Structural Biology and Protein Engineering of Thrombolytics
Status PubMed-not-MEDLINE Language English Country Netherlands Media electronic-ecollection
Document type Journal Article, Review
PubMed
31360331
PubMed Central
PMC6637190
DOI
10.1016/j.csbj.2019.06.023
PII: S2001-0370(19)30206-5
Knihovny.cz E-resources
- Keywords
- EGF, Epidermal growth factor domain, F, Fibrin binding finger domain, Fibrinolysis, K, Kringle domain, LRP1, Low-density lipoprotein receptor-related protein 1, MR, Mannose receptor, NMDAR, N-methyl-D-aspartate receptor, P, Proteolytic domain, PAI-1, Inhibitor of tissue plasminogen activator, Plg, Plasminogen, Plm, Plasmin, RAP, Receptor antagonist protein, SAK, Staphylokinase, SK, Streptokinase, Staphylokinase, Streptokinase, Thrombolysis, Tissue plasminogen activator, Urokinase, t-PA, Tissue plasminogen activator,
- Publication type
- Journal Article MeSH
- Review MeSH
Myocardial infarction and ischemic stroke are the most frequent causes of death or disability worldwide. Due to their ability to dissolve blood clots, the thrombolytics are frequently used for their treatment. Improving the effectiveness of thrombolytics for clinical uses is of great interest. The knowledge of the multiple roles of the endogenous thrombolytics and the fibrinolytic system grows continuously. The effects of thrombolytics on the alteration of the nervous system and the regulation of the cell migration offer promising novel uses for treating neurodegenerative disorders or targeting cancer metastasis. However, secondary activities of thrombolytics may lead to life-threatening side-effects such as intracranial bleeding and neurotoxicity. Here we provide a structural biology perspective on various thrombolytic enzymes and their key properties: (i) effectiveness of clot lysis, (ii) affinity and specificity towards fibrin, (iii) biological half-life, (iv) mechanisms of activation/inhibition, and (v) risks of side effects. This information needs to be carefully considered while establishing protein engineering strategies aiming at the development of novel thrombolytics. Current trends and perspectives are discussed, including the screening for novel enzymes and small molecules, the enhancement of fibrin specificity by protein engineering, the suppression of interactions with native receptors, liposomal encapsulation and targeted release, the application of adjuvants, and the development of improved production systems.
See more in PubMed
TPJ Bryan, 18 J The rise and fall of the clot buster: a review on the history of streptokinase. 2014. http://www.pharmaceutical-journal.com/news-and-analysis/features/the-rise-and-fall-of-the-clot-buster-a-review-on-the-history-of-streptokinase/20065679.article Pharm J. (accessed September 22, 2017)
Proctor P., Leesar M.A., Chatterjee A. Thrombolytic therapy in the current ERA: myocardial infarction and beyond. Curr Pharm Des. 2018;24:414–426. PubMed
Niego B., Freeman R., Puschmann T.B., Turnley A.M. Medcalf RL. t-PA–specific modulation of a human blood-brain barrier model involves plasmin-mediated activation of the Rho kinase pathway in astrocytes. Blood. 2012;119:4752–4761. PubMed
Lesept F., Chevilley A., Jezequel J., Ladepeche L., Macrez R., Aimable M. Tissue-type plasminogen activator controls neuronal death by raising surface dynamics of extrasynaptic NMDA receptors. Cell Death Dis. 2016;7 PubMed PMC
Mehra A., Ali C., Parcq J., Vivien D., Docagne F. The plasminogen activation system in neuroinflammation. Biochim Biophys Acta BBA Mol Basis Dis. 1862;2016:395–402. PubMed
Oh S.B., Byun C.J., Yun J.-H., Jo D.-G., Carmeliet P., Koh J.-Y. Tissue plasminogen activator arrests Alzheimer’s disease pathogenesis. Neurobiol Aging. 2014;35:511–519. PubMed
Akhter H., Huang W.-T., van Groen T., Kuo H.-C., Miyata T., Liu R.-M. A small molecule inhibitor of plasminogen activator inhibitor-1 Reduces brain amyloid-β load and improves memory in an animal model of alzheimer’s disease. J Alzheimers Dis. 2018;64:447–457. PubMed
Tsai S.-J. Role of tissue-type plasminogen activator and plasminogen activator inhibitor-1 in psychological stress and depression. Oncotarget. 2017;8:113258–113268. PubMed PMC
Wyganowska-Świątkowska M., Wyganowska-Świątkowska M., Tarnowski M., Tarnowski M., Murtagh D., Murtagh D. Proteolysis is the most fundamental property of malignancy and its inhibition may be used therapeutically (Review) Int J Mol Med. 2019;43:15–25. PubMed PMC
Hoylaerts M., Rijken D.C., Lijnen H.R., Collen D. Kinetics of the activation of plasminogen by human tissue plasminogen activator. Role of fibrin J Biol Chem. 1982;257:2912–2919. PubMed
Wun T.C., Schleuning W.D., Reich E. Isolation and characterization of urokinase from human plasma. J Biol Chem. 1982;257:3276–3283. PubMed
Khasa Y.P. The evolution of recombinant thrombolytics: current status and future directions. Bioengineered. 2016;8:331–358. PubMed PMC
Forsgren M., Råden B., Israelsson M., Larsson K., Hedén L.-O. Molecular cloning and characterization of a full-length cDNA clone for human plasminogen. FEBS Lett. 1987;213:254–260. PubMed
Torrèns I., Ojalvo A.G., Seralena A., Hayes O., de la Fuente J. A mutant streptokinase lacking the C-terminal 42 amino acids is less immunogenic. Immunol Lett. 2000;70:213–218. PubMed
Castellino F., Ploplis V. Structure and function of the plasminogen/plasmin system. Thromb Haemost. 2005;93:647–654. PubMed
Wang H., Prorok M., Bretthauer R.K., Castellino F.J. Serine-578 is a major phosphorylation locus in human plasma plasminogen †. Biochemistry. 1997;36:8100–8106. PubMed
Wu G., Quek A.J., Caradoc-Davies T.T., Ekkel S.M., Mazzitelli B., Whisstock J.C. Structural studies of plasmin inhibition. Biochem Soc Trans. 2019;47:541–557. PubMed
Robbins K.C., Summaria L., Hsieh B., Shah R.J. The peptide chains of human plasmin. mechanism of activation of human plasminogen to plasmin. J Biol Chem. 1967;242:2333–2342. PubMed
Suenson E., Thorsen S. Secondary-site binding of Glu-plasmin, Lys-plasmin and miniplasmin to fibrin. Biochem J. 1981;197:619–628. PubMed PMC
Miles L.A., Dahlberg C.M., Plow E.F. The cell-binding domains of plasminogen and their function in plasma. J Biol Chem. 1988;263:11928–11934. PubMed
Xue Y., Bodin C., Olsson K. Crystal structure of the native plasminogen reveals an activation-resistant compact conformation. J Thromb Haemost. 2012;10:1385–1396. PubMed
Fredenburgh J.C., Nesheim M.E. Lys-plasminogen is a significant intermediate in the activation of Glu-plasminogen during fibrinolysis in vitro. J Biol Chem. 1992;267:26150–26156. PubMed
Law R.H.P., Caradoc-Davies T., Cowieson N., Horvath A.J., Quek A.J., Encarnacao J.A. The X-ray crystal structure of full-length human plasminogen. Cell Rep. 2012;1:185–190. PubMed
Oh C.-W., Hoover-Plow J., Plow E.F. The role of plasminogen in angiogenesis in vivo. J Thromb Haemost. 2003;1:1683–1687. PubMed
Moser T., Stack M., Wahl M., Pizzo S. The mechanism of action of angiostatin: can you teach an old dog new tricks? Thromb Haemost. 2002;87:394–401. PubMed
Geiger J.H., Cnudde S.E. What the structure of angiostatin may tell us about its mechanism of action. J Thromb Haemost. 2004;2:23–34. PubMed
Wahl M.L., Kenan D.J., Gonzalez-Gronow M., Pizzo S.V. Angiostatin’s molecular mechanism: aspects of specificity and regulation elucidated. J Cell Biochem. 2005;96:242–261. PubMed
Abad M.C., Arni R.K., Grella D.K., Castellino F.J., Tulinsky A., Geiger J.H. The X-ray crystallographic structure of the angiogenesis inhibitor angiostatin. J Mol Biol. 2002;318:1009–1017. PubMed
Thiebaut A.M., Gauberti M., Ali C., Martinez De Lizarrondo S., Vivien D., Yepes M. The role of plasminogen activators in stroke treatment: fibrinolysis and beyond. Lancet Neurol. 2018;17:1121–1132. PubMed
Diamond S.L. Engineering design of optimal strategies for blood clot dissolution. Annu Rev Biomed Eng. 1999;1:427. PubMed
Marcos-Contreras O.A., Ganguly K., Yamamoto A., Shlansky-Goldberg R., Cines D.B., Muzykantov V.R. Clot penetration and retention by plasminogen activators promote fibrinolysis. Biochem Pharmacol. 2013;85:216–222. PubMed
Bannish B.E., Chernysh I.N., Keener J.P., Fogelson A.L., Weisel J.W. Molecular and physical mechanisms of fibrinolysis and thrombolysis from mathematical modeling and experiments. Sci Rep. 2017;7 PubMed PMC
Mutch N.J., Thomas L., Moore N.R., Lisiak K.M., Booth N.A. TAFIa, PAI-1 and α2-antiplasmin: complementary roles in regulating lysis of thrombi and plasma clots. J Thromb Haemost. 2007;5:812–817. PubMed
Krishnamurti C., Keyt B., Maglasang P., Alving B.M. PAI-1-resistant t-PA: low doses prevent fibrin deposition in rabbits with increased PAI-1 activity. Blood. 1996;87:14–19. PubMed
Kheiri B., Osman M., Abdalla A., Haykal T., Ahmed S., Hassan M. Tenecteplase versus alteplase for management of acute ischemic stroke: a pairwise and network meta-analysis of randomized clinical trials. J Thromb Thrombolysis. 2018;46:440–450. PubMed
Bode C., Smalling Richard W., Berg G., Burnett C., Lorch G., Kalbfleisch John M. Randomized comparison of coronary thrombolysis achieved with double-bolus reteplase (recombinant plasminogen activator) and front-loaded, accelerated alteplase (recombinant tissue plasminogen activator) in patients with acute myocardial infarction. Circulation. 1996;94:891–898. PubMed
Smalling Richard W., Bode C., Kalbfleisch J., Sen S., Limbourg P., Forycki F. More rapid, Complete, and stable coronary thrombolysis with bolus administration of reteplase compared with alteplase infusion in acute myocardial infarction. Circulation. 1995;91:2725–2732. PubMed
Campbell B.C.V., Mitchell P.J., Churilov L., Yassi N., Kleinig T.J., Dowling R.J. Tenecteplase versus alteplase before thrombectomy for ischemic stroke. N Engl J Med. 2018;10 PubMed
Xu N., Chen Z., Zhao C., Xue T., Wu X., Sun X. Different doses of tenecteplase vs alteplase in thrombolysis therapy of acute ischemic stroke: evidence from randomized controlled trials. Drug Des Devel Ther. 2018;12:2071–2084. PubMed PMC
Li X., Ling L., Li C., Ma Q. Efficacy and safety of desmoteplase in acute ischemic stroke patients a systematic review and meta-analysis. Medicine (Baltimore) 2017;96 PubMed PMC
Verheugt F.W.A., Meijer A., Lagrand W.K., van Eenige M.J. Reocclusion: the flip side of coronary thrombolysis. J Am Coll Cardiol. 1996;27:766–773. PubMed
Arterial reocclusion in stroke patients treated with intravenous tissue plasminogen activatorCurr Med Lit Stroke Rev. 2003;7:56. PubMed
Parcq J., Bertrand T., Montagne A., Baron A.F., Macrez R., Billard J.M. Unveiling an exceptional zymogen: the single-chain form of tPA is a selective activator of NMDA receptor-dependent signaling and neurotoxicity. Cell Death Differ. 2012;19:1983–1991. PubMed PMC
Gonias S.L., Banki M.A., Gilder A.S., Campana W.M., Mantuano E. PAI1 blocks effects of tissue-type plasminogen activator on cell-signaling and physiology mediated by the NMDA receptor. J Cell Sci. 2018;2018:37. PubMed PMC
Fredriksson L., Lawrence D.A., Medcalf R.L. tPA modulation of the blood–brain barrier: a unifying explanation for the pleiotropic effects of tPA in the CNS. Semin Thromb Hemost. 2017;43:154–168. PubMed PMC
del Zoppo G.J., Saver J.L., Jauch E.C., Adams H.P. Expansion of the time window for treatment of acute ischemic stroke with intravenous tissue plasminogen activator a science advisory from the american heart association/american stroke association. Stroke. 2009;40:2945–2948. PubMed PMC
Baruah D.B., Dash R.N., Chaudhari M.R., Kadam S.S. Plasminogen activators: a comparison. Vascul Pharmacol. 2006;44:1–9. PubMed
Gurewich V. Therapeutic fibrinolysis: how efficacy and safety can be improved. J Am Coll Cardiol. 2016;68:2099–2106. PubMed
Medcalf R.L. Fibrinolysis: from blood to the brain. J Thromb Haemost. 2017;15:2089–2098. PubMed
Benchenane K., Berezowski V., Fernández-Monreal M., Brillault J., Valable S., Dehouck M.-P. Oxygen glucose deprivation switches the transport of tPA across the blood–brain barrier from an LRP-dependent to an increased LRP-independent process. Stroke. 2005;36:1059–1064. PubMed
Suzuki Y., Nagai N., Umemura K. A review of the mechanisms of blood-brain barrier permeability by tissue-type plasminogen activator treatment for cerebral ischemia. Front Cell Neurosci. 2016;10:2. PubMed PMC
Zhao Y., Li D., Zhao J., Song J., Zhao Y. The role of the low-density lipoprotein receptor-related protein 1 (LRP-1) in regulating blood-brain barrier integrity. Rev Neurosci Berl. 2016;27:623–634. PubMed
Ishiguro M., Kawasaki K., Suzuki Y., Ishizuka F., Mishiro K., Egashira Y. A Rho kinase (ROCK) inhibitor, fasudil, prevents matrix metalloproteinase-9-related hemorrhagic transformation in mice treated with tissue plasminogen activator. Neuroscience. 2012;220:302–312. PubMed
Nassar T. In vitro and in vivo effects of tPA and PAI-1 on blood vessel tone. Blood. 2003;103:897–902. PubMed
Cole E.S., Nichols E.H., Poisson L., Harnois M.L., Livingston D.J. In vivo clearance of tissue plasminogen activator: the complex role of sites of glycosylation and level of sialylation. Fibrinolysis. 1993;7:15–22.
