The Impact of Psoriasis and Metabolic Syndrome on the Systemic Inflammation and Oxidative Damage to Nucleic Acids
Jazyk angličtina Země Egypt Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
32537470
PubMed Central
PMC7256681
DOI
10.1155/2020/7352637
Knihovny.cz E-zdroje
- MeSH
- angiopoetinu podobné proteiny krev MeSH
- angiopoetinu podobný protein 8 MeSH
- biologické markery krev MeSH
- dospělí MeSH
- leukocytární L1-antigenní komplex krev MeSH
- lidé středního věku MeSH
- lidé MeSH
- metabolický syndrom diagnóza MeSH
- mladiství MeSH
- mladý dospělý MeSH
- nukleové kyseliny metabolismus MeSH
- oxidační stres MeSH
- peptidové hormony krev MeSH
- poškození DNA MeSH
- psoriáza diagnóza MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- zánět diagnóza MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- angiopoetinu podobné proteiny MeSH
- angiopoetinu podobný protein 8 MeSH
- ANGPTL8 protein, human MeSH Prohlížeč
- biologické markery MeSH
- leukocytární L1-antigenní komplex MeSH
- nukleové kyseliny MeSH
- peptidové hormony MeSH
BACKGROUND: Psoriasis is a chronic systemic inflammatory disease associated with a wide range of comorbidities, including metabolic syndrome (MetS). Serum calprotectin, ANGPTL8, and oxidative damage to nucleic acids might be associated with both diseases. The presented study describes the influence of psoriasis and MetS on the serum levels of markers of systemic inflammation (calprotectin and ANGPTL8) and markers of oxidative damage to nucleic acids. The applicability of serum levels of calprotectin and ANGPTL8 for monitoring of the activity of psoriasis (diagnostic markers) is also evaluated. METHODS: Clinical examination (PASI score, MetS), enzyme-linked immunosorbent assay (ELISA), and Enzyme Immunoassay (EIA). Serum calprotectin, ANGPTL8, 8-hydroxy-2'-deoxyguanosine, 8-hydroxyguanosine, and 8-hydroxyguanine. Results and Conclusions. The psoriasis significantly increased the serum level of calprotectin and the serum level of oxidative damage to nucleic acids, however not the serum level of ANGPTL8. The presence of MetS did not significantly affect the serum levels of calprotectin, ANGPTL8, and oxidative damage to nucleic acids in either psoriasis patients or controls. It seems that the serum level of calprotectin (but not the serum level of ANGPTL8) could be used as a biomarker for monitoring the activity of psoriasis.
Clinic of Dermatology and Venereology University Hospital Hradec Kralove Czech Republic
Transfusion Center University Hospital Hradec Kralove 500 03 Czech Republic
Zobrazit více v PubMed
van Greevenbroek M. M. J., Schalkwijk C. G., Stehouwer C. D. A. Dysfunctional adipose tissue and low-grade inflammation in the management of the metabolic syndrome: current practices and future advances. F1000Research. 2016;5, article 2515 doi: 10.12688/f1000research.8971.1. PubMed DOI PMC
Davidovici B. B., Sattar N., Jörg P. C., et al. Psoriasis and systemic inflammatory diseases: potential mechanistic links between skin disease and co-morbid conditions. The Journal of Investigative Dermatology. 2010;130(7):1785–1796. doi: 10.1038/jid.2010.103. PubMed DOI
Rendon A., Schäkel K. Psoriasis pathogenesis and treatment. International Journal of Molecular Sciences. 2019;20(6):p. 1475. doi: 10.3390/ijms20061475. PubMed DOI PMC
