Chromosomal Aberrations and Oxidative Stress in Psoriatic Patients with and without Metabolic Syndrome

. 2022 Jul 26 ; 12 (8) : . [epub] 20220726

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35893255

Grantová podpora
Research area HEAS Cooperatio Program
SVV-260543/2020 Charles University, Faculty of Medicine in Hradec Kralove

Psoriasis and metabolic syndrome (MetS), a common comorbidity of psoriasis, are associated with mild chronic systemic inflammation that increases oxidative stress and causes cell and tissue damage. At the cellular level, chromosomal and DNA damage has been documented, thus confirming their genotoxic effect. The main objective of our study was to show the genotoxic potential of chronic inflammation and determine whether the presence of both pathologies increases chromosomal damage compared to psoriasis alone and to evaluate whether there are correlations between selected parameters and chromosomal aberrations in patients with psoriasis and MetS psoriasis. Clinical examination (PASI score and MetS diagnostics according to National Cholesterol Education Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults; NCE/ATPIII criteria), biochemical analysis of blood samples (fasting glucose, total cholesterol, low density and high density lipoproteins; LDL, HDL, non-HDL, and triglycerides;TAG), DNA/RNA oxidative damage, and chromosomal aberration test were performed in 41 participants (20 patients with psoriasis without MetS and 21 with MetS and psoriasis). Our results showed that patients with psoriasis without metabolic syndrome (nonMetS) and psoriasis and MetS had a higher rate of chromosomal aberrations than the healthy population for which the limit of spontaneous, natural aberration was <2%. No significant differences in the aberration rate were found between the groups. However, a higher aberration rate (higher than 10%) and four numerical aberrations were documented only in the MetS group. We found no correlations between the number of chromosomal aberrations and the parameters tested except for the correlation between aberrations and HDL levels in nonMetS patients (rho 0.44; p < 0.02). Interestingly, in the MetS group, a higher number of chromosomal aberrations was documented in non-smokers compared to smokers. Data from our current study revealed an increased number of chromosomal aberrations in patients with psoriasis and MetS compared to the healthy population, especially in psoriasis with MetS, which could increase the genotoxic effect of inflammation and the risk of genomic instability, thus increasing the risk of carcinogenesis.

Zobrazit více v PubMed

Capon F. The genetic basis of psoriasis. Int. J. Mol. Sci. 2017;18:2526. doi: 10.3390/ijms18122526. PubMed DOI PMC

Vičić M., Kaštelan M., Brajac I., Sotošek V., Massari L.P. Current Concepts of Psoriasis Immunopathogenesis. Int. J. Mol. Sci. 2021;22:1574. doi: 10.3390/ijms222111574. PubMed DOI PMC

Lebwohl M. Psoriasis. Ann. Intern. Med. 2018;168:ITC49–ITC64. doi: 10.7326/AITC201804030. PubMed DOI

Korman N.J. Management of psoriasis as a systemic disease: What is the evidence? Br. J. Dermatol. 2020;182:840–848. doi: 10.1111/bjd.18245. PubMed DOI PMC

Mosca M., Hong J., Hadeler E., Hakimi M., Brownstone N., Liao W., Bhutani T. Psoriasis and Cardiometabolic Comorbidities: An Evaluation of the Impact of Systemic Treatments in Randomized Clinical Trials. Dermatol. Ther. 2021;11:1497–1520. doi: 10.1007/s13555-021-00590-0. PubMed DOI PMC

De Oliveira M., de Oliveira Rocha B., Vieira Duarte G. Psoriasis: Classical and emerging comorbidities. An. Bras. Dermatol. 2015;90:9–20. doi: 10.1590/abd1806-4841.20153038. PubMed DOI PMC

Armstrong A., Bohannan B., Mburu S., Alarcon I., Kasparek T., Toumi J., Frade S., Barrio S.F., Augustin M. Impact of Psoriatic Disease on Quality of Life: Interim Results of a Global Survey. Dermatol. Ther. 2022;12:1055–1064. doi: 10.1007/s13555-022-00695-0. PubMed DOI PMC

Karas A., Holmannova D., Borsky P., Fiala Z., Andrys C., Hamakova K., Svadlakova T., Palicka V., Krejsek J., Rehacek V., et al. Significantly Altered Serum Levels of NAD, AGE, RAGE, CRP, and Elastin as Potential Biomarkers of Psoriasis and Aging—A Case-Control Study. Biomedicines. 2022;10:1133. doi: 10.3390/biomedicines10051133. PubMed DOI PMC

