RENEB Inter-Laboratory Comparison 2021: Inter-Assay Comparison of Eight Dosimetry Assays
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
U19 AI067773
NIAID NIH HHS - United States
PubMed
37310880
PubMed Central
PMC10508307
DOI
10.1667/rade-22-00207.1
PII: 492007
Knihovny.cz E-zdroje
- MeSH
- biotest * MeSH
- cytokineze MeSH
- elektronová paramagnetická rezonance MeSH
- odběr vzorku krve * MeSH
- retrospektivní studie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
Tools for radiation exposure reconstruction are required to support the medical management of radiation victims in radiological or nuclear incidents. Different biological and physical dosimetry assays can be used for various exposure scenarios to estimate the dose of ionizing radiation a person has absorbed. Regular validation of the techniques through inter-laboratory comparisons (ILC) is essential to guarantee high quality results. In the current RENEB inter-laboratory comparison, the performance quality of established cytogenetic assays [dicentric chromosome assay (DCA), cytokinesis-block micronucleus assay (CBMN), stable chromosomal translocation assay (FISH) and premature chromosome condensation assay (PCC)] was tested in comparison to molecular biological assays [gamma-H2AX foci (gH2AX), gene expression (GE)] and physical dosimetry-based assays [electron paramagnetic resonance (EPR), optically or thermally stimulated luminescence (LUM)]. Three blinded coded samples (e.g., blood, enamel or mobiles) were exposed to 0, 1.2 or 3.5 Gy X-ray reference doses (240 kVp, 1 Gy/min). These doses roughly correspond to clinically relevant groups of unexposed to low exposed (0-1 Gy), moderately exposed (1-2 Gy, no severe acute health effects expected) and highly exposed individuals (>2 Gy, requiring early intensive medical care). In the frame of the current RENEB inter-laboratory comparison, samples were sent to 86 specialized teams in 46 organizations from 27 nations for dose estimation and identification of three clinically relevant groups. The time for sending early crude reports and more precise reports was documented for each laboratory and assay where possible. The quality of dose estimates was analyzed with three different levels of granularity, 1. by calculating the frequency of correctly reported clinically relevant dose categories, 2. by determining the number of dose estimates within the uncertainty intervals recommended for triage dosimetry (±0.5 Gy or ±1.0 Gy for doses <2.5 Gy or >2.5 Gy), and 3. by calculating the absolute difference (AD) of estimated doses relative to the reference doses. In total, 554 dose estimates were submitted within the 6-week period given before the exercise was closed. For samples processed with the highest priority, earliest dose estimates/categories were reported within 5-10 h of receipt for GE, gH2AX, LUM, EPR, 2-3 days for DCA, CBMN and within 6-7 days for the FISH assay. For the unirradiated control sample, the categorization in the correct clinically relevant group (0-1 Gy) as well as the allocation to the triage uncertainty interval was, with the exception of a few outliers, successfully performed for all assays. For the 3.5 Gy sample the percentage of correct classifications to the clinically relevant group (≥2 Gy) was between 89-100% for all assays, with the exception of gH2AX. For the 1.2 Gy sample, an exact allocation to the clinically relevant group was more difficult and 0-50% or 0-48% of the estimates were wrongly classified into the lowest or highest dose categories, respectively. For the irradiated samples, the correct allocation to the triage uncertainty intervals varied considerably between assays for the 1.2 Gy (29-76%) and 3.5 Gy (17-100%) samples. While a systematic shift towards higher doses was observed for the cytogenetic-based assays, extreme outliers exceeding the reference doses 2-6 fold were observed for EPR, FISH and GE assays. These outliers were related to a particular material examined (tooth enamel for EPR assay, reported as kerma in enamel, but when converted into the proper quantity, i.e. to kerma in air, expected dose estimates could be recalculated in most cases), the level of experience of the teams (FISH) and methodological uncertainties (GE). This was the first RENEB ILC where everything, from blood sampling to irradiation and shipment of the samples, was organized and realized at the same institution, for several biological and physical retrospective dosimetry assays. Almost all assays appeared comparably applicable for the identification of unexposed and highly exposed individuals and the allocation of medical relevant groups, with the latter requiring medical support for the acute radiation scenario simulated in this exercise. However, extreme outliers or a systematic shift of dose estimates have been observed for some assays. Possible reasons will be discussed in the assay specific papers of this special issue. In summary, this ILC clearly demonstrates the need to conduct regular exercises to identify research needs, but also to identify technical problems and to optimize the design of future ILCs.