Ny T., Elgh F., Lund B. The structure of the human tissue-type plasminogen activator gene: correlation of intron and exon structures to functional and structural domains. Proc Natl Acad Sci U S A. 1984;81:5355–5359. PubMed PMC
Verheijen J.H., Caspers M.P., Chang G.T., de Munk G.A., Pouwels P.H., Enger-Valk B.E. Involvement of finger domain and kringle 2 domain of tissue-type plasminogen activator in fibrin binding and stimulation of activity by fibrin. EMBO J. 1986;5:3525–3530. PubMed PMC
Beebe D.P., Miles L.A., Plow E.F. A linear amino acid sequence involved in the interaction of t-PA with its endothelial cell receptor. Blood. 1989;74:2034–2037. PubMed
Camani C., Kruithof E.K. The role of the finger and growth factor domains in the clearance of tissue-type plasminogen activator by hepatocytes. J Biol Chem. 1995;270:26053–26056. PubMed
Correa F., Gauberti M., Parcq J., Macrez R., Hommet Y., Obiang P. Tissue plasminogen activator prevents white matter damage following stroke. J Exp Med. 2011;208:1229–1242. PubMed PMC
Harris R.J., Leonard C.K., Guzzetta A.W., Spellman M.W. Tissue plasminogen activator has an O-linked fucose attached to threonine-61 in the epidermal growth factor domain. Biochemistry. 1991;30:2311–2314. PubMed
Narita M., Bu G., Herz J., Schwartz A.L. Two receptor systems are involved in the plasma clearance of tissue-type plasminogen activator (t-PA) in vivo. J Clin Invest. 1995;96:1164–1168. PubMed PMC
Gething M.J., Adler B., Boose J.A., Gerard R.D., Madison E.L., McGookey D. Variants of human tissue-type plasminogen activator that lack specific structural domains of the heavy chain. EMBO J. 1988;7:2731–2740. PubMed PMC
Rehan M., Sagar A., Sharma V., Mishra S., Ashish Sahni G. Penta-l-lysine potentiates fibrin-independent activity of human tissue plasminogen activator. J Phys Chem B. 2015;119:13271–13277. PubMed
De Munk G.A.W., Caspers M.P.M., Chang G.T.G., Pouwels P.H., Enger-Valk B.E., Verheijen J.H. Binding of tissue-type plasminogen activator to lysine, lysine analogs, and fibrin fragments. Biochemistry. 1989;28:7318–7325. PubMed
Kranenburg O., Bouma B., Kroon-Batenburg L.M.J., Reijerkerk A., Wu Y.-P., Voest E.E. Tissue-type plasminogen activator is a multiligand cross-β structure receptor. Curr Biol. 2002;12:1833–1839. PubMed
Parcq J., Bertrand T., Baron A.F., Hommet Y., Angles-Cano E., Vivien D. Molecular requirements for safer generation of thrombolytics by bioengineering the tissue-type plasminogen activator A chain. J Thromb Haemost. 2013;11:539–546. PubMed
Aisina R.B., Mukhametova L.I. Structure and function of plasminogen/plasmin system. Russ J Bioorganic Chem. 2014;40:590–605. PubMed
Lamba D., Bauer M., Huber R., Fischer S., Rudolph R., Kohnert U. The 2.3 Å crystal structure of the catalytic domain of recombinant two-chain human tissue-type plasminogen activator. J Mol Biol. 1996;258:117–135. PubMed
Tachias K., Madison E.L. Converting tissue type plasminogen activator into a zymogen. important role of Lys156. J Biol Chem. 1997;272:28–31. PubMed
Holmes W.E., Pennica D., Blaber M., Rey M.W., Guenzler W.A., Steffens G.J. Cloning and expression of the gene for pro-urokinase in Escherichia coli. Bio/Technology. 1985;3:923.
Bode W., Renatus M. Tissue-type plasminogen activator: variants and crystal/solution structures demarcate structural determinants of function. Curr Opin Struct Biol. 1997;7:865–872. PubMed
Vogt A.D., Chakraborty P., Di Cera E. Kinetic dissection of the pre-existing conformational equilibrium in the trypsin fold. J Biol Chem. 2015;290:22435–22445. PubMed PMC
Chakraborty P., Acquasaliente L., Pelc L.A., Di Cera E. Interplay between conformational selection and zymogen activation. Sci Rep. 2018;8:4080. PubMed PMC
Coombs G.S., Dang A.T., Madison E.L., Corey D.R. Distinct mechanisms contribute to stringent substrate specificity of tissue-type plasminogen activator. J Biol Chem. 1996;271:4461–4467. PubMed
Ke S.H., Tachias K., Lamba D., Bode W., Madison E.L. Identification of a hydrophobic exosite on tissue type plasminogen activator that modulates specificity for plasminogen. J Biol Chem. 1997;272:1811–1816. PubMed
Tachias K., Madison E. Variants of tissue-type plasminogen-activator which display substantially enhanced stimulation by fibrin. J Biol Chem. 1995;270:18319–18322. PubMed
Rathore Y.S., Rehan M., Pandey K., Sahni G., Ashish First structural model of full-length human tissue-plasminogen activator: a SAXS data-based modeling study. J Phys Chem B. 2012;116:496–502. PubMed
Bakker A.H.F., Weening-Verhoeff E.J.D., Verheijen J.H. The role of the lysyl binding site of tissue-type plasminogen activator in the interaction with a forming fibrin clot. J Biol Chem. 1995;270:12355–12360. PubMed
van Zonneveld A.J., Veerman H., Pannekoek H. On the interaction of the finger and the kringle-2 domain of tissue-type plasminogen activator with fibrin. inhibition of kringle-2 binding to fibrin by epsilon-amino caproic acid. J Biol Chem. 1986;261:14214–14218. PubMed
Paoni N.F., Chow A.M., Peña L.C., Keyt B.A., Zoller M.J., Bennett W.F. Making tissue-type plasminogen activator more fibrin specific. Protein Eng Des Sel. 1993;6:529–534. PubMed
Lijnen H.R. Elements of the fibrinolytic system. In: Nieuwenhuizen W., Mosesson M.W., DeMaat M.P.M., editors. Fibrinogen. Vol. 936. New York Acad Sciences; New York: 2001. pp. 226–236. PubMed
Medved L., Nieuwenhuizen W. Molecular mechanisms of initiation of fibrinolysis by fibrin. Thromb Haemost. 2003;89:409–419. PubMed
Tsurupa G., Medved L. Identification and characterization of novel tPA- and plasminogen-binding sites within fibrin(ogen) αC-domains †. Biochemistry. 2001;40:801–808. PubMed
Schielen W.J., Adams H.P., van Leuven K., Voskuilen M., Tesser G.I., Nieuwenhuizen W. The sequence gamma-(312-324) is a fibrin-specific epitope. Blood. 1991;77:2169–2173. PubMed
Voskuilen M., Vermond A., Veeneman G.H., van Boom J.H., Klasen E.A., Zegers N.D. Fibrinogen lysine residue A alpha 157 plays a crucial role in the fibrin-induced acceleration of plasminogen activation, catalyzed by tissue-type plasminogen activator. J Biol Chem. 1987;262:5944–5946. PubMed
Yakovlev S., Makogonenko E., Kurochkina N., Nieuwenhuizen W., Ingham K., Medved L. Conversion of fibrinogen to fibrin: mechanism of exposure of tPA- and plasminogen-binding sites. Biochemistry. 2000;39:15730–15741. PubMed
Doolittle R.F., Pandi L. Binding of synthetic B knobs to fibrinogen changes the character of fibrin and inhibits its ability to activate tissue plasminogen activator and its destruction by plasmin. Biochemistry. 2006;45:2657–2667. PubMed
Fleury V., Angles-Cano E. 2002. Characterization of the binding of plasminogen to fibrin surfaces: the role of carboxy-terminal lysines. PubMed
Higgins D.L., Vehar G.A. Interaction of one-chain and two-chain tissue plasminogen activator with intact and plasmin-degraded fibrin. Biochemistry. 1987;26:7786–7791. PubMed
Scott R.W., Bergman B.L., Bajpai A., Hersh R.T., Rodriguez H., Jones B.N. Protease nexin. Properties and a modified purification procedure. J Biol Chem. 1985;260:7029–7034. PubMed
Gardiner E.E., Medcalf R.L. Is plasminogen activator inhibitor type 2 really a plasminogen activator inhibitor after all? J Thromb Haemost. 2014;12:1703–1705. PubMed
Yepes M., Lawrence D. Neuroserpin: a selective inhibitor of tissue-type plasminogen activator in the central nervous system. Thromb Haemost. 2004;91:457–464. PubMed
Rau J.C., Beaulieu L.M., Huntington J.A., Church F.C. Serpins in thrombosis, hemostasis and fibrinolysis. J Thromb Haemost. 2007;5:102–115. PubMed PMC
Madison E.L., Goldsmith E.J., Gerard R.D., Gething M.J., Sambrook J.F., Bassel-Duby R.S. Amino acid residues that affect interaction of tissue-type plasminogen activator with plasminogen activator inhibitor 1. Proc Natl Acad Sci U S A. 1990;87:3530–3533. PubMed PMC
Gong L., Liu M., Zeng T., Shi X., Yuan C., Andreasen P.A. Crystal structure of the michaelis complex between tissue-type plasminogen activator and plasminogen activators inhibitor-1. J Biol Chem. 2015;290:25795–25804. PubMed PMC
Keyt B.A., Paoni N.F., Refino C.J., Berleau L., Nguyen H., Chow A. A faster-acting and more potent form of tissue plasminogen activator. Proc Natl Acad Sci U S A. 1994;91:3670–3674. PubMed PMC
Tachias K., Madison E.L. Variants of tissue-type plasminogen activator that display extraordinary resistance to inhibition by the serpin plasminogen activator inhibitor type 1. J Biol Chem. 1997;272:14580–14585. PubMed
Vindigni A., Winfield M., Ayala Y.M., Di Cera E. Role of residue Y99 in tissue plasminogen activator. Protein Sci Publ Protein Soc. 2000;9:619–622. PubMed PMC
Peng S., Xue G., Chen S., Chen Z., Yuan C., Li J. tPA point mutation at autolysis loop enhances resistance to PAI-1 inhibition and catalytic activity. Thromb Haemost. 2018;119:077–086. PubMed
Horn I., van den Berg B., Moestrup S., Pannekoek H., van Zonneveld A.-J. Plasminogen activator inhibitor 1 contains a cryptic high affinity receptor binding site that is exposed upon complex formation with tissue-type plasminogen activator. Thromb Haemost. 1998;80:822–828. PubMed
Nagaoka M.R., Strital E., Kouyoumdjian M., Borges D.R. Participation of a galectin-dependent mechanism in the hepatic clearance of tissue-type plasminogen activator and plasma kallikrein. Thromb Res. 2002;108:257–262. PubMed
Willnow T.E., Goldstein J.L., Orth K., Brown M.S., Herz J. Low density lipoprotein receptor-related protein and gp330 bind similar ligands, including plasminogen activator-inhibitor complexes and lactoferrin, an inhibitor of chylomicron remnant clearance. J Biol Chem. 1992;267:26172–26180. PubMed