Korman N. J. Management of psoriasis as a systemic disease: what is the evidence? British Journal of Dermatology. 2020;182 doi: 10.1111/bjd.18245. PubMed DOI PMC
Osmola-Mańkowska A., Teresiak-Mikołajczak E., Skrzypczak-Zielińska M., Adamski Z. Genetic polymorphism in psoriasis and its meaning for the treatment efficacy in the future. Advances in Dermatology and Allergology. 2018;35(4):331–337. doi: 10.5114/ada.2018.77661. PubMed DOI PMC
Whyte J. M., Ellis J. J., Brown M. A., Kenna T. J. Best practices in DNA methylation: lessons from inflammatory bowel disease, psoriasis and ankylosing spondylitis. Arthritis Research & Therapy. 2019;21(1):p. 133. doi: 10.1186/s13075-019-1922-y. PubMed DOI PMC
Wang W.-M., Jin H.-Z. Skin microbiome: an actor in the pathogenesis of psoriasis. Chinese Medical Journal. 2018;131(1):95–98. doi: 10.4103/0366-6999.221269. PubMed DOI PMC
Chang H. W., Yan D., Singh R., et al. Alteration of the cutaneous microbiome in psoriasis and potential role in Th17 polarization. Microbiome. 2018;6(1):p. 154. doi: 10.1186/s40168-018-0533-1. PubMed DOI PMC
Loft N. D., Skov L., Rasmussen M. K., et al. Genetic polymorphisms associated with psoriasis and development of psoriatic arthritis in patients with psoriasis. PLoS One. 2018;13(2, article e0192010) doi: 10.1371/journal.pone.0192010. PubMed DOI PMC
Albanesi C., Madonna S., Gisondi P., Girolomoni G. The interplay between keratinocytes and immune cells in the pathogenesis of psoriasis. Frontiers in Immunology. 2018;9:p. 1549. doi: 10.3389/fimmu.2018.01549. PubMed DOI PMC
Lorthois I., Simard M., Morin S., Pouliot R. Infiltration of T cells into a three-dimensional psoriatic skin model mimics pathological key features. International Journal of Molecular Sciences. 2019;20(7):p. 1670. doi: 10.3390/ijms20071670. PubMed DOI PMC
Kadam D. P., Suryakar A. N., Ankush R. D., Kadam C. Y., Deshpande K. H. Role of oxidative stress in various stages of psoriasis. Indian Journal of Clinical Biochemistry. 2010;25(4):388–392. doi: 10.1007/S12291-010-0043-9. PubMed DOI PMC
Lin X., Huang T. Oxidative stress in psoriasis and potential therapeutic use of antioxidants. Free Radical Research. 2016;50(6):585–595. doi: 10.3109/10715762.2016.1162301. PubMed DOI
Rani V., Deep G., Singh R. K., Palle K., Yadav U. C. S. Oxidative stress and metabolic disorders: pathogenesis and therapeutic strategies. Life Sciences. 2016;148:183–193. doi: 10.1016/J.LFS.2016.02.002. PubMed DOI
Stríz I., Trebichavský I. Calprotectin - a pleiotropic molecule in acute and chronic inflammation. Physiological Research. 2004;53(3):245–253. PubMed
Ometto F., Friso L., Astorri D., et al. Calprotectin in rheumatic diseases. Experimental Biology and Medicine. 2017;242(8):859–873. doi: 10.1177/1535370216681551. PubMed DOI PMC
Pedersen L., Nybo M., Poulsen M. K., Henriksen J. E., Dahl J., Rasmussen L. M. Plasma calprotectin and its association with cardiovascular disease manifestations, obesity and the metabolic syndrome in type 2 diabetes mellitus patients. BMC Cardiovascular Disorders. 2014;14(1):p. 196. doi: 10.1186/1471-2261-14-196. PubMed DOI PMC
Kerkhoff C., Voss A., Scholzen T. E., Averill M. M., Zänker K. S., Bornfeldt K. E. Novel insights into the role of S100A8/A9 in skin biology. Experimental Dermatology. 2012;21(11):822–826. doi: 10.1111/j.1600-0625.2012.01571.x. PubMed DOI PMC
