Chromosomal Aberrations and Oxidative Stress in Psoriatic Patients with and without Metabolic Syndrome
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Research area HEAS
Cooperatio Program
SVV-260543/2020
Charles University, Faculty of Medicine in Hradec Kralove
PubMed
35893255
PubMed Central
PMC9331653
DOI
10.3390/metabo12080688
PII: metabo12080688
Knihovny.cz E-zdroje
- Klíčová slova
- chromosomal aberration, metabolic syndrome, psoriasis,
- Publikační typ
- časopisecké články MeSH
Psoriasis and metabolic syndrome (MetS), a common comorbidity of psoriasis, are associated with mild chronic systemic inflammation that increases oxidative stress and causes cell and tissue damage. At the cellular level, chromosomal and DNA damage has been documented, thus confirming their genotoxic effect. The main objective of our study was to show the genotoxic potential of chronic inflammation and determine whether the presence of both pathologies increases chromosomal damage compared to psoriasis alone and to evaluate whether there are correlations between selected parameters and chromosomal aberrations in patients with psoriasis and MetS psoriasis. Clinical examination (PASI score and MetS diagnostics according to National Cholesterol Education Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults; NCE/ATPIII criteria), biochemical analysis of blood samples (fasting glucose, total cholesterol, low density and high density lipoproteins; LDL, HDL, non-HDL, and triglycerides;TAG), DNA/RNA oxidative damage, and chromosomal aberration test were performed in 41 participants (20 patients with psoriasis without MetS and 21 with MetS and psoriasis). Our results showed that patients with psoriasis without metabolic syndrome (nonMetS) and psoriasis and MetS had a higher rate of chromosomal aberrations than the healthy population for which the limit of spontaneous, natural aberration was <2%. No significant differences in the aberration rate were found between the groups. However, a higher aberration rate (higher than 10%) and four numerical aberrations were documented only in the MetS group. We found no correlations between the number of chromosomal aberrations and the parameters tested except for the correlation between aberrations and HDL levels in nonMetS patients (rho 0.44; p < 0.02). Interestingly, in the MetS group, a higher number of chromosomal aberrations was documented in non-smokers compared to smokers. Data from our current study revealed an increased number of chromosomal aberrations in patients with psoriasis and MetS compared to the healthy population, especially in psoriasis with MetS, which could increase the genotoxic effect of inflammation and the risk of genomic instability, thus increasing the risk of carcinogenesis.
Zobrazit více v PubMed
Capon F. The genetic basis of psoriasis. Int. J. Mol. Sci. 2017;18:2526. doi: 10.3390/ijms18122526. PubMed DOI PMC
Vičić M., Kaštelan M., Brajac I., Sotošek V., Massari L.P. Current Concepts of Psoriasis Immunopathogenesis. Int. J. Mol. Sci. 2021;22:1574. doi: 10.3390/ijms222111574. PubMed DOI PMC
Lebwohl M. Psoriasis. Ann. Intern. Med. 2018;168:ITC49–ITC64. doi: 10.7326/AITC201804030. PubMed DOI
Korman N.J. Management of psoriasis as a systemic disease: What is the evidence? Br. J. Dermatol. 2020;182:840–848. doi: 10.1111/bjd.18245. PubMed DOI PMC
Mosca M., Hong J., Hadeler E., Hakimi M., Brownstone N., Liao W., Bhutani T. Psoriasis and Cardiometabolic Comorbidities: An Evaluation of the Impact of Systemic Treatments in Randomized Clinical Trials. Dermatol. Ther. 2021;11:1497–1520. doi: 10.1007/s13555-021-00590-0. PubMed DOI PMC
De Oliveira M., de Oliveira Rocha B., Vieira Duarte G. Psoriasis: Classical and emerging comorbidities. An. Bras. Dermatol. 2015;90:9–20. doi: 10.1590/abd1806-4841.20153038. PubMed DOI PMC
Armstrong A., Bohannan B., Mburu S., Alarcon I., Kasparek T., Toumi J., Frade S., Barrio S.F., Augustin M. Impact of Psoriatic Disease on Quality of Life: Interim Results of a Global Survey. Dermatol. Ther. 2022;12:1055–1064. doi: 10.1007/s13555-022-00695-0. PubMed DOI PMC
Karas A., Holmannova D., Borsky P., Fiala Z., Andrys C., Hamakova K., Svadlakova T., Palicka V., Krejsek J., Rehacek V., et al. Significantly Altered Serum Levels of NAD, AGE, RAGE, CRP, and Elastin as Potential Biomarkers of Psoriasis and Aging—A Case-Control Study. Biomedicines. 2022;10:1133. doi: 10.3390/biomedicines10051133. PubMed DOI PMC