Horn I.R., van den Berg B.M., van der Meijden P.Z., Pannekoek H., van Zonneveld A.J. Molecular analysis of ligand binding to the second cluster of complement-type repeats of the low density lipoprotein receptor-related protein. evidence for an allosteric component in receptor-associated protein-mediated inhibition of ligand binding. J Biol Chem. 1997;272:13608–13613. PubMed
Willnow T.E., Orth K., Herz J. Molecular dissection of ligand binding sites on the low density lipoprotein receptor-related protein. J Biol Chem. 1994;269:15827–15832. PubMed
Neels J.G., van den Berg B.M.M., Lookene A., Olivecrona G., Pannekoek H., van Zonneveld A.-J. The second and fourth cluster of class A cysteine-rich repeats of the low density lipoprotein receptor-related protein share ligand-binding properties. J Biol Chem. 1999;274:31305–31311. PubMed
Fisher C., Beglova N., Blacklow S.C. Structure of an LDLR-RAP complex reveals a general mode for ligand recognition by lipoprotein receptors. Mol Cell. 2006;22:277–283. PubMed
Guttman M., Prieto J.H., Handel T.M., Domaille P.J., Komives E.A. Structure of the Minimal interface between ApoE and LRP. J Mol Biol. 2010;398:306–319. PubMed PMC
Gettins P.G.W., Dolmer K. The high affinity binding site on plasminogen activator inhibitor-1 (PAI-1) for the low density lipoprotein receptor-related protein (LRP1) Is composed of four basic residues. J Biol Chem. 2016;291:800–812. PubMed PMC
Dolmer K., Campos A., Gettins P.G.W. quantitative dissection of the binding contributions of ligand lysines of the receptor-associated protein (RAP) to the low density lipoprotein receptor-related protein (LRP1) J Biol Chem. 2013;288:24081–24090. PubMed PMC
Benchenane K., Berezowski V., Ali C., Fernandez-Monreal M., Lopez-Atalaya J.P., Brillault J. Tissue-type plasminogen activator crosses the intact blood-brain barrier by low-density lipoprotein receptor-related protein-mediated transcytosis. Circulation. 2005;111:2241–2249. PubMed
Kawasaki T., Kaku S., Takenaka T., Yanagi K., Ohshima N. Thrombolytic activity of YM866, a novel modified tissue-type plasminogen activator, in a photochemically induced platelet-rich thrombosis model. J Cardiovasc Pharmacol. 1994;23:884. PubMed
Bassel-Duby R., Jiang N.Y., Bittick T., Madison E., McGookey D., Orth K. Tyrosine 67 in the epidermal growth factor-like domain of tissue-type plasminogen activator is important for clearance by a specific hepatic receptor. J Biol Chem. 1992;267:9668–9677. PubMed
Goulay R., Naveau M., Gaberel T., Vivien D., Parcq J. Optimized tPA: a non-neurotoxic fibrinolytic agent for the drainage of intracerebral hemorrhages. J Cereb Blood Flow Metab. 2018;38:1180–1189. PubMed PMC
Armstead W.M., Riley J., Yarovoi S., Higazi A.A.-R., Cines D.B. Tissue-type plasminogen activator-A(296-299) prevents impairment of cerebral autoregulation after stroke through lipoprotein-related receptor-dependent increase in cAMP and p38. Stroke. 2016;47:2096–2102. PubMed PMC
López-Atalaya José P., Roussel Benoit D., Ali C., Maubert E., Petersen K.U., Berezowski V. Recombinant desmodus rotundus salivary plasminogen activator crosses the blood–brain barrier through a low-density lipoprotein receptor-related protein-dependent mechanism without exerting neurotoxic effects. Stroke. 2007;38:1036–1043. PubMed
Madureira P.A., O’Connell P.A., Surette A.P., Miller V.A., Waisman D.M. The biochemistry and regulation of S100A10: A multifunctional plasminogen receptor involved in oncogenesis. J Biomed Biotechnol. 2012;2012:1–21. PubMed PMC
Lee S.-B., Oh H.-K., Kim H.-K., Joe Y.A. Expression of the non-glycosylated kringle domain of tissue type plasminogen activator in Pichia and its anti-endothelial cell activity. Protein Expr Purif. 2006;50:1–8. PubMed
Shim B.-S., Kang B.-H., Hong Y.-K., Kim H.-K., Lee I.-H., Lee S.-Y. The kringle domain of tissue-type plasminogen activator inhibits in vivo tumor growth. Biochem Biophys Res Commun. 2005;327:1155–1162. PubMed
Kim H.-K., Lee S.Y., Oh H.-K., Kang B.-H., Ku H.-J., Lee Y. Inhibition of endothelial cell proliferation by the recombinant kringle domain of tissue-type plasminogen activator. Biochem Biophys Res Commun. 2003;304:740–746. PubMed
Bharadwaj A., Bydoun M., Holloway R., Waisman D. Annexin A2 heterotetramer: structure and function. Int J Mol Sci. 2013;14:6259–6305. PubMed PMC
Kim J. Annexin II: a plasminogen-plasminogen activator co-receptor. Front Biosci. 2002;7:d341. PubMed
Lin L., Wu C., Hu K. Tissue plasminogen activator activates NF-κB through a pathway involving annexin A2/CD11b and integrin-linked kinase. J Am Soc Nephrol JASN. 2012;23:1329–1338. PubMed PMC
Kohnert U., Rudolph R., Verheijen J., Weeningverhoeff E., Stern A., Opitz U. Biochemical-properties of the kringle 2 and protease domains are maintained in the refolded T-Pa deletion variant Bm 06.022. Protein Eng. 1992;5:93–100. PubMed
Thomas G., Thibodeaux H., Errett C., Badillo J., Keyt B., Refino C. a long-half-life and fibrin-specific form of tissue-plasminogen activator in rabbit models of embolic stroke and peripheral bleeding. Stroke. 1994;25:2072–2078. PubMed
Eastman D., Wurm F.M., Van Reis R., Higgins D.L. A region of tissue plasminogen activator that affects plasminogen activation differentially with various fibrin(ogen)-related stimulators. Biochemistry. 1992;31:419–422. PubMed
Malcolm A.D., Keltai M., Walsh M.J. ESPRIT: a European study of the prevention of reocclusion after initial thrombolysis with duteplase in acute myocardial infarction. Eur Heart J. 1996;17:1522–1531. PubMed
Investigators InTIME-II. Intravenous NPA for the treatment of infarcting myocardium early; inTIME-II, a double-blind comparison of single-bolus lanoteplase vs accelerated alteplase for the treatment of patients with acute myocardial infarction. Eur Heart J. 2000;21:2005–2013. PubMed
Hansen L., Blue Y., Barone K., Collen D., Larsen G.R. Functional effects of asparagine-linked oligosaccharide on natural and variant human tissue-type plasminogen activator. J Biol Chem. 1988;263:15713–15719. PubMed
Oikawa K., Watanabe T., Higuchi S. Comparison of drug disposition between wild-type and novel tissue-type plasminogen activator pamiteplase in rats. Drug Metab Dispos. 2000;28:1087–1093. PubMed
Flemmig M., Melzig M.F. Serine-proteases as plasminogen activators in terms of fibrinolysis. J Pharm Pharmacol. 2012;64:1025–1039. PubMed
Kazemali M., Majidzadeh-A K., Sardari S., Saadatirad A.H., Khalaj V., Zarei N. Design of a novel chimeric tissue plasminogen activator with favorable Vampire bat plasminogen activator properties. Enzyme Microb Technol. 2014;67:82–86. PubMed
Gurewich V. Experiences with pro-urokinase and potentiation of its fibrinolytic effect by urokinase and by tissue plasminogen activator. J Am Coll Cardiol. 1987;10:16B–21B. PubMed
Pannell R., Black J., Gurewich V. Complementary modes of action of tissue-type plasminogen activator and pro-urokinase by which their synergistic effect on clot lysis may be explained. J Clin Invest. 1988;81:853–859. PubMed PMC
Gurewich V. Why so little progress in therapeutic thrombolysis? The current state of the art and prospects for improvement. J Thromb Thrombolysis. 2015;40:480–487. PubMed PMC
Pannell R., Li S., Gurewich V. Fibrin-specific and effective clot lysis requires both plasminogen activators and for them to be in a sequential rather than simultaneous combination. J Thromb Thrombolysis. 2017;44:210–215. PubMed
Gladysz R., Adriaenssens Y., De Winter H., Joossens J., Lambeir A.-M., Augustyns K. Discovery and SAR of novel and selective inhibitors of urokinase plasminogen activator (uPA) with an imidazo[1,2-a]pyridine scaffold. J Med Chem. 2015;58:9238–9257. PubMed
Rabbani S.A., Ateeq B., Arakelian A., Valentino M.L., Shaw D.E., Dauffenbach L.M. An anti-urokinase plasminogen activator receptor antibody (ATN-658) blocks prostate cancer invasion, migration, growth, and experimental skeletal metastasis in vitro and in vivo. Neoplasia N Y N. 2010;12:778–788. PubMed PMC
Xu X., Cai Y., Wei Y., Donate F., Juarez J., Parry G. Identification of a new epitope in uPAR as a target for the cancer therapeutic monoclonal antibody ATN-658, a structural homolog of the uPAR binding integrin CD11b (αM) PLoS One. 2014;9 PubMed PMC
Bifulco K., Longanesi-Cattani I., Gala M., Di Carluccio G., Masucci M.T., Pavone V. The soluble form of urokinase receptor promotes angiogenesis through its Ser88-Arg-Ser-Arg-Tyr92 chemotactic sequence: new vessel formation by SRSRY sequence of u-PAR. J Thromb Haemost. 2010;8:2789–2799. PubMed
Heissig B., Eiamboonsert S., Salama Y., Shimazu H., Dhahri D., Munakata S. Cancer therapy targeting the fibrinolytic system. Adv Drug Deliv Rev. 2016;99:172–179. PubMed
Zhao Y., Lyons C.E., Jr., Xiao A., Templeton D.J., Sang Q.A., Brew K. Urokinase directly activates matrix metalloproteinases-9: a potential role in glioblastoma invasion. Biochem Biophys Res Commun. 2008;369:1215–1220. PubMed PMC
Shin S.M., Cho K.S., Choi M.S., Lee S.H., Han S.-H., Kang Y.-S. Urokinase-type plasminogen activator induces BV-2 microglial cell migration through activation of matrix metalloproteinase-9. Neurochem Res. 2010;35:976–985. PubMed
Carriero M.V., Franco P., Votta G., Longanesi-Cattani I., Vento M.T., Masucci M.T. Regulation of cell migration and invasion by specific modules of uPA: mechanistic insights and specific inhibitors. Curr Drug Targets. 2011;12:1761–1771. PubMed
