RNA Extraction From Mammalian Tissues. In: Rosato E., editor. Circadian Rhythms: Methods and Protocols. Humana Press; Totowa, NJ, USA: 2007.

Leonova O.N., Elgaeva E.E., Golubeva T.S., Peleganchuk A.V., Krutko A.V., Aulchenko Y.S., Tsepilov Y.A. A Protocol for Recruiting and Analyzing the Disease-Oriented Russian Disc Degeneration Study (RuDDS) Biobank for Functional Omics Studies of Lumbar Disc Degeneration. [(accessed on 22 August 2024)];PLoS ONE. 2022 17:e0267384. doi: 10.1371/journal.pone.0267384. Available online: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0267384. PubMed DOI PMC

Ruettger A., Neumann S., Wiederanders B., Huber R. Comparison of Different Methods for Preparation and Characterization of Total RNA from Cartilage Samples to Uncover Osteoarthritis in Vivo. BMC Res. Notes. 2010;3:7. doi: 10.1186/1756-0500-3-7. PubMed DOI PMC

Schroeder A.B., Dobson E.T.A., Rueden C.T., Tomancak P., Jug F., Eliceiri K.W. The ImageJ Ecosystem: Open-source Software for Image Visualization, Processing, and Analysis. Protein Sci. 2021;30:234–249. doi: 10.1002/pro.3993. PubMed DOI PMC

Varghese F., Bukhari A.B., Malhotra R., De A. IHC Profiler: An Open Source Plugin for the Quantitative Evaluation and Automated Scoring of Immunohistochemistry Images of Human Tissue Samples. PLoS ONE. 2014;9:e96801. doi: 10.1371/journal.pone.0096801. PubMed DOI PMC

Tzavlaki K., Moustakas A. TGF-β Signaling. Biomolecules. 2020;10:487. doi: 10.3390/biom10030487. PubMed DOI PMC

Rudnik-Jansen I., van Kruining Kodele S., Creemers L., Joosten B. Biomolecular therapies for chronic dis-cogenic low back pain: A narrative review. JOR Spine. 2024;7:e1345. doi: 10.1002/jsp2.1345. PubMed DOI PMC

Kos N., Gradisnik L., Velnar T. A Brief Review of the Degenerative Intervertebral Disc Disease. Med. Arch. 2019;73:421. doi: 10.5455/medarh.2019.73.421-424. PubMed DOI PMC

Voisin A., Damon-Soubeyrand C., Bravard S., Saez F., Drevet J.R., Guiton R. Differential Expression and Localisation of TGF-β Isoforms and Receptors in the Murine Epididymis. Sci. Rep. 2020;10:995. doi: 10.1038/s41598-020-57839-5. PubMed DOI PMC

Bian Q., Ma L., Jain A., Crane J.L., Kebaish K., Wan M., Zhang Z., Edward Guo X., Sponseller P.D., Séguin C.A. Mechanosignaling Activation of TGFβ Maintains Intervertebral Disc Homeostasis. Bone Res. 2017;5:1–14. doi: 10.1038/boneres.2017.8. PubMed DOI PMC

Nakawaki M., Uchida K., Miyagi M., Inoue G., Kawakubo A., Satoh M., Takaso M. Changes in Nerve Growth Factor Expression and Macrophage Phenotype Following Intervertebral Disc Injury in Mice. J. Orthop. Res. 2019;37:1798–1804. doi: 10.1002/jor.24308. PubMed DOI

Zhang G.-Z., Liu M.-Q., Chen H.-W., Wu Z.-L., Gao Y.-C., Ma Z.-J., He X.-G., Kang X.-W. NF-κB Signalling Pathways in Nucleus Pulposus Cell Function and Intervertebral Disc Degeneration. Cell Prolif. 2021;54:e13057. doi: 10.1111/cpr.13057. PubMed DOI PMC

Van Der Kraan P.M. The Changing Role of TGFβ in Healthy, Ageing and Osteoarthritic Joints. Nat. Rev. Rheumatol. 2017;13:155–163. doi: 10.1038/nrrheum.2016.219. PubMed DOI

