The Presence of Psoriasis, Metabolic Syndrome and Their Combination Increases the Serum Levels of CRP and CD5L but Not sCD200R1 and sTLR2 in Participants

. 2022 Nov 28 ; 12 (12) : . [epub] 20221128

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36556186

Grantová podpora
Research area HEAS Cooperatio Program
SVV-260543/2020 Charles University, Faculty of Medicine in Hradec Kralove

Psoriasis and metabolic syndrome (MetS) are chronic inflammatory conditions associated with the dysregulation of immune system reactivity. The inflammatory processes of both diseases have not yet been fully characterized, and the evaluation of proteins/markers that could be involved in their pathogenesis is of great importance. We selected four markers: CRP, sCD200R1, CD5L, and sTLR2; in particular, sCDR2001 has not yet been measured in the context of psoriasis and metabolic syndrome. Material and methods: In the study, 64 controls and 43 patients with psoriasis with or without a metabolic syndrome were enrolled. The levels of selected markers were measured using ELISA kits. Results: CRP levels were significantly higher in psoriasis patients, especially in the subgroup of patients with MetS compared to nonMetS patients (p < 0.01). sCD200R1 and sTLR2 were not significantly different between groups and subgroups; however, CD200R1 levels were slightly higher in both control groups compared to both groups of patients. CD5L levels were significantly higher in patients with MetS compared to nonMets patients (p < 0.02). We also evaluated the correlations between parameters in controls and patients’ groups, as well as in subgroups. Correlations between BMI and CRP were found in all groups and subgroups. Other correlations were group- and subgroup-specific. For example, in the patients’ group, CD5L correlated with sCD200R1 (p < 0.05) and in MetS controls, with age (p < 0.03). Conclusion: The results show that the presence of systemic inflammation associated with psoriasis and metabolic syndrome and their combination alters the expression of specific molecules, especially CRP and CD5L, which were significantly increased in patients with psoriasis and a metabolic syndrome compared to controls without metabolic syndromes. Correlations between CRP and BMI in all groups suggest that overweight and obesity increase the intensity of inflammation and potentiate CD5L expression. In contrast, levels of molecules that may limit inflammation were not increased in psoriasis and metabolic syndrome subjects (they were non-significantly lower compared with healthy controls), which may reflect the chronic nature of both diseases and the exhaustion of inhibitory mechanisms.

Zobrazit více v PubMed

Vičić M., Kaštelan M., Brajac I., Sotošek V., Massari L.P. Current Concepts of Psoriasis Immunopathogenesis. Int. J. Mol. Sci. 2021;22:11574. doi: 10.3390/ijms222111574. PubMed DOI PMC

Capon F. The genetic basis of psoriasis. Int. J. Mol. Sci. 2017;18:2526. doi: 10.3390/ijms18122526. PubMed DOI PMC

Kamiya K., Kishimoto M., Sugai J., Komine M., Ohtsuki M. Risk factors for the development of psoriasis. Int. J. Mol. Sci. 2019;20:4347. doi: 10.3390/ijms20184347. PubMed DOI PMC

Yan B.-X., Chen X.-Y., Ye L.-R., Chen J.-Q., Zheng M., Man X.-Y. Cutaneous and Systemic Psoriasis: Classifications and Classification for the Distinction. Front Med. 2021;8:1820. doi: 10.3389/fmed.2021.649408. PubMed DOI PMC

Srivastava A.K., Chand Yadav T., Khera H.K., Mishra P., Raghuwanshi N., Pruthi V., Prasad R. Insights into interplay of immunopathophysiological events and molecular mechanistic cascades in psoriasis and its associated comorbidities. J. Autoimmun. 2021;118:102614. doi: 10.1016/j.jaut.2021.102614. PubMed DOI

Gisondi P., Fostini A.C., Fossà I., Girolomoni G., Targher G. Psoriasis and the metabolic syndrome. Clin. Dermatol. 2018;36:21–28. doi: 10.1016/j.clindermatol.2017.09.005. PubMed DOI

Zafar U., Khaliq S., Ahmad H.U., Manzoor S., Lone K.P. Metabolic syndrome: An update on diagnostic criteria, pathogenesis, and genetic links. Hormones. 2018;17:299–313. doi: 10.1007/s42000-018-0051-3. PubMed DOI