Grundy S.M., Cleeman J., Daniels S.R., Donato K., Eckel R.H., Franklin B., Gordon D.J., Krauss R.M., Savage P.J., Smith S.C., et al. Diagnosis and management of the metabolic syndrome. Curr. Opin. Cardiol. 2006;21:1–6. doi: 10.1097/01.hco.0000200416.65370.a0. PubMed DOI
Saklayen M.G. The Global Epidemic of the Metabolic Syndrome. Curr. Hypertens. Rep. 2018;20:12. doi: 10.1007/s11906-018-0812-z. PubMed DOI PMC
Saitoh S., van Wijk K., Nakajima O. Crosstalk between metabolic disorders and immune cells. Int. J. Mol. Sci. 2021;22:17. doi: 10.3390/ijms221810017. PubMed DOI PMC
Li B., Huang L., Lv P., Li X., Liu G., Chen Y., Wang Z., Qian X., Shen Y., Li Y., et al. The role of Th17 cells in psoriasis. Immunol. Res. 2020;68:296–309. doi: 10.1007/s12026-020-09149-1. PubMed DOI
Chehimi M., Vidal H., Eljaafari A. Pathogenic role of il-17-producing immune cells in obesity, and related inflammatory diseases. J. Clin. Med. 2017;6:68. doi: 10.3390/jcm6070068. PubMed DOI PMC
Salihbegovic E.M., Hadzigrahic N., Suljagic E., Kurtalic N., Hadzic J., Zejcirovic A., Bijedic M., Handanagic A. Psoriasis and Dyslipidemia. Mater. Socio Med. 2015;27:15. doi: 10.5455/msm.2014.27.15-17. PubMed DOI PMC
Shimizu I., Yoshida Y., Suda M., Minamino T. DNA Damage Response and Metabolic Disease. Cell. Metab. 2014;20:967–977. doi: 10.1016/j.cmet.2014.10.008. PubMed DOI
Dobrică E.C., Cozma M.A., Găman M.A., Voiculescu V.M., Găman A.M. The Involvement of Oxidative Stress in Psoriasis: A Systematic Review. Antioxidants. 2022;11:282. doi: 10.3390/antiox11020282. PubMed DOI PMC
Abdelazeem A.H., Abuelsaad A.S.A., Abdel-Moniem A., Abdel-Gabbar M. Association of metabolic syndrome components with alterations in oxidative stress and cytokines expression. J. Taibah Univ. Sci. 2021;15:928–940. doi: 10.1080/16583655.2021.2009680. DOI
Gorini F., Scala G., Cooke M.S., Majello B., Amente S. Towards a comprehensive view of 8-oxo-7,8-dihydro-2’-deoxyguanosine: Highlighting the intertwined roles of DNA damage and epigenetics in genomic instability. DNA Repair. 2021;97:103027. doi: 10.1016/j.dnarep.2020.103027. PubMed DOI PMC
Niazi Y., Thomsen H., Smolkova B., Vodickova L., Vodenkova S., Kroupa M., Vymetalkova V., Kazimirova A., Barancokova M., Volkovova K., et al. DNA repair gene polymorphisms and chromosomal aberrations in healthy, nonsmoking population. DNA Repair. 2021;101:103079. doi: 10.1016/j.dnarep.2021.103079. PubMed DOI
Jain A.K., Singh D., Dubey K., Maurya R., Pandey A.K. Mutagenicity: Assays and Applications. Academic Press; Cambridge, MA, USA: 2017. Chromosomal aberrations; pp. 69–92. DOI
Pujol-Canadell M., Puig R., Armengol G., Barrios L., Barquinero J.F. Chromosomal aberration dynamics through the cell cycle. DNA Repair. 2020;89:102838. doi: 10.1016/j.dnarep.2020.102838. PubMed DOI
OECD . Test No. 473: In Vitro Mammalian Chromosomal Aberration Test, OECD Guidelines for the Testing of Chemicals, Section 4. OECD Publishing; Paris, France: 2016. DOI
Obe G., Pfeiffer P., Savage J., Johannes C., Goedecke W., Jeppesen P., Natarajan A., Martínez-López W., Folle G., Drets M. Chromosomal aberrations: Formation, identification and distribution. Mutat. Res. Fundam. Mol. Mech. Mutagen. 2002;504:17–36. doi: 10.1016/S0027-5107(02)00076-3. PubMed DOI
Salihbegovic E.M., Hadzigrahic N., Cickusic A.J. Psoriasis and metabolic syndrome. Med. Arch. 2015;69:85–87. doi: 10.5455/medarh.2015.69.85-87. PubMed DOI PMC
Lorenzo C., Williams K., Hunt K.J., Haffner S.M. The National Cholesterol Education Program - Adult Treatment Panel III, International Diabetes Federation, and World Health Organization definitions of the metabolic syndrome as predictors of incident cardiovascular disease and diabetes. Diabetes Care. 2007;30:8–13. doi: 10.2337/dc06-1414. PubMed DOI
Tichy A., Kabacik S., O’Brien G., Pejchal J., Sinkorova Z., Kmochova A., Sirak I., Malkova A., Beltran C.G., Gonzalez J.R., et al. The first in vivo multiparametric comparison of different radiation exposure biomarkers in human blood. PLoS ONE. 2018;13:e0193412. doi: 10.1371/journal.pone.0193412. PubMed DOI PMC
Očadlíková D., Bavorová H., Šmíd J. Cytogenetická Analýza Periferních Lymfocytů. Acta Hygienica, Epidemiologica et Microbiologica 2007. [(accessed on 13 October 2021)]. Available online: http://www.szu.cz/uploads/documents/knihovna_SVI/pdf/2007/full_2007_01.pdf.