Jerkic P.-S., Michel F., Kochems A., Schubert R., Rosewich M., Zielen S. Calprotectin as new sensitive marker of neutrophilic inflammation in patients with bronchiolitis obliterans. European Respiratory Journal. 2018;52, article PA4649 doi: 10.1183/13993003.congress-2018.pa4649. PubMed DOI PMC
Kaushik S. B., Lebwohl M. G. Psoriasis: which therapy for which patient: psoriasis comorbidities and preferred systemic agents. Journal of the American Academy of Dermatology. 2019;80(1):27–40. doi: 10.1016/j.jaad.2018.06.057. PubMed DOI
Russo L., Lumeng C. N. Properties and functions of adipose tissue macrophages in obesity. Immunology. 2018;155(4):407–417. doi: 10.1111/imm.13002. PubMed DOI PMC
Boutens L., Hooiveld G. J., Dhingra S., Cramer R. A., Netea M. G., Stienstra R. Unique metabolic activation of adipose tissue macrophages in obesity promotes inflammatory responses. Diabetologia. 2018;61(4):942–953. doi: 10.1007/s00125-017-4526-6. PubMed DOI PMC
Villarroya F., Cereijo R., Gavaldà-Navarro A., Villarroya J., Giralt M. Inflammation of brown/beige adipose tissues in obesity and metabolic disease. Journal of Internal Medicine. 2018;284(5):492–504. doi: 10.1111/joim.12803. PubMed DOI
Haller J. F., Mintah I. J., Shihanian L. M., et al. ANGPTL8 requires ANGPTL3 to inhibit lipoprotein lipase and plasma triglyceride clearance. Journal of Lipid Research. 2017;58(6):1166–1173. doi: 10.1194/jlr.M075689. PubMed DOI PMC
Luo M., Peng D. ANGPTL8: an important regulator in metabolic disorders. Frontiers in Endocrinology. 2018;9:p. 169. doi: 10.3389/fendo.2018.00169. PubMed DOI PMC
Kovrov O., Kristensen K. K., Larsson E., Ploug M., Olivecrona G. On the mechanism of angiopoietin-like protein 8 for control of lipoprotein lipase activity. Journal of Lipid Research. 2019;60(4):783–793. doi: 10.1194/jlr.M088807. PubMed DOI PMC
Salihbegovic E., Hadzigrahic N., Cickusic A. Psoriasis and metabolic syndrome. Medical Archives. 2015;69(2):85–87. doi: 10.5455/medarh.2015.69.85-87. PubMed DOI PMC
Borska L., Kremlacek J., Andrys C., et al. Systemic inflammation, oxidative damage to nucleic acids, and metabolic syndrome in the pathogenesis of psoriasis. International Journal of Molecular Sciences. 2017;18(11):p. 2238. doi: 10.3390/ijms18112238. PubMed DOI PMC
Third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III) final report. Circulation. 2002;106(25):3143–3421. doi: 10.1161/circ.106.25.3143. PubMed DOI
Wickham H. Ggplot 2: Elagant Graphics for Data Analysis. Springer; 2016. DOI
Del Re A. C. Compute.es: compute effect sizes. R Packag; 2013. http://cran.r-project.org/web/packages/compute.es.
Gross Juergen LU. Nortest: tests for normality. 2015. https://cran.r-project.org/package=nortest.
Greco A. V., Gasbarrini A. Serum calprotectin correlates with risk and disease severity in psoriasis patients and the decrease of calprotectin predicts better response to tumor necrosis factor inhibitors. European Review for Medical and Pharmacological Sciences. 2010;14(2) PubMed
Zaki A. M., Amer M. A., Mohamed N. M. A., Abdelkhalik M. A. E. Evaluation of serum level of calprotectin in patients with psoriasis and its relation to the clinical severity of the disease. The Egyptian Journal of Hospital Medicine. 2019;76(4):3919–3923.