Fahed G., Aoun L., Bou Zerdan M., Allam S., Bou Zerdan M., Bouferraa Y., Assi H.I. Metabolic Syndrome: Updates on Pathophysiology and Management in 2021. Int. J. Mol. Sci. 2022;23:786. doi: 10.3390/ijms23020786. PubMed DOI PMC

Kahn C.R., Wang G., Lee K.Y. Altered adipose tissue and adipocyte function in the pathogenesis of metabolic syndrome. J. Clin. Investig. 2019;129:3990–4000. doi: 10.1172/JCI129187. PubMed DOI PMC

Grandl G., Wolfrum C. Hemostasis, endothelial stress, inflammation, and the metabolic syndrome. Semin. Immunopathol. 2018;40:215–224. doi: 10.1007/s00281-017-0666-5. PubMed DOI PMC

Holmannova D., Borsky P., Borska L., Andrys C., Hamakova K., Rehacek V., Svadlakova T., Malkova A., Beranek M., Palicka V., et al. Metabolic Syndrome, Clusterin and Elafin in Patients with Psoriasis Vulgaris. Int. J. Mol. Sci. 2020;21:5617. doi: 10.3390/ijms21165617. PubMed DOI PMC

Holmannova D., Borska L., Andrys C., Borsky P., Kremlacek J., Hamakova K., Rehacek V., Malkova A., Svadlakova T., Palicka V., et al. The impact of psoriasis and metabolic syndrome on the systemic inflammation and oxidative damage to nucleic acids. J. Immunol. Res. 2020;2020:7352637. doi: 10.1155/2020/7352637. PubMed DOI PMC

Holmannova D., Borsky P., Andrys C., Hamakova K., Cermakova E., Poctova G., Fiala Z., Smejkalova J., Blaha V., Borska L. Chromosomal Aberrations and Oxidative Stress in Psoriatic Patients with and without Metabolic Syndrome. Metabolites. 2022;12:688. doi: 10.3390/metabo12080688. PubMed DOI PMC

Holmannová D., Kolácková M., Kondélková K., Kunes P., Krejsek J., Andrýs C. CD200/CD200R paired potent inhibitory molecules regulating immune and inflammatory responses; Part I: CD200/CD200R structure, activation, and function. Acta Med. 2012;55:12–17. doi: 10.14712/18059694.2015.68. PubMed DOI

Kotwica-Mojzych K., Jodłowska-Jędrych B., Mojzych M. Cd200:Cd200r interactions and their importance in immunoregulation. Int. J. Mol. Sci. 2021;22:1602. doi: 10.3390/ijms22041602. PubMed DOI PMC

Sanchez-Moral L., Ràfols N., Martori C., Paul T., Téllez É., Sarrias M.R. Multifaceted roles of cd5l in infectious and sterile inflammation. Int. J. Mol. Sci. 2021;22:4076. doi: 10.3390/ijms22084076. PubMed DOI PMC

Weng D., Gao S., Shen H., Yao S., Huang Q., Zhang Y., Huang W., Wang Y., Zhang X., Yin Y., et al. CD5L attenuates allergic airway inflammation by expanding CD11chigh alveolar macrophages and inhibiting NLRP3 inflammasome activation via HDAC2. Immunology. 2022;167:384–397. doi: 10.1111/imm.13543. PubMed DOI

Wang C., Yosef N., Gaublomme J., Wu C., Lee Y., Clish C.B., Kaminski J., Xiao S., Zu Horste G.M., Pawlak M., et al. CD5L/AIM Regulates Lipid Biosynthesis and Restrains Th17 Cell Pathogenicity. Cell. 2015;163:1413–1427. doi: 10.1016/j.cell.2015.10.068. PubMed DOI PMC

Sanjurjo L., Amézaga N., Aran G., Naranjo-Gómez M., Arias L., Armengol C., Borràs F.E., Sarrias M.R. The human CD5L/AIM-CD36 axis: A novel autophagy inducer in macrophages that modulates inflammatory responses. Autophagy. 2015;11:487–502. doi: 10.1080/15548627.2015.1017183. PubMed DOI PMC

Sanjurjo L., Aran G., Téllez É., Amézaga N., Armengol C., López D., Prats C., Sarrias M.R. CD5L promotes M2 macrophage polarization through autophagy-mediated upregulation of ID3. Front. Immunol. 2018;9:480. doi: 10.3389/fimmu.2018.00480. PubMed DOI PMC