Navab M., Reddy S.T., Van Lenten B.J., Fogelman A.M. HDL and cardiovascular disease: Atherogenic and atheroprotective mechanisms. Nat. Rev. Cardiol. 2011;8:222–232. doi: 10.1038/nrcardio.2010.222. PubMed DOI
Giammanco A., Noto D., Barbagallo C., Nardi E., Caldarella R., Ciaccio M., Averna M., Cefalù A. Hyperalphalipoproteinemia and beyond: The role of HDL in cardiovascular diseases. Life. 2021;11:581. doi: 10.3390/life11060581. PubMed DOI PMC
Namiri-Kalantari R., Gao F., Chattopadhyay A., Wheeler A.A., Navab K.D., Farias-Eisner R., Reddy S.T. The dual nature of HDL: Anti-Inflammatory and pro-Inflammatory. BioFactors. 2015;41:153–159. doi: 10.1002/biof.1205. PubMed DOI
Shih C.M., Chen C.C., Chu C.K., Wang K.H., Huang C.Y., Lee A.W. The roles of lipoprotein in psoriasis. Int. J. Mol. Sci. 2020;21:859. doi: 10.3390/ijms21030859. PubMed DOI PMC
Hovland A., Retterstøl K., Mollnes T.E., Halvorsen B., Aukrust P., Lappegård K.T. Anti-inflammatory effects of non-statin low-density lipoprotein cholesterol-lowering drugs: An unused potential? Scand. Cardiovasc. J. 2020;54:274–279. doi: 10.1080/14017431.2020.1775878. PubMed DOI
Silva I.V.G., De Figueiredo R.C., Rios D.R.A. Effect of different classes of antihypertensive drugs on endothelial function and inflammation. Int. J. Mol. Sci. 2019;20:3458. doi: 10.3390/ijms20143458. PubMed DOI PMC
Kay J., Thadhani E., Samson L., Engelward B. Inflammation-induced DNA damage, mutations and cancer. DNA Repair. 2019;83:102673. doi: 10.1016/j.dnarep.2019.102673. PubMed DOI PMC
Kim M.Y. Intracellular and extracellular factors influencing the genotoxicity of nitric oxide and reactive oxygen species. Oncol. Lett. 2017;13:1417–1424. doi: 10.3892/ol.2017.5584. PubMed DOI PMC
Holmannova D., Borska L., Andrys C., Borsky P., Kremlacek J., Hamakova K., Rehacek V., Malkova A., Svadlakova T., Palicka V., et al. The Impact of Psoriasis and Metabolic Syndrome on the Systemic Inflammation and Oxidative Damage to Nucleic Acids. J. Immunol. Res. 2020;2020:1–9. doi: 10.1155/2020/7352637. PubMed DOI PMC
Borska L., Kremlacek J., Andrys C., Krejsek J., Hamakova K., Borsky P., Palicka V., Rehacek V., Malkova A., Fiala Z. Systemic inflammation, oxidative damage to nucleic acids, and metabolic syndrome in the pathogenesis of psoriasis. Int. J. Mol. Sci. 2017;18:2238. doi: 10.3390/ijms18112238. PubMed DOI PMC
Durante M., Bedford J., Chen D., Conrad S., Cornforth M., Natarajan A., van Gent D., Obe G. From DNA damage to chromosome aberrations: Joining the break. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2013;756:5–13. doi: 10.1016/j.mrgentox.2013.05.014. PubMed DOI
Usman M., Woloshynowych M., Britto J.C., Bilkevic I., Glassar B., Chapman S., Ford-Adams M.E., Desai A., Bain M., Tewfik I., et al. Obesity, oxidative DNA damage and vitamin D as predictors of genomic instability in children and adolescents. Int. J. Obes. 2021;45:2095–2107. doi: 10.1038/s41366-021-00879-2. PubMed DOI PMC
Karaman A., Aliaǧaoǧlu C., Pirim I. Sister chromatid exchange analysis in patients with psoriasis. Exp. Dermatol. 2008;17:524–529. doi: 10.1111/j.1600-0625.2007.00671.x. PubMed DOI