Ass K., Ahmad A., Azmi A.S., Sarkar S.H., Sarkar F.H. Evolving role of uPA/uPAR system in human cancers. Cancer Treat Rev. 2008;34:122–136. PubMed
Lorenzi V.D., Ferraris G.M.S., Madsen J.B., Lupia M., Andreasen P.A., Sidenius N. Urokinase links plasminogen activation and cell adhesion by cleavage of the RGD motif in vitronectin. EMBO Rep. 2016:17:982. PubMed PMC
Gandhari M., Arens N., Majety M., Dorn-Beineke A., Hildenbrand R.L. Urokinase-type plasminogen activator induces proliferation in breast cancer cells. Int J Oncol Rep. 2006;28:1463–1470. https://www.ncbi.nlm.nih.gov/pubmed/16685447 PubMed
Mekkawy A.H., Pourgholami M.H., Morris D.L. Involvement of urokinase-type plasminogen activator system in cancer: an overview: uPA system in cancer. Med Res Rev. 2014;34:918–956. PubMed
Degen S.J., Rajput B., Reich E. The human tissue plasminogen activator gene. J Biol Chem. 1986;261:6972–6985. PubMed
Stephens R.W., Bokman A.M., Myohanen H.T., Reisberg T., Tapiovaara H., Pedersen N. Heparin binding to the urokinase kringle domain. Biochemistry. 1992;31:7572–7579. PubMed
Franco P., Iaccarino C., Chiaradonna F., Brandazza A., Iavarone C., Mastronicola M.R. Phosphorylation of human pro-urokinase on ser 138/303 impairs its receptor-dependent ability to promote myelomonocytic adherence and motility. J Cell Biol. 1997;137:779–791. PubMed PMC
Buko A.M., Kentzer E.J., Petros A., Menon G., Zuiderweg E.R., Sarin V.K. Characterization of a posttranslational fucosylation in the growth factor domain of urinary plasminogen activator. Proc Natl Acad Sci. 1991;88:3992–3996. PubMed PMC
Goochee C.F., Gramer M.J., Andersen D.C., Bahr J.B., Rasmussen J.R. The oligosaccharides of glycoproteins: bioprocess factors affecting oligosaccharide structure and their effect on glycoprotein properties. Bio/Technology. 1991;9:1347. PubMed
Kasai S., Arimura H., Nishida M., Suyama T. Proteolytic cleavage of single-chain pro-urokinase induces conformational change which follows activation of the zymogen and reduction of its high affinity for fibrin. J Biol Chem. 1985;260:12377–12381. PubMed
Behrens M.A., Botkjaer K.A., Goswami S., Oliveira C.L.P., Jensen J.K., Schar C.R. Activation of the zymogen to urokinase-type plasminogen activator is associated with increased interdomain flexibility. J Mol Biol. 2011;411:417–429. PubMed
Fleury V., Lijnen H.R., Anglés-Cano E. Mechanism of the enhanced intrinsic activity of single-chain urokinase-type plasminogen activator during ongoing fibrinolysis. J Biol Chem. 1993;268:18554–18559. PubMed
Kromann-Hansen T., Louise Lange E., Peter Sørensen H., Hassanzadeh-Ghassabeh G., Huang M., Jensen J.K. Discovery of a novel conformational equilibrium in urokinase-type plasminogen activator. Sci Rep. 2017;7 PubMed PMC
Liu Z., Kromann-Hansen T., Lund I.K., Hosseini M., Jensen K.J., Høyer-Hansen G. Interconversion of active and inactive conformations of urokinase-type plasminogen activator. Biochemistry. 2012;51:7804–7811. PubMed
Kromann-Hansen T., Lange E.L., Lund I.K., Høyer-Hansen G., Andreasen P.A., Komives E.A. Ligand binding modulates the structural dynamics and activity of urokinase-type plasminogen activator: a possible mechanism of plasminogen activation. PLoS One. 2018;13 PubMed PMC
Pannell R., Gurewich V. Pro-urokinase: a study of its stability in plasma and of a mechanism for its selective fibrinolytic effect. Blood. 1986;67:1215–1223. PubMed
Sun Z., Liu J.-N. Mutagenesis at Pro309 of single-chain urokinase-type plasminogen activator alters its catalytic properties. Proteins Struct Funct Bioinforma. 2005;61:870–877. PubMed
Blasi F., Vassalli J.D., Danø K. Urokinase-type plasminogen activator: proenzyme, receptor, and inhibitors. J Cell Biol. 1987;104:801–804. PubMed PMC
Gurewich V., Pannell R. Inactivation of single-chain urokinase (pro-urokinase) by thrombin and thrombin-like enzymes: relevance of the findings to the interpretation of fibrin-binding experiments. Blood. 1987;69:769–772. PubMed
Lin Z., Jiang L., Yuan C., Jensen J.K., Zhang X., Luo Z. Structural basis for recognition of urokinase-type plasminogen activator by plasminogen activator inhibitor-1. J Biol Chem. 2011;286:7027–7032. PubMed PMC
Nienaber V., Wang J.Y., Davidson D., Henkin J. Re-engineering of human urokinase provides a system for structure-based drug design at high resolution and reveals a novel structural subsite. J Biol Chem. 2000;275:7239–7248. PubMed
Katz B.A., Luong C., Ho J.D., Somoza J.R., Gjerstad E., Tang J. Dissecting and designing inhibitor selectivity determinants at the S1 site using an artificial Ala190 protease (Ala190 uPA) J Mol Biol. 2004;344:527–547. PubMed
Li C.Y., de Veer S.J., Law R.H.P., Whisstock J.C., Craik D.J., Swedberg J.E. Characterising the subsite specificity of urokinase-type plasminogen activator and tissue-type plasminogen activator using a sequence-defined peptide aldehyde library. Chem BioChem. 2019;20:46–50. PubMed
van der Kaaden M.E., Rijken D.C., van Berkel T.J.C., Kuiper J. Plasma clearance of urokinase-type plasminogen activator. Fibrinolysis Proteolysis. 1998;12:251–258.
Croucher D., Saunders D.N., Ranson M. The urokinase/PAI-2 complex - A new high affinity ligand for the endocytosis receptor low density lipoprotein receptor-related protein. J Biol Chem. 2006;281:10206–10213. PubMed
Kounnas M.Z., Henkin J., Argraves W.S., Strickland D.K. Low density lipoprotein receptor-related protein/alpha 2-macroglobulin receptor mediates cellular uptake of pro-urokinase. J Biol Chem. 1993;268:21862–21867. PubMed
Nykjaer A., Kjøller L., Cohen R.L., Lawrence D.A., Garni-Wagner B.A., Todd R.F. Regions involved in binding of urokinase-type-1 inhibitor complex and pro-urokinase to the endocytic alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein. evidence that the urokinase receptor protects pro-urokinase against binding to the endocytic receptor. J Biol Chem. 1994;269:25668–25676. PubMed
Skeldal S., Larsen J.V., Pedersen K.E., Petersen H.H., Egelund R., Christensen A. Binding areas of urokinase-type plasminogen activator–plasminogen activator inhibitor-1 complex for endocytosis receptors of the low-density lipoprotein receptor family, determined by site-directed mutagenesis. FEBS J. 2006;273:5143–5159. PubMed
Ellis V., Whawell S.A., Werner F., Deadman J.J. Assembly of urokinase receptor-mediated plasminogen activation complexes involves direct, non-active-site interactions between urokinase and plasminogen. Biochemistry. 1999;38:651–659. PubMed
Huai Q., Mazar A.P., Kuo A., Parry G.C., Shaw D.E., Callahan J. Structure of human urokinase plasminogen activator in complex with its receptor. Science. 2006;311:656–659. PubMed
Ploug M., Gårdsvoll H., Jørgensen T.J.D., Hansen L.L., Danø K. Structural analysis of the interaction between urokinase-type plasminogen activator and its receptor: a potential target for anti-invasive cancer therapy. Biochem Soc Trans. 2002;30:177–183. PubMed
Appella E., Robinson E.A., Ullrich S.J., Stoppelli M.P., Corti A., Cassani C. In: The receptor-binding sequence of urokinase. Walsh K.A., editor. Humana Press; Totowa, NJ: 1986. pp. 551–554. Methods Protein Seq. Anal.. 1987. PubMed
Degryse B., Fernandez-Recio J., Citro V., Blasi F., Cubellis M.V. In silico docking of urokinase plasminogen activator and integrins. BMC Bioinformatics. 2008;9:S8. PubMed PMC
Franco P., Carotenuto A., Marcozzi C., Votta G., Sarno C., Iaccarino I. opposite modulation of cell migration by distinct subregions of urokinase connecting peptide. Chembiochem. 2013;14:882–889. PubMed
Novokhatny V., Medved L., Lijnen H.R., Ingham K. Tissue-type plasminogen activator (tPA) interacts with urokinase-type plasminogen activator (uPA) via tPA’s lysine binding site: an explanation of the poor fibrin affinity of recombinant tPA/uPA chimeric molecules. J Biol Chem. 1995;270:8680–8685. PubMed
Sun Z., Jiang Y., Ma Z., Wu H., Liu B.-F., Xu Y. Identification of a flexible loop region (297–313) of urokinase-type plasminogen activator, which helps determine its catalytic activity. J Biol Chem. 1997;272:23818–23823. PubMed
Gurewich V., Pannell R., Simmons-Byrd A., Sarmientos P., Liu J.-N., Badylak S.F. Thrombolysis vs. bleeding from hemostatic sites by a prourokinase mutant compared with tissue plasminogen activator. J Thromb Haemost. 2006;4:1559–1565. PubMed
Tillett W.S., Garner R.L. The fibrinolytic activity of hemolytic streptococci. J Exp Med. 1933;58:485–502. PubMed PMC
Broder C.C., Lottenberg R., von Mering G.O., Johnston K.H., Boyle M.D. Isolation of a prokaryotic plasmin receptor. relationship to a plasminogen activator produced by the same micro-organism. J Biol Chem. 1991;266:4922–4928. PubMed
Sun H., Ringdahl U., Homeister J.W., Fay W.P., Engleberg N.C., Yang A.Y. Plasminogen is a critical host pathogenicity factor for group a streptococcal infection. Science. 2004;305:1283–1286. PubMed
Huish S., Thelwell C., Longstaff C. Activity regulation by fibrinogen and fibrin of streptokinase from streptococcus pyogenes. PLoS One. 2017;12 PubMed PMC
Reed G.L., Houng A.K., Liu L., Parhami-Seren B., Matsueda L.H., Wang S.G. A catalytic switch and the conversion of streptokinase to a fibrin-targeted plasminogen activator. Proc Natl Acad Sci U S A. 1999;96:8879–8883. PubMed PMC
Banerjee A., Chisti Y., Banerjee U.C. Streptokinase - a clinically useful thrombolytic agent. Biotechnol Adv. 2004;22:287–307. PubMed
Lee H.S. How safe is the readministration of streptokinase? Drug Saf. 1995;13:76–80. PubMed