Grundy S.M., Cleeman J., Daniels S.R., Donato K., Eckel R.H., Franklin B., Gordon D.J., Krauss R.M., Savage P.J., Smith S.C., et al. Diagnosis and management of the metabolic syndrome. Curr. Opin. Cardiol. 2006;21:1–6. doi: 10.1097/01.hco.0000200416.65370.a0. PubMed DOI

Saklayen M.G. The Global Epidemic of the Metabolic Syndrome. Curr. Hypertens. Rep. 2018;20:12. doi: 10.1007/s11906-018-0812-z. PubMed DOI PMC

Saitoh S., van Wijk K., Nakajima O. Crosstalk between metabolic disorders and immune cells. Int. J. Mol. Sci. 2021;22:17. doi: 10.3390/ijms221810017. PubMed DOI PMC

Li B., Huang L., Lv P., Li X., Liu G., Chen Y., Wang Z., Qian X., Shen Y., Li Y., et al. The role of Th17 cells in psoriasis. Immunol. Res. 2020;68:296–309. doi: 10.1007/s12026-020-09149-1. PubMed DOI

Chehimi M., Vidal H., Eljaafari A. Pathogenic role of il-17-producing immune cells in obesity, and related inflammatory diseases. J. Clin. Med. 2017;6:68. doi: 10.3390/jcm6070068. PubMed DOI PMC

Salihbegovic E.M., Hadzigrahic N., Suljagic E., Kurtalic N., Hadzic J., Zejcirovic A., Bijedic M., Handanagic A. Psoriasis and Dyslipidemia. Mater. Socio Med. 2015;27:15. doi: 10.5455/msm.2014.27.15-17. PubMed DOI PMC

Shimizu I., Yoshida Y., Suda M., Minamino T. DNA Damage Response and Metabolic Disease. Cell. Metab. 2014;20:967–977. doi: 10.1016/j.cmet.2014.10.008. PubMed DOI

Dobrică E.C., Cozma M.A., Găman M.A., Voiculescu V.M., Găman A.M. The Involvement of Oxidative Stress in Psoriasis: A Systematic Review. Antioxidants. 2022;11:282. doi: 10.3390/antiox11020282. PubMed DOI PMC

Abdelazeem A.H., Abuelsaad A.S.A., Abdel-Moniem A., Abdel-Gabbar M. Association of metabolic syndrome components with alterations in oxidative stress and cytokines expression. J. Taibah Univ. Sci. 2021;15:928–940. doi: 10.1080/16583655.2021.2009680. DOI

Gorini F., Scala G., Cooke M.S., Majello B., Amente S. Towards a comprehensive view of 8-oxo-7,8-dihydro-2’-deoxyguanosine: Highlighting the intertwined roles of DNA damage and epigenetics in genomic instability. DNA Repair. 2021;97:103027. doi: 10.1016/j.dnarep.2020.103027. PubMed DOI PMC

Niazi Y., Thomsen H., Smolkova B., Vodickova L., Vodenkova S., Kroupa M., Vymetalkova V., Kazimirova A., Barancokova M., Volkovova K., et al. DNA repair gene polymorphisms and chromosomal aberrations in healthy, nonsmoking population. DNA Repair. 2021;101:103079. doi: 10.1016/j.dnarep.2021.103079. PubMed DOI

Jain A.K., Singh D., Dubey K., Maurya R., Pandey A.K. Mutagenicity: Assays and Applications. Academic Press; Cambridge, MA, USA: 2017. Chromosomal aberrations; pp. 69–92. DOI

Pujol-Canadell M., Puig R., Armengol G., Barrios L., Barquinero J.F. Chromosomal aberration dynamics through the cell cycle. DNA Repair. 2020;89:102838. doi: 10.1016/j.dnarep.2020.102838. PubMed DOI

OECD . Test No. 473: In Vitro Mammalian Chromosomal Aberration Test, OECD Guidelines for the Testing of Chemicals, Section 4. OECD Publishing; Paris, France: 2016. DOI

Obe G., Pfeiffer P., Savage J., Johannes C., Goedecke W., Jeppesen P., Natarajan A., Martínez-López W., Folle G., Drets M. Chromosomal aberrations: Formation, identification and distribution. Mutat. Res. Fundam. Mol. Mech. Mutagen. 2002;504:17–36. doi: 10.1016/S0027-5107(02)00076-3. PubMed DOI