Hansson C., Eriksson C., Alenius G.-M. S-calprotectin (S100A8/S100A9): a potential marker of inflammation in patients with psoriatic arthritis. Journal of Immunology Research. 2014;2014:5. doi: 10.1155/2014/696415.696415 PubMed DOI PMC
Winer S., Paltser G., Chan Y., et al. Obesity predisposes to Th17 bias. European Journal of Immunology. 2009;39(9):2629–2635. doi: 10.1002/eji.200838893. PubMed DOI
Taleb S., Tedgui A., Mallat Z. IL-17 and Th17 cells in Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology. 2015;35(2):258–264. doi: 10.1161/ATVBAHA.114.303567. PubMed DOI
Pirowska M., Obtułowicz A., Lipko-Godlewska S., Goździalska A., Podolec K., Wojas-Pelc A. The level of proinflammatory cytokines: interleukins 12, 23, 17 and tumor necrosis factor α in patients with metabolic syndrome accompanying severe psoriasis and psoriatic arthritis. Advances in Dermatology and Allergology. 2018;35(4):360–366. doi: 10.5114/ada.2018.77665. PubMed DOI PMC
Karaman A., Aydın H., Geçkinli B., Çetinkaya A., Karaman S. DNA damage is increased in lymphocytes of patients with metabolic syndrome. Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 2015;782:30–35. doi: 10.1016/J.MRGENTOX.2015.03.009. PubMed DOI
Zhou Q., Mrowietz U., Rostami-Yazdi M. Oxidative stress in the pathogenesis of psoriasis. Free Radical Biology & Medicine. 2009;47(7):891–905. doi: 10.1016/J.FREERADBIOMED.2009.06.033. PubMed DOI
Asha K., Singal A., Sharma S. B., Arora V. K., Aggarwal A. Dyslipidaemia & oxidative stress in patients of psoriasis: emerging cardiovascular risk factors. The Indian Journal of Medical Research. 2017;146(6):708–713. doi: 10.4103/ijmr.IJMR_717_16. PubMed DOI PMC
Shimizu I., Yoshida Y., Suda M., Minamino T. DNA damage response and metabolic disease. Cell Metabolism. 2014;20(6):967–977. doi: 10.1016/J.CMET.2014.10.008. PubMed DOI
Kaur M., Sharma S., Kukreja S., Kaur J., Bassi R. Study of oxidative stress in patients of psoriasis. International Journal of Research in Dermatology. 2016;2(4):p. 95. doi: 10.18203/issn.2455-4529.IntJResDermatol20164007. DOI
Abu-Farha M., Abubaker J., Al-Khairi I., et al. Circulating angiopoietin-like protein 8 (betatrophin) association with HsCRP and metabolic syndrome. Cardiovascular Diabetology. 2016;15(1) doi: 10.1186/s12933-016-0346-0. PubMed DOI PMC
Fu Z., Berhane F., Fite A., Seyoum B., Abou-Samra A. B., Zhang R. Elevated circulating lipasin/betatrophin in human type 2 diabetes and obesity. Scientific Reports. 2014;4:p. 5013. doi: 10.1038/srep05013. PubMed DOI PMC
Yi M., Chen R.-P., Yang R., Guo X.-F., Zhang J.-C., Chen H. Betatrophin acts as a diagnostic biomarker in type 2 diabetes mellitus and is negatively associated with HDL-cholesterol. International Journal of Endocrinology. 2015;2015:7. doi: 10.1155/2015/479157.479157 PubMed DOI PMC
Lee Y.-H., Lee S.-G., Lee C. J., et al. Association between betatrophin/ANGPTL8 and non-alcoholic fatty liver disease: animal and human studies. Scientific Reports. 2016;6:p. 24013. doi: 10.1038/srep24013. PubMed DOI PMC
Calan M., Yilmaz O., Kume T., et al. Elevated circulating levels of betatrophin are associated with polycystic ovary syndrome. Endocrine. 2016;53(1):271–279. doi: 10.1007/s12020-016-0875-z. PubMed DOI
Trebotic L. K., Klimek P., Thomas A., et al. Circulating betatrophin is strongly increased in pregnancy and gestational diabetes mellitus. PLoS One. 2015;10(9, article e0136701) doi: 10.1371/journal.pone.0136701. PubMed DOI PMC
Chen C.-C., Susanto H., Chuang W.-H., Liu T.-Y., Wang C.-H. Higher serum betatrophin level in type 2 diabetes subjects is associated with urinary albumin excretion and renal function. Cardiovascular Diabetology. 2016;15:p. 3. doi: 10.1186/s12933-015-0326-9. PubMed DOI PMC
Nidhina Haridas P. A., Soronen J., Sädevirta S., et al. Regulation of angiopoietin-like proteins (ANGPTLs) 3 and 8 by insulin. The Journal of Clinical Endocrinology and Metabolism. 2015;100(10):E1299–E1307. doi: 10.1210/jc.2015-1254. PubMed DOI