Molès J.-P., Griez A., Guilhou J.-J., Girard C., Nagot N., Van de Perre P., Dujols P. Cytosolic RNA:DNA duplexes generated by endogenous reverse transcriptase activity as autonomous inducers of skin inflammation in psoriasis. PLoS ONE. 2017;12:e0169879. doi: 10.1371/journal.pone.0169879. PubMed DOI PMC
Rodríguez-Jiménez P., Fernández-Messina L., Ovejero-Benito M.C., Chicharro P., Vera-Tomé P., Vara A., Cibrian D., Martínez-Fleta P., Jiménez-Fernández M., Sánchez-García I., et al. Growth arrest and DNA damage-inducible proteins (GADD45) in psoriasis. Sci Rep. 2021;11:1–11. doi: 10.1038/s41598-021-93780-x. PubMed DOI PMC
Ranna D., Andrys C., Krejsek J., Hamakova K., Kremlacek J., Fiala Z., Borsky P., Borska L. Elevated levels of circulating biomarkers of cell death (nucleosomes) in the patients with plaque psoriasis treated with the Goeckerman regimen. Bratisl. Med. J. 2014;115:229–232. doi: 10.4149/BLL_2014_047. PubMed DOI
Malkova A., Kohlerova R., Fiala Z., Hamakova K., Selke-Krulichova I., Borska L. Genotoxic changes in peripheral lymphocytes after therapeutic exposure to crude coal tar and ultraviolet radiation. Biomed Pap. 2016;160:553–558. doi: 10.5507/bp.2016.032. PubMed DOI
Malkova A., Kohlerova R., Fiala Z., Hamakova K., Selke-Krulichova I., Borska L. Structural Chromosome Abnormalities Associated with Obesity: Report of Four New Subjects and Review of Literature. Curr Genomics. 2012;12:190–203. doi: 10.2174/138920211795677930. PubMed DOI PMC
Franzke B., Schwingshackl L., Wagner K.H. Chromosomal damage measured by the cytokinesis block micronucleus cytome assay in diabetes and obesity—A systematic review and meta-analysis. Mutat. Res. Rev. Mutat. Res. 2020;786:108343. doi: 10.1016/j.mrrev.2020.108343. PubMed DOI
Anand S., Nath B., Saraswathy R. Diabetes-increased risk for cancers through chromosomal aberrations? Asian Pac. J. Cancer Prev. 2014;15:4571–4573. doi: 10.7314/APJCP.2014.15.11.4571. PubMed DOI
Bankoglu E.E., Arnold C., Hering I., Hankir M., Seyfried F., Stopper H. Decreased Chromosomal Damage in Lymphocytes of Obese Patients After Bariatric Surgery. Sci. Rep. 2018;8:1–8. doi: 10.1038/s41598-018-29581-6. PubMed DOI PMC
Fieres J., Fischer M., Sauter C., Moreno-Villanueva M., Bürkle A., Wirtz P.H. The burden of overweight: Higher body mass index, but not vital exhaustion, is associated with higher DNA damage and lower DNA repair capacity. DNA Repair. 2022;114:103323. doi: 10.1016/j.dnarep.2022.103323. PubMed DOI
Nagel G., Stocks T., Späth D., Hjartåker A., Lindkvist B., Hallmans G., Jonsson H., Bjørge T., Manjer J., Häggström C., et al. Metabolic factors and blood cancers among 578,000 adults in the metabolic syndrome and cancer project (Me-Can) Ann. Hematol. 2012;91:1519–1531. doi: 10.1007/s00277-012-1489-z. PubMed DOI
Esposito K., Chiodini P., Colao A., Lenzi A., Giugliano D. Metabolic syndrome and risk of cancer: A systematic review and meta-analysis. Diabetes Care. 2012;35:2402–2411. doi: 10.2337/dc12-0336. PubMed DOI PMC
Vaengebjerg S., Skov L., Egeberg A., Loft N.D. Prevalence, Incidence, and Risk of Cancer in Patients with Psoriasis and Psoriatic Arthritis: A Systematic Review and Meta-analysis. JAMA Dermatol. 2020;156:421–429. doi: 10.1001/jamadermatol.2020.0024. PubMed DOI PMC