Salihbegovic E.M., Hadzigrahic N., Cickusic A.J. Psoriasis and metabolic syndrome. Med. Arch. 2015;69:85–87. doi: 10.5455/medarh.2015.69.85-87. PubMed DOI PMC

Lorenzo C., Williams K., Hunt K.J., Haffner S.M. The National Cholesterol Education Program - Adult Treatment Panel III, International Diabetes Federation, and World Health Organization definitions of the metabolic syndrome as predictors of incident cardiovascular disease and diabetes. Diabetes Care. 2007;30:8–13. doi: 10.2337/dc06-1414. PubMed DOI

Tichy A., Kabacik S., O’Brien G., Pejchal J., Sinkorova Z., Kmochova A., Sirak I., Malkova A., Beltran C.G., Gonzalez J.R., et al. The first in vivo multiparametric comparison of different radiation exposure biomarkers in human blood. PLoS ONE. 2018;13:e0193412. doi: 10.1371/journal.pone.0193412. PubMed DOI PMC

Očadlíková D., Bavorová H., Šmíd J. Cytogenetická Analýza Periferních Lymfocytů. Acta Hygienica, Epidemiologica et Microbiologica 2007. [(accessed on 13 October 2021)]. Available online: http://www.szu.cz/uploads/documents/knihovna_SVI/pdf/2007/full_2007_01.pdf.

Navab M., Reddy S.T., Van Lenten B.J., Fogelman A.M. HDL and cardiovascular disease: Atherogenic and atheroprotective mechanisms. Nat. Rev. Cardiol. 2011;8:222–232. doi: 10.1038/nrcardio.2010.222. PubMed DOI

Giammanco A., Noto D., Barbagallo C., Nardi E., Caldarella R., Ciaccio M., Averna M., Cefalù A. Hyperalphalipoproteinemia and beyond: The role of HDL in cardiovascular diseases. Life. 2021;11:581. doi: 10.3390/life11060581. PubMed DOI PMC

Namiri-Kalantari R., Gao F., Chattopadhyay A., Wheeler A.A., Navab K.D., Farias-Eisner R., Reddy S.T. The dual nature of HDL: Anti-Inflammatory and pro-Inflammatory. BioFactors. 2015;41:153–159. doi: 10.1002/biof.1205. PubMed DOI

Shih C.M., Chen C.C., Chu C.K., Wang K.H., Huang C.Y., Lee A.W. The roles of lipoprotein in psoriasis. Int. J. Mol. Sci. 2020;21:859. doi: 10.3390/ijms21030859. PubMed DOI PMC

Hovland A., Retterstøl K., Mollnes T.E., Halvorsen B., Aukrust P., Lappegård K.T. Anti-inflammatory effects of non-statin low-density lipoprotein cholesterol-lowering drugs: An unused potential? Scand. Cardiovasc. J. 2020;54:274–279. doi: 10.1080/14017431.2020.1775878. PubMed DOI

Silva I.V.G., De Figueiredo R.C., Rios D.R.A. Effect of different classes of antihypertensive drugs on endothelial function and inflammation. Int. J. Mol. Sci. 2019;20:3458. doi: 10.3390/ijms20143458. PubMed DOI PMC

Kay J., Thadhani E., Samson L., Engelward B. Inflammation-induced DNA damage, mutations and cancer. DNA Repair. 2019;83:102673. doi: 10.1016/j.dnarep.2019.102673. PubMed DOI PMC

Kim M.Y. Intracellular and extracellular factors influencing the genotoxicity of nitric oxide and reactive oxygen species. Oncol. Lett. 2017;13:1417–1424. doi: 10.3892/ol.2017.5584. PubMed DOI PMC

Holmannova D., Borska L., Andrys C., Borsky P., Kremlacek J., Hamakova K., Rehacek V., Malkova A., Svadlakova T., Palicka V., et al. The Impact of Psoriasis and Metabolic Syndrome on the Systemic Inflammation and Oxidative Damage to Nucleic Acids. J. Immunol. Res. 2020;2020:1–9. doi: 10.1155/2020/7352637. PubMed DOI PMC

Borska L., Kremlacek J., Andrys C., Krejsek J., Hamakova K., Borsky P., Palicka V., Rehacek V., Malkova A., Fiala Z. Systemic inflammation, oxidative damage to nucleic acids, and metabolic syndrome in the pathogenesis of psoriasis. Int. J. Mol. Sci. 2017;18:2238. doi: 10.3390/ijms18112238. PubMed DOI PMC