Yang L., Yin R., Wang Z., Wang X., Zhang Y., Zhao D. Circulating Angptl3 and Angptl8 are increased in patients with hypothyroidism. BioMed Research International. 2019;2019:3814689. doi: 10.1155/2019/3814687. PubMed DOI PMC
Lu Q., Lu L., Chen W., Lu P. Expression of angiopoietin-like protein 8 correlates with VEGF in patients with proliferative diabetic retinopathy. Graefe's Archive for Clinical and Experimental Ophthalmology. 2017;255(8):1515–1523. doi: 10.1007/s00417-017-3676-z. PubMed DOI
Gómez-Ambrosi J., Pascual E., Catalán V., et al. Circulating betatrophin concentrations are decreased in human obesity and type 2 diabetes. The Journal of Clinical Endocrinology and Metabolism. 2014;99(10):E2004–E2009. doi: 10.1210/jc.2014-1568. PubMed DOI
Wang H., Lai Y., Han C., et al. The effects of serum ANGPTL8/betatrophin on the risk of developing the metabolic syndrome – a prospective study. Scientific Reports. 2016;6(1):p. 28431. doi: 10.1038/srep28431. PubMed DOI PMC
DiStefano J. K. Angiopoietin-like 8 (ANGPTL8) expression is regulated by miR-143-3p in human hepatocytes. Gene. 2019;681:1–6. doi: 10.1016/j.gene.2018.09.041. PubMed DOI PMC
Mysore R., Ortega F. J., Latorre J., et al. MicroRNA-221-3p regulates angiopoietin-like 8 (ANGPTL8) expression in adipocytes. The Journal of Clinical Endocrinology and Metabolism. 2017;102(11):4001–4012. doi: 10.1210/jc.2017-00453. PubMed DOI
Dang F., Wu R., Wang P., et al. Fasting and feeding signals control the oscillatory expression of Angptl8 to modulate lipid metabolism. Scientific Reports. 2016;6(1):p. 36926. doi: 10.1038/srep36926. PubMed DOI PMC
Li H., Xu M., Zhao L., et al. Decreased circulating levels of ANGPTL8 in Graves’ disease patients. Hormones. 2019;18(2):189–195. doi: 10.1007/s42000-019-00095-8. PubMed DOI PMC
Zhang Y., Guo X., Yan W., et al. ANGPTL8 negatively regulates NF-κB activation by facilitating selective autophagic degradation of IKKγ. Nature Communications. 2017;8(1):p. 2164. doi: 10.1038/s41467-017-02355-w. PubMed DOI PMC
Liao Z., Wu X., Song Y., et al. Angiopoietin-like protein 8 expression and association with extracellular matrix metabolism and inflammation during intervertebral disc degeneration. Journal of Cellular and Molecular Medicine. 2019;23(8):5737–5750. doi: 10.1111/jcmm.14488. PubMed DOI PMC
Akimoto N., Wada R., Iwakiri K., Naito Z. Histology and molecular biology studies on the expression and localization of angiopoietin-like protein 8 in human tissues. Biomed Reports. 2019;11(5):215–221. doi: 10.3892/br.2019.1243. PubMed DOI PMC
Guo K. F., Lu J. X., Yu H. Y., et al. Serum betatrophin concentrations are significantly increased in overweight but not in obese or type 2 diabetic individuals. Obesity. 2015;23(4):793–797. doi: 10.1002/oby.21038. PubMed DOI
Tuhan H., Abacı A., Anık A., et al. Circulating betatrophin concentration is negatively correlated with insulin resistance in obese children and adolescents. Diabetes Research and Clinical Practice. 2016;114:37–42. doi: 10.1016/j.diabres.2016.02.008. PubMed DOI
Fu J., Hou C., Li L., et al. Vitamin D modifies the associations between circulating betatrophin and cardiometabolic risk factors among youths at risk for metabolic syndrome. Cardiovascular Diabetology. 2016;15(1):p. 142. doi: 10.1186/s12933-016-0461-y. PubMed DOI PMC
Lips P., Cashman K. D., Lamberg-Allardt C., et al. Current vitamin D status in European and Middle East countries and strategies to prevent vitamin D deficiency: a position statement of the European Calcified Tissue Society. European Journal of Endocrinology. 2019;180(4):P23–P54. doi: 10.1530/EJE-18-0736. PubMed DOI
Mayer O., Jr., Filipovský J., Seidlerová J., et al. The association between low 25-hydroxyvitamin D and increased aortic stiffness. Journal of Human Hypertension. 2012;26(11):650–655. doi: 10.1038/jhh.2011.94. PubMed DOI