Iwamura Y., Mori M., Nakashima K., Mikami T., Murayama K., Arai S., Miyazaki T. Apoptosis inhibitor of macrophage (AIM) diminishes lipid droplet-coating proteins leading to lipolysis in adipocytes. Biochem. Biophys. Res. Commun. 2012;422:476–481. doi: 10.1016/j.bbrc.2012.05.018. PubMed DOI

Amézaga N., Sanjurjo L., Julve J., Aran G., Pérez-Cabezas B., Bastos-Amador P., Armengol C., Vilella R. Human scavenger protein AIM increases foam cell formation and CD36-mediated oxLDL uptake. J. Leukoc. Biol. 2014;95:509–520. doi: 10.1189/jlb.1212660. PubMed DOI

Luo X., Bao X., Weng X., Bai X., Feng Y., Huang J., Liu S., Jia H., Yu B. The protective effect of quercetin on macrophage pyroptosis via TLR2/Myd88/NF-κB and ROS/AMPK pathway. Life Sci. 2022;291:120064. doi: 10.1016/j.lfs.2021.120064. PubMed DOI

Langjahr P., Díaz-Jiménez D., de La Fuente M., Rubio E., Golenbock D., Bronfman F.C., Quera R., Gonzalez M.J., Hermoso M.A. Metalloproteinase-dependent TLR2 ectodomain shedding is involved in soluble toll-like receptor 2 (sTLR2) production. PLoS ONE. 2014;9:104624. doi: 10.1371/journal.pone.0104624. PubMed DOI PMC

Henrick B.M., Yao X.D., Taha A.Y., Bruce German J., Rosenthal K.L. Insights into soluble Toll-like receptor 2 as a downregulator of virally induced inflammation. Front. Immunol. 2016;7:291. doi: 10.3389/fimmu.2016.00291. PubMed DOI PMC

Salihbegovic E.M., Hadzigrahic N., Cickusic A.J. Psoriasis and metabolic syndrome. Med. Arch. 2015;69:85–87. doi: 10.5455/medarh.2015.69.85-87. PubMed DOI PMC

Borska L., Kremlacek J., Andrys C., Krejsek J., Hamakova K., Borsky P., Palicka V., Rehacek V., Malkova A., Fiala Z. Systemic inflammation, oxidative damage to nucleic acids, and metabolic syndrome in the pathogenesis of psoriasis. Int. J. Mol. Sci. 2017;18:2238. doi: 10.3390/ijms18112238. PubMed DOI PMC

Beygi S., Lajevardi V., Abedini R. C-reactive protein in psoriasis: A review of the literature. J. Eur. Acad. Dermatol. Venereol. 2014;28:700–711. doi: 10.1111/jdv.12257. PubMed DOI

Mirhafez S.R., Ebrahimi M., Saberi-Karimian M., Avan A., Tayefi M., Heidari-Bakavoli A., Parizadeh M.R., Moohebati M., Azarpazhooh M.R., Esmaily H., et al. Serum high-sensitivity C-reactive protein as a biomarker in patients with metabolic syndrome: Evidence-based study with 7284 subjects. Eur. J. Clin. Nutr. 2016;70:1298–1304. doi: 10.1038/ejcn.2016.111. PubMed DOI

Kim T., Ganocy S.J., Antonelli M., Einstadter D., Ballou S. Association of CRP with BMI in Males and Females 3–5. [(accessed on 2 December 2021)]. Available online: https://acrabstracts.org/abstract/association-of-crp-with-bmi-in-males-and-females/

Zhao S.C., Xu H., Wang Y., Luan D., Wu W., Ma L., Chu Z.H., Xu Y. CD200-CD200R1 signaling pathway regulates neuroinflammation after stroke. Brain Behav. 2020;10:e01882. doi: 10.1002/brb3.1882. PubMed DOI PMC

Holmannova D., Kolackova M., Mandak J., Kunes P., Holubcova Z., Krejsek J., Vlaskova D., Andrys C. Inhibitory CD200R and proapoptotic CD95/CD95L molecules on innate immunity cells are modulated by cardiac surgery. Perfus. 2015;30:543–555. doi: 10.1177/0267659114558286. PubMed DOI

Walker D.G., Dalsing-Hernandez J.E., Campbell N.A., Lue L.F. Decreased expression of CD200 and CD200 receptor in Alzheimer’s disease: A potential mechanism leading to chronic inflammation. Exp. Neurol. 2009;215:5–19. doi: 10.1016/j.expneurol.2008.09.003. PubMed DOI PMC