Durante M., Bedford J., Chen D., Conrad S., Cornforth M., Natarajan A., van Gent D., Obe G. From DNA damage to chromosome aberrations: Joining the break. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2013;756:5–13. doi: 10.1016/j.mrgentox.2013.05.014. PubMed DOI

Usman M., Woloshynowych M., Britto J.C., Bilkevic I., Glassar B., Chapman S., Ford-Adams M.E., Desai A., Bain M., Tewfik I., et al. Obesity, oxidative DNA damage and vitamin D as predictors of genomic instability in children and adolescents. Int. J. Obes. 2021;45:2095–2107. doi: 10.1038/s41366-021-00879-2. PubMed DOI PMC

Karaman A., Aliaǧaoǧlu C., Pirim I. Sister chromatid exchange analysis in patients with psoriasis. Exp. Dermatol. 2008;17:524–529. doi: 10.1111/j.1600-0625.2007.00671.x. PubMed DOI

Molès J.-P., Griez A., Guilhou J.-J., Girard C., Nagot N., Van de Perre P., Dujols P. Cytosolic RNA:DNA duplexes generated by endogenous reverse transcriptase activity as autonomous inducers of skin inflammation in psoriasis. PLoS ONE. 2017;12:e0169879. doi: 10.1371/journal.pone.0169879. PubMed DOI PMC

Rodríguez-Jiménez P., Fernández-Messina L., Ovejero-Benito M.C., Chicharro P., Vera-Tomé P., Vara A., Cibrian D., Martínez-Fleta P., Jiménez-Fernández M., Sánchez-García I., et al. Growth arrest and DNA damage-inducible proteins (GADD45) in psoriasis. Sci Rep. 2021;11:1–11. doi: 10.1038/s41598-021-93780-x. PubMed DOI PMC

Ranna D., Andrys C., Krejsek J., Hamakova K., Kremlacek J., Fiala Z., Borsky P., Borska L. Elevated levels of circulating biomarkers of cell death (nucleosomes) in the patients with plaque psoriasis treated with the Goeckerman regimen. Bratisl. Med. J. 2014;115:229–232. doi: 10.4149/BLL_2014_047. PubMed DOI

Malkova A., Kohlerova R., Fiala Z., Hamakova K., Selke-Krulichova I., Borska L. Genotoxic changes in peripheral lymphocytes after therapeutic exposure to crude coal tar and ultraviolet radiation. Biomed Pap. 2016;160:553–558. doi: 10.5507/bp.2016.032. PubMed DOI

Malkova A., Kohlerova R., Fiala Z., Hamakova K., Selke-Krulichova I., Borska L. Structural Chromosome Abnormalities Associated with Obesity: Report of Four New Subjects and Review of Literature. Curr Genomics. 2012;12:190–203. doi: 10.2174/138920211795677930. PubMed DOI PMC

Franzke B., Schwingshackl L., Wagner K.H. Chromosomal damage measured by the cytokinesis block micronucleus cytome assay in diabetes and obesity—A systematic review and meta-analysis. Mutat. Res. Rev. Mutat. Res. 2020;786:108343. doi: 10.1016/j.mrrev.2020.108343. PubMed DOI

Anand S., Nath B., Saraswathy R. Diabetes-increased risk for cancers through chromosomal aberrations? Asian Pac. J. Cancer Prev. 2014;15:4571–4573. doi: 10.7314/APJCP.2014.15.11.4571. PubMed DOI

Bankoglu E.E., Arnold C., Hering I., Hankir M., Seyfried F., Stopper H. Decreased Chromosomal Damage in Lymphocytes of Obese Patients After Bariatric Surgery. Sci. Rep. 2018;8:1–8. doi: 10.1038/s41598-018-29581-6. PubMed DOI PMC

Fieres J., Fischer M., Sauter C., Moreno-Villanueva M., Bürkle A., Wirtz P.H. The burden of overweight: Higher body mass index, but not vital exhaustion, is associated with higher DNA damage and lower DNA repair capacity. DNA Repair. 2022;114:103323. doi: 10.1016/j.dnarep.2022.103323. PubMed DOI

Nagel G., Stocks T., Späth D., Hjartåker A., Lindkvist B., Hallmans G., Jonsson H., Bjørge T., Manjer J., Häggström C., et al. Metabolic factors and blood cancers among 578,000 adults in the metabolic syndrome and cancer project (Me-Can) Ann. Hematol. 2012;91:1519–1531. doi: 10.1007/s00277-012-1489-z. PubMed DOI