Bian Q., Jain A., Xu X., Kebaish K., Crane J.L., Zhang Z., Wan M., Ma L., Riley L.H., Sponseller P.D. Excessive Activation of TGFβ by Spinal Instability Causes Vertebral Endplate Sclerosis. Sci. Rep. 2016;6:27093. doi: 10.1038/srep27093. PubMed DOI PMC

Kwon Y.-J., Lee J.-W., Moon E.-J., Chung Y.G., Kim O.-S., Kim H.-J. Anabolic Effects of Peniel 2000, a Peptide That Regulates TGF-Β1 Signaling on Intervertebral Disc Degeneration. Spine. 2013;38:E49–E58. doi: 10.1097/BRS.0b013e31827aa896. PubMed DOI

Ni L., Zheng Y., Gong T., Xiu C., Li K., Saijilafu, Li B., Yang H., Chen J. Proinflammatory Macrophages Promote Degenerative Phenotypes in Rat Nucleus Pulpous Cells Partly through ERK and JNK Signaling. J. Cell. Physiol. 2019;234:5362–5371. doi: 10.1002/jcp.27507. PubMed DOI

Li W., Liu T., Wu L., Chen C., Jia Z., Bai X., Ruan D. Blocking the Function of Inflammatory Cytokines and Mediators by Using IL-10 and TGF-β: A Potential Biological Immunotherapy for Intervertebral Disc Degeneration in a Beagle Model. Int. J. Mol. Sci. 2014;15:17270–17283. doi: 10.3390/ijms151017270. PubMed DOI PMC

Najafi M., Farhood B., Mortezaee K. Extracellular Matrix (ECM) Stiffness and Degradation as Cancer Drivers. J. Cell. Biochem. 2019;120:2782–2790. doi: 10.1002/jcb.27681. PubMed DOI

Guo Z., Su W., Zhou R., Zhang G., Yang S., Wu X., Qiu C., Cong W., Shen N., Guo J. Exosomal MATN3 of Urine-Derived Stem Cells Ameliorates Intervertebral Disc Degeneration by Antisenescence Effects and Promotes NPC Proliferation and ECM Synthesis by Activating TGF-β. Oxidative Med. Cell. Longev. 2021;2021:5542241. doi: 10.1155/2021/5542241. PubMed DOI PMC

Stich S., Möller A., Cabraja M., Krüger J.P., Hondke S., Endres M., Ringe J., Sittinger M. Chemokine CCL25 Induces Migration and Extracellular Matrix Production of Anulus Fibrosus-Derived Cells. Int. J. Mol. Sci. 2018;19:2207. doi: 10.3390/ijms19082207. PubMed DOI PMC

Hondke S., Cabraja M., Krüger J.P., Stich S., Hartwig T., Sittinger M., Endres M. Proliferation, Migration, and ECM Formation Potential of Human Annulus Fibrosus Cells Is Independent of Degeneration Status. CARTILAGE. 2020;11:192–202. doi: 10.1177/1947603518764265. PubMed DOI PMC

Hu B., Shi C., Tian Y., Zhang Y., Xu C., Chen H., Cao P., Yuan W. TGF-β Induces up-Regulation of Chondroitin Sulfate Synthase 1 (CHSY1) in Nucleus Pulposus Cells through MAPK Signaling. Cell Physiol. Biochem. 2015;37:793–804. doi: 10.1159/000430396. PubMed DOI

Hu B., Xu C., Cao P., Tian Y., Zhang Y., Shi C., Xu J., Yuan W., Chen H. TGF-β Stimulates Expression of Chondroitin Polymerizing Factor in Nucleus Pulposus Cells through the Smad3, RhoA/ROCK1, and MAPK Signaling Pathways. J. Cell Biochem. 2018;119:566–579. doi: 10.1002/jcb.26215. PubMed DOI

Bowles R.D., Setton L.A. Biomaterials for Intervertebral Disc Regeneration and Repair. Biomaterials. 2017;129:54–67. doi: 10.1016/j.biomaterials.2017.03.013. PubMed DOI PMC