Fuxench Z.C.C., Shin D.B., Beatty A.O., Gelfand J.M. The risk of cancer in patients with psoriasis a population-based cohort study in the health improvement network. JAMA Dermatol. 2016;152:282–290. doi: 10.1001/jamadermatol.2015.4847. PubMed DOI PMC
Bellinato F., Gisondi P., Girolomoni G. Risk of lymphohematologic malignancies in patients with chronic plaque psoriasis: A systematic review with meta-analysis. J. Am. Acad. Dermatol. 2022;86:86–96. doi: 10.1016/j.jaad.2021.07.050. PubMed DOI
Borsky P., Chmelarova M., Fiala Z., Hamakova K., Palicka V., Krejsek J., Andrys C., Kremlacek J., Rehacek V., Beranek M., et al. Aging in psoriasis vulgaris: Female patients are epigenetically older than healthy controls. Immun. Ageing. 2021;18:1–10. doi: 10.1186/s12979-021-00220-5. PubMed DOI PMC
Bonomini F., Rodella L.F., Rezzani R. Metabolic Syndrome, Aging and Involvement of Oxidative Stress. Aging Dis. 2015;6:109. doi: 10.14336/AD.2014.0305. PubMed DOI PMC
Gheucă-Solovăstru L., Vâţă D., Halip A.I., Patraşcu A., Cozma A., Porumb-Andrese E. Psoriasis—A cancer risk factor? Appl. Sci. 2021;11:8366. doi: 10.3390/app11188366. DOI
Trafford A.M., Parisi R., Kontopantelis E., Griffiths C.E.M., Ashcroft D.M. Association of Psoriasis with the Risk of Developing or Dying of Cancer: A Systematic Review and Meta-analysis. JAMA Dermatol. 2019;155:1390–1403. doi: 10.1001/jamadermatol.2019.3056. PubMed DOI PMC
Haverić A., Haverić S., Ibrulj S. Chromosome aberrations frequency in peripheral blood lymphocytes in young tobacco smoking and non-smoking people. J. Health Sci. 2016;6:121–127. doi: 10.17532/jhsci.2016.368. DOI
Farkas G., Kocsis Z.S., Székely G., Dobozi M., Kenessey I., Polgár C., Jurányi Z. Smoking, chromosomal aberrations, and cancer incidence in healthy subjects. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2021;867:503373. doi: 10.1016/j.mrgentox.2021.503373. PubMed DOI
Elisia I., Lam V., Cho B., Hay M., Li M.Y., Yeung M., Bu L., Jia W., Norton N., Lam S., et al. The effect of smoking on chronic inflammation, immune function and blood cell composition. Sci Rep. 2020;10:1–16. doi: 10.1038/s41598-020-76556-7. PubMed DOI PMC
Tang M.-S., Lee H.-W., Weng M.-W., Wang H.-T., Hu Y., Chen L.-C., Park S.-H., Chan H.-W., Xu J., Wu X.-R., et al. DNA damage, DNA repair and carcinogenicity: Tobacco smoke versus electronic cigarette aerosol. Mutat. Res. Mutat. Res. 2022;789:108409. doi: 10.1016/j.mrrev.2021.108409. PubMed DOI PMC
Salem A.A., Trares K., Kohl M., Jansen E., Brenner H., Schöttker B. Long-term effects of smoking on serum concentrations of oxidative stress biomarkers: Results of a large, population-based cohort study. Environ. Res. 2022;204:111923. doi: 10.1016/j.envres.2021.111923. PubMed DOI
Lakhan S.E., Kirchgessner A. Anti-inflammatory effects of nicotine in obesity and ulcerative colitis. J. Transl. Med. 2011;9:1–10. doi: 10.1186/1479-5876-9-129. PubMed DOI PMC
Yamaguchi N.H. Smoking, immunity, and DNA damage. Transl. Lung Cancer Res. 2019;8((Suppl. 1)):S3–S6. doi: 10.21037/tlcr.2019.03.02. PubMed DOI PMC