Jennings K. Antibodies to streptokinase. BMJ. 1996;312:393–394. PubMed PMC
Malke H., Roe B., Ferretti J.J. Nucleotide sequence of the streptokinase gene from Streptococcus equisimilis H46A. Gene. 1985;34:357–362. PubMed
Renzo E.C.D., Siiteri P.K., Hutchings B.L., Bell P.H. Preparation and certain properties of highly purified streptokinase. J Biol Chem. 1967;242:533–542. PubMed
Teuten A.J., Broadhurst R.W., Smith R.A.G., Dobson C.M. Characterization of structural and folding properties of streptokinase by n.m.r. spectroscopy. Biochem J. 1993;290:313–319. PubMed PMC
Wang X., Lin X., Loy J.A., Tang J., Zhang X.C. Crystal structure of the catalytic domain of human plasmin complexed with streptokinase. Science. 1998;281:1662–1665. PubMed
Sazonova I.Y., Robinson B.R., Gladysheva I.P., Castellino F.J., Reed G.L. α Domain deletion converts streptokinase into a fibrin-dependent plasminogen activator through mechanisms akin to staphylokinase and tissue plasminogen activator. J Biol Chem. 2004;279:24994–25001. PubMed
Wang S.G., Reed G.L., Hedstrom L. Deletion of Ile1 changes the mechanism of streptokinase: evidence for the molecular sexuality hypothesis. Biochemistry. 1999;38:5232–5240. PubMed
Wang S.G., Reed G.L., Hedstrom L. Zymogen activation in the streptokinase-plasminogen complex - Ile1 is required for the formation of a functional active site. Eur J Biochem. 2000;267:3994–4001. PubMed
Loy J.A., Lin X., Schenone M., Castellino F.J., Zhang X.C., Tang J. Domain interactions between streptokinase and human plasminogen †. Biochemistry. 2001;40:14686–14695. PubMed
Liu L., Sazonova I.Y., Turner R.B., Chowdhry S.A., Tsai J., Houng A.K. Leucine 42 in the fibronectin motif of streptokinase plays a critical role in fibrin-independent plasminogen activation. J Biol Chem. 2000;275:37686–37691. PubMed
Boxrud P.D., Verhamme I.M.A., Fay W.P., Bock P.E. Streptokinase triggers conformational activation of plasminogen through specific interactions of the amino-terminal sequence and stabilizes the active zymogen conformation. J Biol Chem. 2001;276:26084–26089. PubMed
Mundada L.V., Prorok M., DeFord M.E., Figuera M., Castellino F.J., Fay W.P. Structure-function analysis of the streptokinase amino terminus (residues 1-59) J Biol Chem. 2003;278:24421–24427. PubMed
Young K.-C., Shi G.-Y., Wu D.-H., Chang L.-C., Chang B.-I., Ou C.-P. Plasminogen activation by streptokinase via a unique mechanism. J Biol Chem. 1998;273:3110–3116. PubMed
Wakeham N., Terzyan S., Zhai P.Z., Loy J.A., Tang J., Zhang X.C. Effects of deletion of streptokinase residues 48-59 on plasminogen activation. Protein Eng. 2002;15:753–761. PubMed
Kim D.M., Lee S.J., Kim I.C., Kim S.T., Byun S.M. Asp41-His48 region of streptokinase is important in binding to a substrate plasminogen. Thromb Res. 2000;99:93–98. PubMed
Parrado J., Conejero-Lara F., Smith R.A., Marshall J.M., Ponting C.P., Dobson C.M. The domain organization of streptokinase: nuclear magnetic resonance, circular dichroism, and functional characterization of proteolytic fragments. Protein Sci Publ Protein Soc. 1996;5:693–704. PubMed PMC
Rodríguez P., Fuentes P., Barro M., Alvarez J.G., Muñoz E., Collen D. Structural domains of streptokinase involved in the interaction with plasminogen. Eur J Biochem. 1995;229:83–90. PubMed
Conejero-Lara F., Parrado J., Azuaga A.I., Dobson C.M., Ponting C.P. Analysis of the interactions between streptokinase domains and human plasminogen. Protein Sci Publ Protein Soc. 1998;7:2190–2199. PubMed PMC
Chaudhary A., Vasudha S., Rajagopal K., Komath S.S., Garg N., Yadav M. Function of the central domain of streptokinase in substrate plasminogen docking and processing revealed by site-directed mutagenesis. Protein Sci. 1999;8:2791–2805. PubMed PMC
Lin L.F., Oeun S., Houng A., Reed G.L. Mutation of lysines in a plasminogen binding region of streptokinase identifies residues important for generating a functional activator complex. Biochemistry. 1996;35:16879–16885. PubMed
Aneja R., Datt M., Singh B., Kumar S., Sahni G. Identification of a new exosite involved in catalytic turnover by the streptokinase-plasmin activator complex during human plasminogen activation. J Biol Chem. 2009;284:32642–32650. PubMed PMC
Dhar J., Pande A.H., Sundram V., Nanda J.S., Mande S.C., Sahni G. Involvement of a nine-residue loop of streptokinase in the generation of macromolecular substrate specificity by the activator complex through interaction with substrate kringle domains. J Biol Chem. 2002;277:13257–13267. PubMed
Tharp A.C., Laha M., Panizzi P., Thompson M.W., Fuentes-Prior P., Bock P.E. Plasminogen substrate recognition by the streptokinase-plasminogen catalytic complex is facilitated by Arg253, Lys256, and Lys257 in the streptokinase β-domain and kringle 5 of the substrate. J Biol Chem. 2009;284:19511–19521. PubMed PMC
Wu D.H., Shi G.Y., Chuang W.J., Hsu J.M., Young K.C., Chang C.W. Coiled coil region of streptokinase gamma-domain is essential for plasminogen activation. J Biol Chem. 2001;276:15025–15033. PubMed
Yadav S., Aneja R., Kumar P., Datt M., Sinha S., Sahni G. Identification through combinatorial random and rational mutagenesis of a substrate-interacting exosite in the γ domain of streptokinase. J Biol Chem. 2011;286:6458–6469. PubMed PMC
Panizzi P., Boxrud P.D., Verhamme I.M., Bock P.E. Binding of the COOH-terminal lysine residue of streptokinase to plasmin(ogen) kringles enhances formation of the streptokinase center dot plasmin(ogen) catalytic complexes. J Biol Chem. 2006;281:26774–26778. PubMed PMC
Aneja R., Datt M., Yadav S., Sahni G. Multiple exosites distributed across the three domains of streptokinase co-operate to generate high catalytic rates in the streptokinase–plasmin activator complex. Biochemistry. 2013;52:8957–8968. PubMed
Sundram V., Nanda J.S., Rajagopal K., Dhar J., Chaudhary A., Sahni G. Domain truncation studies reveal that the streptokinase-plasmin activator complex utilizes long range protein-protein interactions with macromolecular substrate to maximize catalytic turnover. J Biol Chem. 2003;278:30569–30577. PubMed
Reddy K.N.N., Markus G. Mechanism of activation of human plasminogen by streptokinase. Presence of active center in streptokinase-plasminogen complex. J Biol Chem. 1972;247:1683–1691. PubMed
McClintock D.K., Bell P.H. The mechanism of activation of human plasminogen by streptokinase. Biochem Biophys Res Commun. 1971;43:694–702. PubMed
Nolan M., Bouldin S.D., Bock P.E. Full time course kinetics of the streptokinase-plasminogen activation pathway. J Biol Chem. 2013;288:29482–29493. PubMed PMC
Lin L.F., Houng A.Y., Reed G.L. Epsilon amino caproic acid inhibits streptokinase-plasminogen activator complex formation and substrate binding through kringle-dependent mechanisms. Biochemistry. 2000;39:4740–4745. PubMed
Boxrud P.D., Bock P.E. Streptokinase binds preferentially to the extended conformation of plasminogen through lysine binding site and catalytic domain interactions. Biochemistry. 2000;39:13974–13981. PubMed
Verhamme I.M., Bock P.E. Rapid binding of plasminogen to streptokinase in a catalytic complex reveals a three-step mechanism. J Biol Chem. 2014;289:28006–28018. PubMed PMC
Verhamme I.M., Bock P.E. Rapid-reaction kinetic characterization of the pathway of streptokinase-plasmin catalytic complex formation. J Biol Chem. 2008;283:26137–26147. PubMed PMC
Yadav S., Datt M., Singh B., Sahni G. Role of the 88-97 loop in plasminogen activation by streptokinase probed through site-specific mutagenesis. Biochim Biophys Acta-Proteins Proteomics. 1784;2008:1310–1318. PubMed
Boxrud P.D., Bock P.E. Coupling of conformational and proteolytic activation in the kinetic mechanism of plasminogen activation by streptokinase. J Biol Chem. 2004;279:36642–36649. PubMed
Collen D., Hoef B.V., Schlott B., Hartmann M., Gührs K.-H., Lijnen H.R. Mechanisms of activation of mammalian plasma fibrinolytic systems with streptokinase and with recombinant staphylokinase. Eur J Biochem. 1993;216:307–314. PubMed
Lijnen H.R., Van Hoef B., De Cock F., Okada K., Ueshima S., Matsuo O. On the mechanism of fibrin-specific plasminogen activation by staphylokinase. J Biol Chem. 1991;266:11826–11832. PubMed
Silence K., Collen D., Lijnen H.R. Regulation by alpha 2-antiplasmin and fibrin of the activation of plasminogen with recombinant staphylokinase in plasma. Blood. 1993;82:1175–11783. PubMed
Sazonova I.Y., McNamee R.A., Houng A.K., King S.M., Hedstrom L., Reed G.L. Reprogrammed streptokinases develop fibrin-targeting and dissolve blood clots with more potency than tissue plasminogen activator. J Thromb Haemost. 2009;7:1321–1328. PubMed PMC
Cook S.M., Skora A., Walker M.J., Sanderson-Smith M.L., McArthur J.D. Site-restricted plasminogen activation mediated by group A streptococcal streptokinase variants. Biochem J. 2014;458:23–31. PubMed
Taheri M.N., Behzad-Behbahani A., Rafiei Dehbidi G., Salehi S., Sharifzadeh S. Engineering, expression and purification of a chimeric fibrin-specific streptokinase. Protein Expr Purif. 2016;128:14–21. PubMed
Zhang Y., Gladysheva I.P., Houng A.K., Reed G.L. Streptococcus uberis plasminogen activator (SUPA) activates human plasminogen through novel species-specific and fibrin-targeted mechanisms. J Biol Chem. 2012;287:19171–19176. PubMed PMC
Boxrud P.D., Fay W.P., Bock P.E. Streptokinase binds to human plasmin with high affinity, perturbs the plasmin active site, and induces expression of a substrate recognition exosite for plasminogen. J Biol Chem. 2000;275:14579–14589. PubMed