Li Y., Zhao L.D., Tong L.S., Qian S.N., Ren Y., Zhang L., Ding X., Chen Y., Wang Y.X., Zhang W., et al. Aberrant CD200/CD200R1 expression and function in systemic lupus erythematosus contributes to abnormal T-cell responsiveness and dendritic cell activity. Arthritis Res. Ther. 2012;14:R123. doi: 10.1186/ar3853. PubMed DOI PMC

Gao S., Hao B., Yang X.F., Chen W.Q. Decreased CD200R expression on monocyte-derived macrophages correlates with Th17/Treg imbalance and disease activity in rheumatoid arthritis patients. Inflamm. Res. 2014;63:441–450. doi: 10.1007/s00011-014-0716-6. PubMed DOI

Elshal M.F., Aldahlawi A.M., Saadah O.I., McCoy J.P. Reduced dendritic cells expressing CD200R1 in children with inflammatory bowel disease: Correlation with Th17 and regulatory T cells. Int. J. Mol. Sci. 2015;16:28998–29010. doi: 10.3390/ijms161226143. PubMed DOI PMC

Bories G., Caiazzo R., Derudas B., Copin C., Raverdy V., Pigeyre M., Pattou F., Staels B., Chinetti-Gbaguidi G. Impaired alternative macrophage differentiation of peripheral blood mononuclear cells from obese subjects. Diabetes Vasc. Dis. Res. 2012;9:189–195. doi: 10.1177/1479164111430242. PubMed DOI PMC

Ismail A.A., Donia H.M., Ghatesh H.M., Farid C.I. CD200/CD200 receptor axis in psoriasis vulgaris. PLoS ONE. 2020;15:e0230621. doi: 10.1371/journal.pone.0230621. PubMed DOI PMC

Linley H., Jaigirdar S., Mohamed K., Griffiths C.E., Saunders A. Reduced cutaneous CD200:CD200R1 signaling in psoriasis enhances neutrophil recruitment to skin. Immunity Inflamm. Dis. 2022;10:e648. doi: 10.1002/iid3.648. PubMed DOI PMC

Taskin I.I., Kandemir S.I., Nas K., Dagli A.Z. Serum Level of ADAMTS4 and ADAMTS8 in Patients with Psoriatic Arthritis. Erciyes Med. J. 2020;43:20–25. doi: 10.14744/etd.2020.65625. DOI

Berg G., Miksztowicz V. Metalloproteinases in the pathogenesis and progression of metabolic syndrome: Potential targets for improved outcomes. Met. Med. 2015;2:51. doi: 10.2147/MNM.S88993. DOI

Akman-Karakaş A., Yalcin A.D., Koç S., Gumuslu S., Şenol Y.Y., Özkesici B., Genç G.E., Ergun E., Ongut G., Yilmaz E., et al. There might be a role for CD200 in the pathogenesis of autoimmune and inflammatory skin disorders. Med. Sci. Monit. 2013;19:888–891. doi: 10.12659/MSM.889624. PubMed DOI PMC

Sanjurjo L., Aran G., Roher N., Valledor A.F., Sarrias M.-R. AIM/CD5L: A key protein in the control of immune homeostasis and inflammatory disease. J. Leukoc. Biol. 2015;98:173–184. doi: 10.1189/jlb.3RU0215-074R. PubMed DOI

Kurokaw J., Nagano H., Ohara O., Kubota N., Kadowaki T., Arai S., Miyazaki T. Apoptosis inhibitor of macrophage (AIM) is required for obesity-associated recruitment of inflammatory macrophages into adipose tissue. Proc. Natl. Acad. Sci. USA. 2011;108:12072–12077. doi: 10.1073/pnas.1101841108. PubMed DOI PMC

Shoji S., Uchida K., Inoue G., Takata K., Mukai M., Aikawa J., Iwase D., Takano S., Sekiguchi H., Takaso M. Increase in CD5L expression in the synovial membrane of knee osteoarthritis patients with obesity. Cent. Eur. J. Immunol. 2021;46:231–235. doi: 10.5114/ceji.2021.108180. PubMed DOI PMC

Lai X., Xiang Y., Zou L., Li Y., Zhang L. Elevation of serum CD5L concentration is correlated with disease activity in patients with systemic lupus erythematosus. Int. Immunopharmacol. 2018;63:311–316. doi: 10.1016/j.intimp.2018.07.022. PubMed DOI