Chen S., Zhao L., Deng X., Shi D., Wu F., Liang H., Huang D., Shao Z. Mesenchymal Stem Cells Protect Nucleus Pulposus Cells from Compression-Induced Apoptosis by Inhibiting the Mitochondrial Pathway. Stem Cells Int. 2017;2017:984312. doi: 10.1155/2017/9843120. PubMed DOI PMC

Fontana G., See E., Pandit A. Current Trends in Biologics Delivery to Restore Intervertebral Disc Anabolism. Adv. Drug Deliv. Rev. 2015;84:146–158. doi: 10.1016/j.addr.2014.08.008. PubMed DOI

Nagano S., Matsunaga S., Takae R., Morimoto N., Suzuki S., Yoshida H. Immunolocalization of Transforming Growth Factor-Betas and Their Receptors in the Intervertebral Disk of Senescence-Accelerated Mouse. Int. J. Oncol. 2000;17:461–467. doi: 10.3892/ijo.17.3.461. PubMed DOI

Matsunaga S., Nagano S., Onishi T., Motimoto N., Suzuki S. kOMIYA, s Age-Related Changes in Expression of Transforming Growth Factor-β and Receptors in Cells of Intervertebral Discs. J. Neurosurg. Spine. 2003;98:63–67. PubMed

Zheng L., Cao Y., Ni S., Qi H., Ling Z., Xu X., Zou X., Wu T., Deng R., Hu B., et al. Ciliary Parathyroid Hormone Signaling Activates Transforming Growth Factor-β to Maintain Intervertebral Disc Homeostasis during Aging. Bone Res. 2018;6:21. doi: 10.1038/s41413-018-0022-y. PubMed DOI PMC

Murakami H., Yoon S., Attallah-Wasif E., Tsai K., Fei Q., Hutton W. The Expression of Anabolic Cytokines in Intervertebral Discs. Spine. 2006;31:1770–1774. doi: 10.1097/01.brs.0000227255.39896.f3. PubMed DOI

Hiyama A., Mochida J., Omi H., Serigano K., Sakai D. Cross Talk between Smad Transcription Factors and TNF-α in Intervertebral Disc Degeneration. Biochem. Biophys. Res. Commun. 2008;369:679–685. doi: 10.1016/j.bbrc.2008.02.087. PubMed DOI

Wu M., Chen G., Li Y.-P. TGF-β and BMP Signaling in Osteoblast, Skeletal Development, and Bone Formation, Homeostasis and Disease. Bone Res. 2016;4:16009. doi: 10.1038/boneres.2016.9. PubMed DOI PMC

Guo H.-Y., Guo M.-K., Wan Z.-Y., Song F., Wang H.-Q. Emerging Evidence on Noncoding-RNA Regulatory Machinery in Intervertebral Disc Degeneration: A Narrative Review. Arthritis Res. Ther. 2020;22:270. doi: 10.1186/s13075-020-02353-2. PubMed DOI PMC

James S.L., Abate D., Abate K.H., Abay S.M., Abbafati C., Abbasi N., Abbastabar H., Abd-Allah F., Abdela J., Abdelalim A., et al. Global, Regional, and National Incidence, Prevalence, and Years Lived with Disability for 354 Diseases and Injuries for 195 Countries and Territories, 1990–2017: A Systematic Analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392:1789–1858. doi: 10.1016/S0140-6736(18)32279-7. PubMed DOI PMC

Xiong Y., Yang Y.-L., Gao Y.-S., Wang X.-M., Yu X. Histological Changes of Cervical Disc Tissue in Patients with Degenerative Ossification. J. Korean Neurosurg. Soc. 2022;65:186–195. doi: 10.3340/jkns.2021.0082. PubMed DOI PMC

Chen X., Wang Z., Deng R., Yan H., Liu X., Kang R. Intervertebral Disc Degeneration and Inflammatory Microenvironment: Expression, Pathology, and Therapeutic Strategies. Inflamm. Res. 2023;72:1811–1828. doi: 10.1007/s00011-023-01784-2. PubMed DOI