Shi G.Y., Chang B.I., Chen S.M., Wu D.H., Wu H.L. Function of streptokinase fragments in plasminogen activation. Biochem J. 1994;304:235–241. PubMed PMC
Adivitiya, Babbal, Mohanty S., Khasa Y.P. Engineering of deglycosylated and plasmin resistant variants of recombinant streptokinase in Pichia pastoris. Appl Microbiol Biotechnol. 2018;102:10561–10577. PubMed
Wu X.-C., Ye R., Duan Y., Wong S.-L. Engineering of plasmin-resistant forms of streptokinase and their production in bacillus subtilis: streptokinase with longer functional half-life. Appl Environ Microbiol. 1998;64:824–829. PubMed PMC
Shi G.-Y., Chang B.-I., Su S.-W., Young K.-C., Wu D.-H., Chang L.-C. Preparation of a novel streptokinase mutant with improved stability. Thromb Haemost. 1998;79:992–997. PubMed
Wong S.L., Ye R., Nathoo S. Engineering and production of streptokinase in a Bacillus subtilis expression-secretion system. Appl Environ Microbiol. 1994;60:517–523. PubMed PMC
Sawhney P., Katare K., Sahni G. PEGylation of truncated streptokinase leads to formulation of a useful drug with ameliorated attributes. Plos One. 2016;11 PubMed PMC
Sawhney P., Kumar S., Maheshwari N., Guleria S.S., Dhar N., Kashyap R. Site-Specific Thiol-mediated PEGylation of streptokinase leads to improved properties with clinical potential. Curr Pharm Des. 2016;22:5868–5878. PubMed
Rajagopalan S., Gonias S.L., Pizzo S.V. A nonantigenic covalent streptokinase-polyethylene glycol complex with plasminogen activator function. J Clin Invest. 1985;75:413–419. PubMed PMC
Koide A., Suzuki S., Kobayashi S. Preparation of polyethylene glycol-modified streptokinase with disappearance of binding ability towards anti-serum and retention of activity. FEBS Lett. 1982;143:73–76. PubMed
Pratap J., Rajamohan G., Dikshit K.L. Characteristics of glycosylated streptokinase secreted from Pichia pastoris: enhanced resistance of SK to proteolysis by glycosylation. Appl Microbiol Biotechnol. 2000;53:469–475. PubMed
Suthakaran P., Balasubramanian J., Ravichandran M., Murugan V., Ramya L.N., Pulicherla K.K. Studies on lipidification of streptokinase: a novel strategy to enhance the stability and activity. Am J Ther. 2014;21:343. PubMed
Smith R.A.G., Dupe R.J., English P.D., Green J. Fibrinolysis with acyl-enzymes: a new approach to thrombolytic therapy. Nature. 1981;290:505–508. PubMed
Monk J.P., Heel R.C. Anisoylated plasminogen streptokinase activator complex (APSAC). A review of its mechanism of action, clinical pharmacology and therapeutic use in acute myocardial infarction. Drugs. 1987;34:25–49. PubMed
Anderson J.L. Development and evaluation of anisoylated plasminogen streptokinase activator complex (APSAC) as a second generation thrombolytic agent. J Am Coll Cardiol. 1987;10:22B–27B. PubMed
Lack C.H. Staphylokinase : an activator of plasma protease. Nature. 1948;161:559–560. PubMed
Sako T., Sawaki S., Sakurai T., Ito S., Yoshizawa Y., Kondo I. Cloning and expression of the staphylokinase gene of Staphylococcus aureus in Escherichia coli. Mol Gen Genet. 1983;190:271–277. PubMed
Collen D., De Cock F., Vanlinthout I., Declerck P.J., Lijnen H.R., Stassen J.M. Comparative thrombolytic and immunogenic properties of staphylokinase and streptokinase. Fibrinolysis. 1992;6:232–242.
Collen D., Lijnen H.R. Staphylokinase, a fibrin-specific plasminogen activator with therapeutic potential? Blood. 1994;84:680–686. PubMed
Collen D. Staphylokinase: a potent, uniquely fibrin-selective thrombolytic agent. Nat Med. 1998;4:279–284. PubMed
Matsuo O., Okada K., Fukao H., Tomioka Y., Ueshima S., Watanuki M. Thrombolytic properties of staphylokinase. Blood. 1990;76:925–929. PubMed
Behnke D., Gerlach D. Cloning and expression in Escherichia coli, Bacillus subtilis, and Streptococcus sanguis of a gene for staphylokinase — a bacterial plasminogen activator. Mol Gen Genet MGG. 1987;210:528–534. PubMed
Collen D., Zhao Z.A., Holvoet P., Marynen P. Primary structure and gene structure of staphylokinase. Fibrinolysis. 1992;6:226–231.
Rabijns A., Bondt H.L.D., Ranter C.D. Three-dimensional structure of staphylokinase, a plasminogen activator with therapeutic potential. Nat Struct Biol. 1997;4:357–360. PubMed
Parry M.A., Fernandez-Catalan C., Bergner A., Huber R., Hopfner K.P., Schlott B. The ternary microplasmin-staphylokinase-microplasmin complex is a proteinase-cofactor-substrate complex in action. Nat Struct Biol. 1998;5:917–923. PubMed
Ohlenschläger O., Ramachandran R., Flemming J., Gührs K.-H., Schlott B., Brown L.R. NMR secondary structure of the plasminogen activator protein staphylokinase. J Biomol NMR. 1997;9:273–286. PubMed
Kowalska-Loth B., Zakrzewski K. The activation by staphylokinase of human plasminogen. Acta Biochim Pol. 1975;22:327–339. PubMed
Grella D.K., Castellino F.J. Activation of human plasminogen by staphylokinase. direct evidence that preformed plasmin is necessary for activation to occur. Blood. 1997;89:1585–1589. PubMed
Collen D., Schlott B., Engelborghs Y., Hoef B.V., Hartmann M., Lijnen H.R. On the mechanism of the activation of human plasminogen by recombinant staphylokinase. J Biol Chem. 1993;268:8284–8289. PubMed
Shibata H., Nagaoka M., Sakai M., Sawada H., Watanabe T., Yokokura T. Kinetic studies on the plasminogen activation by the staphylokinase-plasmin complex. J Biochem (Tokyo) 1994;115:738–742. PubMed
Schlott B., Hartmann M., Gührs K.-H., Birch-Hirschfeld E., Gase A., Vettermann S. Functional properties of recombinant staphylokinase variants obtained by site-specific mutagenesis of methionine-26. Biochim Biophys Acta BBA Protein Struct Mol Enzymol. 1994;1204:235–242. PubMed
Dahiya M., Singh S., Rajamohan G., Sethi D., Ashish Dikshit K.L. Intermolecular interactions in staphylokinase-plasmin(ogen) bimolecular complex: function of His43 and Tyr44. FEBS Lett. 2011;585:1814–1820. PubMed
Singh S., Ashish Dikshit K.L. Pro(42) and Val(45) of staphylokinase modulate intermolecular interactions of His(43)-Tyr(44) pair and specificity of staphylokinase-plasmin activator complex. FEBS Lett. 2012;586:653–658. PubMed
Silence K., Hartmann M., Gührs K.-H., Gase A., Schlott B., Collen D. Structure-function relationships in staphylokinase as revealed by “clustered charge to alanine” mutagenesis. J Biol Chem. 1995;270:27192–27198. PubMed
Jespers L., Lijnen H.R., Vanwetswinkel S., Van Hoef B., Brepoels K., Collen D. Guiding a docking mode by phage display: selection of correlated mutations at the staphylokinase-plasmin interface11edited by A. R Fersht J Mol Biol. 1999;290:471–479. PubMed
Schlott B., Gührs K.-H., Hartmann M., Röcker A., Collen D. NH2-terminal structural motifs in staphylokinase required for plasminogen activation. J Biol Chem. 1998;273:22346–22350. PubMed
Rajamohan G., Dikshit K.L. Role of the N-terminal region of staphylokinase (SAK): evidence for the participation of the N-terminal region of SAK in the enzyme–substrate complex formation. FEBS Lett. 2000;474:151–158. PubMed
Ohlenschläger O., Ramachandran R., Gührs K.-H., Schlott B., Brown L.R. Nuclear magnetic resonance solution structure of the plasminogen-activator protein staphylokinase. Biochemistry. 1998;37:10635–10642. PubMed
Trieu T., Behnke D., Gerlach D., Tang J. [9] Activation of human plasminogen by recombinant staphylokinase. Methods Enzymol. 1993;223:156–167. Academic Press. PubMed
Lijnen H.R., Van Hoef B., Vandenbossche L., Collen D. Biochemical properties of natural and recombinant staphylokinase. Fibrinolysis. 1992;6:214–225.
Ueshima S., Silence K., Collen D., Lijnen H.R. Molecular conversions of recombinant staphylokinase during plasminogen activation in purified systems and in human plasma. Thromb Haemost. 1993;70:495–499. PubMed
Collen D., Silence K., Demarsin E., De Mol M., Lijnen H.R. Isolation and characterisation of natural and recombinant staphylokinase. Fibrinolysis. 1992;6:203–213.
Schlott B., Gührs K.-H., Hartmann M., Röcker A., Collen D. Staphylokinase requires NH2-terminal proteolysis for plasminogen activation. J Biol Chem. 1997;272:6067–6072. PubMed
Sakai M., Watanuki M., Matsuo O. Mechanism of fibrin-specific fibrinolysis by staphylokinase: participation of α2-plasmin inhibitor. Biochem Biophys Res Commun. 1989;162:830–837. PubMed
Lijnen H.R., Van Hoef B., Matsuo Osamu, Collen D. On the molecular interactions between plasminogen-staphylokinase, α2-antiplasmin and fibrin. Biochim Biophys Acta BBA Protein Struct Mol Enzymol. 1992;1118:144–148. PubMed
Okada K., Ueshima S., Takaishi T., Yuasa H., Fukao H., Matsuo O. Effects of fibrin and α2-antiplasmin on plasminogen activation by staphylokinase. Am J Hematol. 1996;53:151–157. PubMed
Lijnen H.R., Hoef B.V., Collen D. Interaction of staphylokinase with different molecular forms of plasminogen. Eur J Biochem. 1993;211:91–97. PubMed
Sakharov D.V., Lijnen H.R., Rijken D.C. Interactions between staphylokinase, plasmin(ogen), and fibrin. staphylokinase discriminates between free plasminogen and plasminogen bound to partially degraded fibrin. J Biol Chem. 1996;271:27912–27918. PubMed
Silence K., Collen D., Lijnen H.R. Interaction between staphylokinase, plasmin(ogen), and alpha 2-antiplasmin. Recycling of staphylokinase after neutralization of the plasmin-staphylokinase complex by alpha 2-antiplasmin. J Biol Chem. 1993;268:9811–9816. PubMed
Collen D. Fibrin-selective thrombolytic therapy for acute myocardial infarction. Circulation. 1996;93:857–865. PubMed
Collen D. Engineered staphylokinase variants with reduced immunogenicity. Fibrinolysis Proteolysis. 1998;12:59–65.