Mohanty L., Henderson R.D., McCombe P.A., Lee A. Levels of clusterin, CD5L, ficolin-3, and gelsolin in ALS patients and controls. Amyotroph Lateral Scler Front. Degener. 2020;21:631–634. doi: 10.1080/21678421.2020.1779303. PubMed DOI

Bárcena C., Aran G., Perea L., Sanjurjo L., Téllez É., Oncins A., Masnou H., Serra I., García-Gallo M., Kremer L., et al. CD5L is a pleiotropic player in liver fibrosis controlling damage, fibrosis and immune cell content. EBioMedicine. 2019;43:513–524. doi: 10.1016/j.ebiom.2019.04.052. PubMed DOI PMC

Castelblanco E., Sarrias M.R., Betriu À., Soldevila B., Barranco-Altirriba M., Franch-Nadal J., Valdivielso J.M., Bermudez-Lopez M., Groop P.H., Fernández E., et al. Circulating CD5L is associated with cardiovascular events and all-cause mortality in individuals with chronic kidney disease. Aging. 2021;13:22690–22709. doi: 10.18632/aging.203615. PubMed DOI PMC

Cheng Q., Lai X., Yang L., Yang H., Luo Y. Serum CD5L predicts acute lung parenchymal injury and acute respiratory distress syndrome in trauma patients. Medicine. 2021;100:e27219. doi: 10.1097/MD.0000000000027219. PubMed DOI PMC

Cretu D., Prassas I., Saraon P., Prassas I., Cretu D. Identification of psoriatic arthritis mediators in synovial fluid by quantitative mass spectrometry. Clin. Proteom. 2014;11:27. doi: 10.1186/1559-0275-11-27. PubMed DOI PMC

Cretu D., Gao L., Liang K., Soosaipillai A., Diamandis E.P., Chandran V. Differentiating Psoriatic Arthritis from Psoriasis Without Psoriatic Arthritis Using Novel Serum Biomarkers. Arthritis Care Res. 2018;70:454–461. doi: 10.1002/acr.23298. PubMed DOI

Fraser S.D., Crooks M.G., Kaye P.M., Hart S.P. Distinct immune regulatory receptor profiles linked to altered monocyte subsets in sarcoidosis. ERJ Open Res. 2021;7 doi: 10.1183/23120541.00804-2020. PubMed DOI PMC

Mancuso P., Bouchard B. The impact of aging on adipose function and adipokine synthesis. Front. Endocrinol. 2019;10:137. doi: 10.3389/fendo.2019.00137. PubMed DOI PMC

Kondelkova K., Krejsek J., Borska L., Fiala Z., Hamakova K., Ettler K., Andrys C. Membrane and soluble Toll-like receptor 2 in patients with psoriasis treated by Goeckerman therapy. Int. J. Dermatol. 2014;53:e512–e517. doi: 10.1111/ijd.12381. PubMed DOI

Zaharieva E., Velikova T., Tsakova A., Kamenov Z. Reduced soluble Toll-like receptors 2 in type 2 diabetes. Arch. Physiol. Biochem. 2018;124:326–329. doi: 10.1080/13813455.2017.1401642. PubMed DOI

Houssen M.E., El-Mahdy R.H., Shahin D.A. Serum soluble toll-like receptor 2: A novel biomarker for systemic lupus erythematosus disease activity and lupus-related cardiovascular dysfunction. Int. J. Rheum. Dis. 2016;19:685–692. doi: 10.1111/1756-185X.12452. PubMed DOI

Holst B., Szakmany T., Raby A.-C., Hamlyn V., Durno V., Hall J.E., Labeta M.O. Soluble Toll-like receptor 2 is a biomarker for sepsis in critically ill patients with multi-organ failure within 12 h of ICU admission. Intensive Care Med. Exp. 2017;5:1–4. doi: 10.1186/s40635-016-0116-z. PubMed DOI PMC

Ten Oever J., Kox M., van de Veerdonk F.L., Mothapo K.M., Slavcovici A., Jansen T.L., Tweehuysen L., Giamarellos-Bourboulis E.J., Schneeberger P.M., Wever P.C., et al. The discriminative capacity of soluble Toll-like receptor (sTLR)2 and sTLR4 in inflammatory diseases. BMC Immunol. 2014;15:55. doi: 10.1186/s12865-014-0055-y. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...