Tuakli-Wosornu Y.A., Terry A., Boachie-Adjei K., Harrison J.R., Gribbin C.K., LaSalle E.E., Nguyen J.T., Solomon J.L., Lutz G.E. Lumbar Intradiskal Platelet-Rich Plasma (PRP) Injections: A Prospective, Double-Blind, Randomized Controlled Study. PMR. 2016;8:1–10. doi: 10.1016/j.pmrj.2015.08.010. PubMed DOI

Nishida K., Kang J.D., Gilbertson L.G., Moon S.H., Suh J.K., Vogt M.T., Robbins P.D., Evans C.H. Modulation of the Biologic Activity of the Rabbit Intervertebral Disc by Gene Therapy: An in Vivo Study of Adenovirus-Mediated Transfer of the Human Transforming Growth Factor Beta 1 Encoding Gene. Spine. 1999;24:2419–2425. doi: 10.1097/00007632-199912010-00002. PubMed DOI

Matta A., Karim M.Z., Isenman D.E., Erwin W.M. Molecular Therapy for Degenerative Disc Disease: Clues from Secretome Analysis of the Notochordal Cell-Rich Nucleus Pulposus. Sci. Rep. 2017;7:45623. doi: 10.1038/srep45623. PubMed DOI PMC

Hodgkinson T., Shen B., Diwan A., Hoyland J.A., Richardson S.M. Therapeutic Potential of Growth Differentiation Factors in the Treatment of Degenerative Disc Diseases. JOR Spine. 2019;2:e1045. doi: 10.1002/jsp2.1045. PubMed DOI PMC

Matta A., Karim M.Z., Gerami H., Jun P., Funabashi M., Kawchuk G., Goldstein A., Foltz W., Sussman M., Eek B.C., et al. NTG-101: A Novel Molecular Therapy That Halts the Progression of Degenerative Disc Disease. Sci. Rep. 2018;8:16809. doi: 10.1038/s41598-018-35011-4. PubMed DOI PMC

Risbud M.V., Di Martino A., Guttapalli A., Seghatoleslami R., Denaro V., Vaccaro A.R., Albert T.J., Shapiro I.M. Toward an Optimum System for Intervertebral Disc Organ Culture: TGF-Beta 3 Enhances Nucleus Pulposus and Anulus Fibrosus Survival and Function through Modulation of TGF-Beta-R Expression and ERK Signaling. Spine. 2006;31:884–890. doi: 10.1097/01.brs.0000209335.57767.b5. PubMed DOI

Hegewald A.A., Zouhair S., Endres M., Cabraja M., Woiciechowsky C., Thomé C., Kaps C. Towards Biological Anulus Repair: TGF-Β3, FGF-2 and Human Serum Support Matrix Formation by Human Anulus Fibrosus Cells. Tissue Cell. 2013;45:68–76. doi: 10.1016/j.tice.2012.09.011. PubMed DOI

Murphy K., Lufkin T., Kraus P. Development and Degeneration of the Intervertebral Disc—Insights from Across Species. Vet. Sci. 2023;10:540. doi: 10.3390/vetsci10090540. PubMed DOI PMC

Sun Y., Lyu M., Lu Q., Cheung K., Leung V. Current Perspectives on Nucleus Pulposus Fibrosis in Disc Degeneration and Repair. Int. J. Mol. Sci. 2022;23:6612. doi: 10.3390/ijms23126612. PubMed DOI PMC

Takeoka Y., Yurube T., Nishida K. Gene Therapy Approach for Intervertebral Disc Degeneration: An Update. Neurospine. 2020;17:3–14. doi: 10.14245/ns.2040042.021. PubMed DOI PMC

Hou Z., Tan R., Zhang Y. Snapshots of a Tiny Ancestral Nuclease of Cas9. Trends Biochem. Sci. 2023;48:9–10. doi: 10.1016/j.tibs.2022.08.008. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...