Jespers L., Jenné S., Lasters I., Collen D. Epitope mapping by negative selection of randomized antigen libraries displayed on filamentous phage11Edited by J. Karn J Mol Biol. 1997;269:704–718. PubMed
Jenné S., Brepoels K., Collen D., Jespers L. High resolution mapping of the B cell epitopes of staphylokinase in humans using negative selection of a phage-displayed antigen library. J Immunol. 1998;161:3161–3168. PubMed
Laroche Y., Heymans S., Capaert S., Cock F.D., Demarsin E., Collen D. Recombinant staphylokinase variants with reduced antigenicity due to elimination of B-lymphocyte epitopes. Blood. 2000;96:1425–1432. PubMed
He J., Xu R., Chen X., Jia K., Zhou X., Zhu K. Simultaneous elimination of T- and B-cell epitope by structure-based mutagenesis of single Glu80 residue within recombinant staphylokinase. Acta Biochim Biophys Sin. 2010;42:209–215. PubMed
Su H.-B., Zhang Y.-G., He J.-T., Mo W., Zhang Y.-L., Tao X.-M. Construction and characterization of novel staphylokinase variants with antiplatelet aggregation activity and reduced immunogenecity. Acta Biochim Biophys Sin. 2004;36:336–342. PubMed
Warmerdam P.A.M., Plaisance S., Vanderlick K., Vandervoort P., Brepoels K., Collen D. Elimination of a human T-cell region in staphylokinase by T-cell screening and computer modeling. Thromb Haemost. 2002;87:666–673. PubMed
Liu J., Wang Z., He J., Wang G., Zhang R., Zhao B. Effect of site-specific PEGylation on the fibrinolytic activity, immunogenicity, and pharmacokinetics of staphylokinase. Acta Biochim Biophys Sin. 2014;46:782–791. PubMed
Liu R., Li D., Wang J., Qiu R., Lin Q., Zhang G. Preparation, characterization and in vitro bioactivity of N-terminally PEGylated staphylokinase dimers. Process Biochem. 2012;47:41–46.
Xu Y., Shi Y., Zhou J., Yang W., Bai L., Wang S. Structure-based antigenic epitope and PEGylation improve the efficacy of staphylokinase. Microb Cell Fact. 2017;16:197. PubMed PMC
Xue X., Li D., Yu J., Ma G., Su Z., Hu T. Phenyl linker-induced dense peg conformation improves the efficacy of c-terminally monopegylated staphylokinase. Biomacromolecules. 2013;14:331–341. PubMed
Qi F., Hu C., Yu W., Hu T. Conjugation with eight-arm peg markedly improves the in vitro activity and prolongs the blood circulation of staphylokinase. Bioconjug Chem. 2018;29:451–458. PubMed
Collen D., Sinnaeve P., Demarsin E., Moreau H., De Maeyer M., Jespers L. Polyethylene glycol–derivatized cysteine-substitution variants of recombinant staphylokinase for single-bolus treatment of acute myocardial infarction. Circulation. 2000;102:1766–1772. PubMed
Miele R.G., Prorok M., Costa V.A., Castellino F.J. Glycosylation of asparagine-28 of recombinant staphylokinase with high-mannose-type oligosaccharides results in a protein with highly attenuated plasminogen activator activity. J Biol Chem. 1999;274:7769–7776. PubMed
Wang M., Wang Y., Wang J., Zou M., Liu S., Xu T. Construction and characterization of a novel staphylokinase variant with thrombin-inhibitory activity. Biotechnol Lett. 2009;31:1923–1927. PubMed
Kowalski M., Brown G., Bieniasz M., Oszajca K., Chabielska E., Pietras T. Cloning and expression of a new recombinant thrombolytic and anthithrombotic agent - a staphylokinase variant. Acta Biochim Pol. 2009;56:41–53. PubMed
Chiou J.-F., Woon M.-D., Cheng S.-N., Hsu C.-H., Cherng S.-C., Hsieh F.-K. Staphylokinase-annexin XI chimera exhibited efficient in vitro thrombolytic activities. Biosci Biotechnol Biochem. 2007;71:1122–1129. PubMed
Lian Q., Szarka S.J., Ng K.K.S., Wong S.L. Engineering of a staphylokinase-based fibrinolytic agent with antithrombotic activity and targeting capability toward thrombin-rich fibrin and plasma clots. J Biol Chem. 2003;278:26677–26686. PubMed
Wu S.-C., Castellino F.J., Wong S.-L. A Fast-acting, modular-structured staphylokinase fusion with kringle-1 from human plasminogen as the fibrin-targeting domain offers improved clot lysis efficacy. J Biol Chem. 2003;278:18199–18206. PubMed
Mannully S.T., Shanthi C., Pulicherla K.K. Lipid modification of staphylokinase and its implications on stability and activity. Int J Biol Macromol. 2019;121:1037–1045. PubMed
Cartwright T. The plasminogen activator of vampire bat saliva. Blood. 1974;43:317–326. PubMed
Hawkey C. Plasminogen activator in saliva of the vampire bat desmodus rotundus. Nature. 1966;211:434–435. PubMed
Gardell S.J., Ramjit D.R., Stabilito I.I., Fujita T., Lynch J.J., Cuca G.C. Effective thrombolysis without marked plasminemia after bolus intravenous administration of vampire bat salivary plasminogen activator in rabbits. Circulation. 1991;84:244–253. PubMed
Gardell S.J., Hare T.R., Bergum P.W., Cuca G.C., O’Neill-Palladino L., Zavodny S.M. Vampire bat salivary plasminogen activator is quiescent in human plasma in the absence of fibrin unlike human tissue plasminogen activator. Blood. 1990;76:2560–2564. PubMed
Mellott M.J., Stabilito I.I., Holahan M.A., Cuca G.C., Wang S., Li P. Vampire bat salivary plasminogen activator promotes rapid and sustained reperfusion without concomitant systemic plasminogen activation in a canine model of arterial thrombosis. Arterioscler Thromb J Vasc Biol. 1992;12:212–221. PubMed
Witt W., Baldus B., Bringmann P., Cashion L., Donner P., Schleuning W.D. Thrombolytic properties of Desmodus rotundus (vampire bat) salivary plasminogen activator in experimental pulmonary embolism in rats. Blood. 1992;79:1213–1217. PubMed
Liberatore G.T., Samson A., Bladin C., Schleuning W.D., Medcalf R.L. Vampire bat salivary plasminogen activator (desmoteplase) - a unique fibrinolytic enzyme that does not promote neurodegeneration. Stroke. 2003;34:537–543. PubMed
Von Kummer R., Mori E., Truelsen T., Jensen J.S., Grønning B.A., Fiebach J.B. Desmoteplase 3 to 9 hours after major artery occlusion stroke. Stroke. 2016;47:2880–2887. PubMed
Albers G.W., von Kummer R., Truelsen T., Jensen J.-K.S., Ravn G.M., Grønning B.A. Safety and efficacy of desmoteplase given 3–9 h after ischaemic stroke in patients with occlusion or high-grade stenosis in major cerebral arteries (DIAS-3): a double-blind, randomised, placebo-controlled phase 3 trial. Lancet Neurol. 2015;14:575–584. PubMed
Gardell S.J., Duong L.T., Diehl R.E., York J.D., Hare T.R., Register R.B. Isolation, characterization, and cDNA cloning of a vampire bat salivary plasminogen activator. J Biol Chem. 1989;264:17947–17952. PubMed
Krätzschmar J., Haendler B., Langer G., Boidol W., Bringmann P., Alagon A. The plasminogen activator family from the salivary gland of the vampire bat Desmodus rotundas: cloning and expression. Gene. 1991;105:229–237. PubMed
Renatus M., Stubbs M.T., Huber R., Bode W., Bringmann P., Donner P. Catalytic domain structure of vampire bat plasminogen activator: a molecular paradigm for proteolysis without activation cleavage. Biochemistry. 1997;36:13483–13493. PubMed
Schleuning W.-D., Alagon A., Boidol W., Bringmann P., Petri T., Krätzschmar J. Plasminogen activators from the saliva of desmodus rotundus (common vampire bat): unique fibrin specificity. Ann N Y Acad Sci. 1992;667:395–403. PubMed
Gohlke M., Baude G., Nuck R., Grunow D., Kannicht C., Bringmann P. O-Linked L-Fucose Is present in desmodus rotundus salivary plasminogen activator. J Biol Chem. 1996;271:7381–7386. PubMed
Gohlke M., Nuck R., Kannicht C., Grunow D., Baude G., Donner P. Analysis of site-specific N-glycosylation of recombinant desmodus rotundus salivary plasminogen activator rDSPAα1 expressed in Chinese hamster ovary cells. Glycobiology. 1997;7:67–77. PubMed
Bringmann P., Gruber D., Liese A., Toschi L., Kratzschmar J., Schleuning W. Structural features mediating fibrin selectivity of vampire bat plasminogen activators. J Biol Chem. 1995;270:25596–25603. PubMed
Stewart R.J., Fredenburgh J.C., Weitz J.I. Characterization of the interactions of plasminogen and tissue and vampire bat plasminogen activators with fibrinogen, fibrin, and the complex of d-dimer noncovalently linked to fragment E. J Biol Chem. 1998;273:18292–18299. PubMed
Toschi L., Bringmann P., Petri T., Donner P., Schleuning W.-D. Fibrin selectivity of the isolated protease domains of tissue-type and vampire bat salivary gland plasminogen activators. Eur J Biochem. 1998;252:108–112. PubMed
Bergum P.W., Gardell S.J. Vampire bat salivary plasminogen activator exhibits a strict and fastidious requirement for polymeric fibrin as its cofactor, unlike human tissue-type plasminogen activator. a kinetic analysis. J Biol Chem. 1992;267:17726–17731. PubMed
Witt W., Kirchhoff D., Woy P., Zierz R., Bhargava A.S. Antibody formation and effects on endogenous fibrinolysis after repeated administration of dspaai in rats. Fibrinolysis. 1994;8:66.
Saadatirad A., Sardari S., Kazemali M., Zarei N., Davami F., Barkhordari F. Expression of a novel chimeric-truncated tpa in pichia pastoris with improved biochemical properties. Mol Biotechnol Totowa. 2014;56:1143–1150. PubMed
Vanacek P., Sebestova E., Babkova P., Bidmanova S., Daniel L., Dvorak P. Exploration of enzyme diversity by integrating bioinformatics with expression analysis and biochemical characterization. ACS Catal. 2018;8:2402–2412.