Esposito K., Chiodini P., Colao A., Lenzi A., Giugliano D. Metabolic syndrome and risk of cancer: A systematic review and meta-analysis. Diabetes Care. 2012;35:2402–2411. doi: 10.2337/dc12-0336. PubMed DOI PMC

Vaengebjerg S., Skov L., Egeberg A., Loft N.D. Prevalence, Incidence, and Risk of Cancer in Patients with Psoriasis and Psoriatic Arthritis: A Systematic Review and Meta-analysis. JAMA Dermatol. 2020;156:421–429. doi: 10.1001/jamadermatol.2020.0024. PubMed DOI PMC

Fuxench Z.C.C., Shin D.B., Beatty A.O., Gelfand J.M. The risk of cancer in patients with psoriasis a population-based cohort study in the health improvement network. JAMA Dermatol. 2016;152:282–290. doi: 10.1001/jamadermatol.2015.4847. PubMed DOI PMC

Bellinato F., Gisondi P., Girolomoni G. Risk of lymphohematologic malignancies in patients with chronic plaque psoriasis: A systematic review with meta-analysis. J. Am. Acad. Dermatol. 2022;86:86–96. doi: 10.1016/j.jaad.2021.07.050. PubMed DOI

Borsky P., Chmelarova M., Fiala Z., Hamakova K., Palicka V., Krejsek J., Andrys C., Kremlacek J., Rehacek V., Beranek M., et al. Aging in psoriasis vulgaris: Female patients are epigenetically older than healthy controls. Immun. Ageing. 2021;18:1–10. doi: 10.1186/s12979-021-00220-5. PubMed DOI PMC

Bonomini F., Rodella L.F., Rezzani R. Metabolic Syndrome, Aging and Involvement of Oxidative Stress. Aging Dis. 2015;6:109. doi: 10.14336/AD.2014.0305. PubMed DOI PMC

Gheucă-Solovăstru L., Vâţă D., Halip A.I., Patraşcu A., Cozma A., Porumb-Andrese E. Psoriasis—A cancer risk factor? Appl. Sci. 2021;11:8366. doi: 10.3390/app11188366. DOI

Trafford A.M., Parisi R., Kontopantelis E., Griffiths C.E.M., Ashcroft D.M. Association of Psoriasis with the Risk of Developing or Dying of Cancer: A Systematic Review and Meta-analysis. JAMA Dermatol. 2019;155:1390–1403. doi: 10.1001/jamadermatol.2019.3056. PubMed DOI PMC

Haverić A., Haverić S., Ibrulj S. Chromosome aberrations frequency in peripheral blood lymphocytes in young tobacco smoking and non-smoking people. J. Health Sci. 2016;6:121–127. doi: 10.17532/jhsci.2016.368. DOI

Farkas G., Kocsis Z.S., Székely G., Dobozi M., Kenessey I., Polgár C., Jurányi Z. Smoking, chromosomal aberrations, and cancer incidence in healthy subjects. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2021;867:503373. doi: 10.1016/j.mrgentox.2021.503373. PubMed DOI

Elisia I., Lam V., Cho B., Hay M., Li M.Y., Yeung M., Bu L., Jia W., Norton N., Lam S., et al. The effect of smoking on chronic inflammation, immune function and blood cell composition. Sci Rep. 2020;10:1–16. doi: 10.1038/s41598-020-76556-7. PubMed DOI PMC

Tang M.-S., Lee H.-W., Weng M.-W., Wang H.-T., Hu Y., Chen L.-C., Park S.-H., Chan H.-W., Xu J., Wu X.-R., et al. DNA damage, DNA repair and carcinogenicity: Tobacco smoke versus electronic cigarette aerosol. Mutat. Res. Mutat. Res. 2022;789:108409. doi: 10.1016/j.mrrev.2021.108409. PubMed DOI PMC

Salem A.A., Trares K., Kohl M., Jansen E., Brenner H., Schöttker B. Long-term effects of smoking on serum concentrations of oxidative stress biomarkers: Results of a large, population-based cohort study. Environ. Res. 2022;204:111923. doi: 10.1016/j.envres.2021.111923. PubMed DOI

Lakhan S.E., Kirchgessner A. Anti-inflammatory effects of nicotine in obesity and ulcerative colitis. J. Transl. Med. 2011;9:1–10. doi: 10.1186/1479-5876-9-129. PubMed DOI PMC

Yamaguchi N.H. Smoking, immunity, and DNA damage. Transl. Lung Cancer Res. 2019;8((Suppl. 1)):S3–S6. doi: 10.21037/tlcr.2019.03.02. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...