Li Z., Chen X., Guo S., Zhang H., Dong H., Wu G. Engineering of Harobin for enhanced fibrinolytic activity obtained by random and site-directed mutagenesis. Protein Expr Purif. 2017;129:162–172. PubMed
da CE Silva P.E., RC de Barros, WWC Albuquerque, RMP Brandão, Bezerra R.P., ALF Porto. In vitro thrombolytic activity of a purified fibrinolytic enzyme from Chlorella vulgaris. J Chromatogr B. 2018;1092:524–529. PubMed
Chen H., McGowan E.M., Ren N., Lal S., Nassif N., Shad-Kaneez F. Nattokinase: a promising alternative in prevention and treatment of cardiovascular diseases. Biomark Insights. 2018;13 PubMed PMC
Koyanagi K., Narasaki R., Yamamichi S., Suzuki E., Hasumi K. Mechanism of the action of SMTP-7, a novel small-molecule modulator of plasminogen activation. Blood Coagul Fibrinolysis. 2014;25:316–321. PubMed
Hasegawa K., Koide H., Hu W., Nishimura N., Narasaki R., Kitano Y. Structure-activity relationships of 11 new congeners of the SMTP plasminogen modulator. J Antibiot (Tokyo) 2010;63:589–593. PubMed
Hasumi K., Yamamichi S., Harada T. Small-molecule modulators of zymogen activation in the fibrinolytic and coagulation systems. FEBS J. 2010;277:3675–3687. PubMed
Takayasu R., Hasumi K., Shinohara C., Endo A. Enhancement of fibrin binding and activation of plasminogen by staplabin through induction of a conformational change in plasminogen. FEBS Lett. 1997;418:58–62. PubMed
Suzuki E., Nishimura N., Yoshikawa T., Kunikiyo Y., Hasegawa K., Hasumi K. Efficacy of SMTP-7, a small-molecule anti-inflammatory thrombolytic, in embolic stroke in monkeys. Pharmacol Res Perspect. 2018;6(UNSP) PubMed PMC
Shibata K., Hashimoto T., Hasumi K., Honda K., Nobe K. Evaluation of the effects of a new series of SMTPs in the acetic acid-induced embolic cerebral infarct mouse model. Eur J Pharmacol. 2018;818:221–227. PubMed
Korin N., Kanapathipillai M., Matthews B.D., Crescente M., Brill A., Mammoto T. Shear-activated nanotherapeutics for drug targeting to obstructed blood vessels. Science. 2012;337:738–742. PubMed
Liu S., Feng X., Jin R., Li G. Tissue plasminogen activator-based nanothrombolysis for ischemic stroke. Expert Opin Drug Deliv. 2018;15:173–184. PubMed PMC
Koudelka S., Mikulik R., Mašek J., Raška M., Turánek Knotigová P., Miller A.D. Liposomal nanocarriers for plasminogen activators. J Control Release. 2016;227:45–57. PubMed
Chapurina Y.E., Drozdov A.S., Popov I., Vinogradov V.V., Dudanov I.P., Vinogradov V.V. Streptokinase@alumina nanoparticles as a promising thrombolytic colloid with prolonged action. J Mater Chem B. 2016;4:5921–5928. PubMed
Pitek A.S., Wang Y., Gulati S., Gao H., Stewart P.L., Simon D.I. Elongated plant virus-based nanoparticles for enhanced delivery of thrombolytic therapies. Mol Pharm. 2017;14:3815–3823. PubMed PMC
Fernandes L.F., Bruch G.E., Massensini A.R., Frezard F. Recent advances in the therapeutic and diagnostic use of liposomes and carbon nanomaterials in ischemic stroke. Front Neurosci. 2018;12:453. PubMed PMC
Mukherjee P., Leman L.J., Griffin J.H., Ghadiri M.R. Design of a DNA-programmed plasminogen activator. J Am Chem Soc. 2018;140:15516–15524. PubMed PMC
Bjerregaard N., Bøtkjær K.A., Helsen N., Andreasen P.A., Dupont D.M. Tissue-type plasminogen activator-binding RNA aptamers inhibiting low-density lipoprotein receptor family-mediated internalisation. Thromb Haemost. 2015;114:139–149. PubMed
Zeitelhofer M., Li H., Adzemovic M.Z., Nilsson I., Muhl L., Scott A.M. Preclinical toxicological assessment of a novel monoclonal antibody targeting human platelet-derived growth factor CC (PDGF-CC) in PDGF-CChum mice. Plos One. 2018;13 PubMed PMC
Kikuchi K., Setoyama K., Tanaka E., Otsuka S., Terashi T., Nakanishi K. Uric acid enhances alteplase-mediated thrombolysis as an antioxidant. Sci Rep. 2018;8:15844. PubMed PMC
dela Pena I.C., Yang S., Shen G., Liang H.F., Solak S., Borlongan C.V. Extension of tissue plasminogen activator treatment window by granulocyte-colony stimulating factor in a thromboembolic rat model of stroke. Int J Mol Sci. 2018;19:1635. PubMed PMC
Niego B., Lee N., Larsson P., de Silva T.M., Au A.E.-L., McCutcheon F. Selective inhibition of brain endothelial Rhokinase-2 provides optimal protection of an in vitro blood-brain barrier from tissue-type plasminogen activator and plasmin. Plos One. 2017;12 PubMed PMC
Niego B., Broughton B.R.S., Ho H., Sobey C.G., Medcalf R.L. LDL receptor blockade reduces mortality in a mouse model of ischaemic stroke without improving tissue-type plasminogen activator-induced brain haemorrhage: towards pre-clinical simulation of symptomatic ICH. Fluids Barriers Cns. 2017;14:33. PubMed PMC
Knecht T., Story J., Liu J., Davis W., Borlongan C.V., dela Pena I.C. Adjunctive therapy approaches for ischemic stroke: innovations to expand time window of treatment. Int J Mol Sci. 2017;18:2756. PubMed PMC
Kanazawa M., Takahashi T., Nishizawa M., Shimohata T. Therapeutic strategies to attenuate hemorrhagic transformation after tissue plasminogen activator treatment for acute ischemic stroke. J Atheroscler Thromb. 2017;24:240–253. PubMed PMC
Shimamura M., Nakagami H., Shimizu H., Mukai H., Watanabe R., Okuzono T. Development of a novel RANKL-based peptide, microglial healing peptide1-AcN (MHP1-AcN), for treatment of ischemic stroke. Sci Rep. 2018;8:17770. PubMed PMC
Vercauteren E., Gils A., Declerck P. Thrombin activatable fibrinolysis inhibitor: a putative target to enhance fibrinolysis. Semin Thromb Hemost. 2013;39:365–372. PubMed
Schreuder H., Liesum A., Loenze P., Stump H., Hoffmann H., Schiell M. Isolation, co-crystallization and structure-based characterization of anabaenopeptins as highly potent inhibitors of activated thrombin activatable fibrinolysis inhibitor (TAFIa) Sci Rep. 2016;6:32958. PubMed PMC
Halland N., Broenstrup M., Czech J., Czechtizky W., Evers A., Follmann M. novel small molecule inhibitors of activated thrombin activatable fibrinolysis inhibitor (tafia) from natural product anabaenopeptin. J Med Chem. 2015;58:4839–4844. PubMed
Wyseure T., Rubio M., Denorme F., de Lizarrondo S.M., Peeters M., Gils A. Innovative thrombolytic strategy using a heterodimer diabody against TAFI and PAI-1 in mouse models of thrombosis and stroke. Blood. 2015;125:1325–1332. PubMed
Denorme F., Wyseure T., Peeters M., Vandeputte N., Gils A., Deckmyn H. Inhibition of thrombin-activatable fibrinolysis inhibitor and plasminogen activator inhibitor-1 reduces ischemic brain damage in mice. Stroke. 2016;47:2419–2422. PubMed
Singh S., Houng A., Reed G.L. Releasing the brakes on the fibrinolytic system in pulmonary emboli unique effects of plasminogen activation and alpha 2-antiplasmin inactivation. Circulation. 2017;135:1011–1020. PubMed PMC
Urano T., Suzuki Y. Thrombolytic therapy targeting alpha 2-antiplasmin. Circulation. 2017;135:1021–1023. PubMed
Baluta M.M., Vintila M.M. PAI-1 inhibition – another therapeutic option for cardiovascular protection. Mædica. 2015;10:147–152. PubMed PMC
Maheshwari N., Kantipudi S., Maheshwari A., Arora K., Kwatra V.N., Sahni G. Amino-terminal fusion of epidermal growth factor 4,5,6 domains of human thrombomodulin on streptokinase confers anti-reocclusion characteristics along with plasmin-mediated clot specificity. Plos One. 2016;11 PubMed PMC
Absar S., Gupta N., Nahar K., Ahsan F. Engineering of plasminogen activators for targeting to thrombus and heightening thrombolytic efficacy. J Thromb Haemost. 2015;13:1545–1556. PubMed
Armstead W.M., Hekierski H., Yarovoi S., Higazi A.A.-R., Cines D.B. tPA variant tPA-A(296-299) Prevents impairment of cerebral autoregulation and necrosis of hippocampal neurons after stroke by inhibiting upregulation of ET-1. J Neurosci Res. 2018;96:128–137. PubMed
Shafiee F., Moazen F., Rabbani M., Mohammad Sadeghi H.M. Expression and activity evaluation of reteplase in Escherichia coli TOP10. J Paramed Sci. 2015;6:58–64.
Zhuo X.-F., Zhang Y.-Y., Guan Y.-X., Yao S.-J. Co-expression of disulfide oxidoreductases DsbA/DsbC markedly enhanced soluble and functional expression of reteplase in Escherichia coli. J Biotechnol. 2014;192:197–203. PubMed
Majidzadeh-A K., Khalaj V., Fatemeh D., Mahdi H., Farzaneh B., Ahmad A. Cloning and expression of functional full-length human tissue plasminogen activator in pichia pastoris. Appl Biochem Biotechnol. 2010;162:2037–2048. PubMed
Wei Z., Wang Y., Li G., Li X., Liu D. Optimized gene synthesis, expression and purification of active salivary plasminogen activator α2 (DSPAα2) of desmodus rotundus in Pichia pastoris. Protein Expr Purif. 2008;57:27–33. PubMed
Faraji H., Ramezani M., Sadeghnia H.R., Abnous K., Soltani F., Mashkani B. High-level expression of a biologically active staphylokinase in Pichia pastoris. Prep Biochem Biotechnol. 2017;47:379–387. PubMed
Fathi-Roudsari M., Maghsoudi N., Maghsoudi A., Niazi S., Soleiman M. Auto-induction for high level production of biologically active reteplase in Escherichia coli. Protein Expr Purif. 2018;151:18–22. PubMed
Wang H., Wang F., Wei D. Impact of oxygen supply on rtPA expression in Escherichia coli BL21 (DE3): ammonia effects. Appl Microbiol Biotechnol Heidelb. 2009;82:249–259. PubMed
Mousavi S.B., Fazeli A., Shojaosadati S.A., Fazeli M.R., Hashemi-Najafabadi S. Purification and efficient refolding process for recombinant tissue-type plasminogen activator derivative (reteplase) using glycerol and Tranexamic acid. Process Biochem. 2017;53:135–144.
Mousavi S.B., Fazeli A., Shojaosadati S.A., Fazeli M.R. Development of a two-step refolding method for reteplase, a rich disulfide-bonded protein. Process Biochem. 2018;74:94–102.
Liu H., Zhou X., Zhang Y. A comparative investigation on different refolding strategies of recombinant human tissue-type plasminogen activator derivative. Biotechnol Lett. 2006;28:457–463. PubMed
Rahimpour A., Ahani R., Najaei A., Adeli A., Barkhordari F., Mahboudi F. Development of genetically modified chinese hamster ovary host cells for the enhancement of recombinant tissue plasminogen activator expression. Malays J Med Sci Kelant. 2016;23:6–13. PubMed PMC
Hahn B.-S., Sim J.-S., Kim H.-M., Ahn M.-Y., Pak H.-K., Kim N.-A. Expression and characterization of human tissue-plasminogen activator in transgenic tobacco plants. Plant Mol Biol Report. 2008;27:209.
Nabiabad H.S., Piri K., Amini M. Expression of active chimeric-tissue plasminogen activator in tobacco hairy roots, identification of a DNA aptamer and purification by aptamer functionalized-MWCNTs chromatography. Protein Expr Purif. 2018;152:137–145. PubMed
Song S., Ge X., Cheng Y., Lu R., Zhang T., Yu B. High-level expression of a novel recombinant human plasminogen activator (rhPA) in the milk of transgenic rabbits and its thrombolytic bioactivity in vitro. Mol Biol Rep. 2016;43:775–783. PubMed
Kim S.-R., Sim J.-S., Ajjappala H., Kim Y.-H., Hahn B.-S. Expression and large-scale production of the biochemically active human tissue-plasminogen activator in hairy roots of Oriental melon (Cucumis melo) J Biosci Bioeng. 2012;113:106–111. PubMed
He Z., Lu R., Zhang T., Jiang L., Zhou M., Wu D. A novel recombinant human plasminogen activator: Efficient expression and hereditary stability in transgenic goats and in vitro thrombolytic bioactivity in the milk of transgenic goats. Plos One. 2018;13 PubMed PMC
Computer-aided engineering of staphylokinase toward enhanced affinity and selectivity for plasmin