Belgian Nuclear Research Center SCK CEN Mol Belgium
Bundesamt für Strahlenschutz Oberschleißheim Germany
Bundeswehr Institute of Radiobiology Munich Germany
CEA Saclay Gif sur Yvette Cedex France
Columbia University Irving Medical Center Center for Radiological Research New York New York
Dalat Nuclear Research Institute Radiation Technlogy and Biotechnology Center Dalat City Vietnam
Department of Radiation Biology and Protection Nagasaki University Japan
Department of Safety and Radiation Protection Forschungszentrum Jülich Jülich Germany
Genevolution Porcheville France
Ghent University Radiobiology Research Unit Gent Belgium
Hospital General Universitario Gregorio Marañón Laboratorio de dosimetría biológica Madrid Spain
Institut de Radioprotection et de Surete Nucleaire Fontenay aux Roses France
Institut de Recherche Biomédicale des Armées Bretigny Sur Orge France
Institute of Nuclear Chemistry and Technology Warsaw Poland
Institute of Nuclear Physics Polish Academy of Sciences Krakow Poland
Institute of Radiation Emergency Medicine Hirosaki University Hirosaki Japan
Instituto Superior Técnico Campus Tecnológico e Nuclear Lisbon Portugal
Italian National Agency for New Technologies Energy and Sustainable Economic Development Rome Italy
Laboratori Nazionali di Legnaro Istituto Nazionale di Fisica Nucleare Legnaro Italy
Medical University of Gdansk Department of Physics and Biophysics Gdansk Poland
National Centre of Radiobiology and Radiation Protection Sofia Bulgaria
National Institute of Public Health Radiation Hygiene Laboratory Bucharest Romania
Naval Dosimetry Center Bethesda Maryland
Paris Lodron University of Salzburg Department of Environment and Biodiversity 5020 Salzburg Austria
Radiation Dosimetry Laboratory Oklahoma State University Stillwater Oklahoma
Radiation Protection Centre Vilnius Lithuania
Ruðer Boškovic Institute Division of Physical Chemistry Zagreb Croatia
Serbian Institute of Occupational Health Belgrade Serbia
Servicio de Protección Radiológica Laboratorio de Dosimetría Biológica Valencia Spain
Stockholm University Stockholm Sweden
Universidad de Sevilla Departamento de Biología Celular Sevilla Spain
Università Degli Studi di Palermo Dipartimento di Fisica e Chimica Emilio Segrè Palermo Italy
Universitat Autònoma de Barcelona Barcelona Spain
University of Arizona Center for Applied Nanobioscience and Medicine Phoenix Arizona
University of Defense Faculty of Military Health Sciences Hradec Králové Czech Republic
Zobrazit více v PubMed
Waselenko JK, MacVittie TJ, Blakely WF, Pesik N, Wiley AL, Dickerson WE, et al. Medical management of the acute radiation syndrome: recommendations of the Strategic National Stockpile Radiation Working Group. Ann Intern Med. 2004; 140(12):1037–51. 10.7326/0003-4819-140-12-200406150-00015. PubMed DOI
Blakely WF, Port M, Abend M. Early-response multiple-parameter biodosimetry and dosimetry: risk predictions. J Radiol Prot. 2021; 41(4). 10.1088/1361-6498/ac15df. PubMed DOI
Dainiak N, Albanese J, Kaushik M, Balajee AS, Romanyukha A, Sharp TJ, et al. Concepts of Operations for a Us Dosimetry and Biodosimetry Network. Radiat Prot Dosimetry. 2019; 186(1):130–8. 10.1093/rpd/ncy294. PubMed DOI
O’Brien G, Cruz-Garcia L, Majewski M, Grepl J, Abend M, Port M, et al. FDXR is a biomarker of radiation exposure in vivo. Sci Rep. 2018; 8(1):684. 10.1038/s41598-017-19043-w. PubMed DOI PMC
Abend M, Port M. Contribution of Biodosimetry to Different Medical Issues. Radiat Prot Dosimetry. 2019; 186(1):123–5. 10.1093/rpd/ncy278. PubMed DOI
Port M, Herodin F, Drouet M, Valente M, Majewski M, Ostheim P, et al. Gene Expression Changes in Irradiated Baboons: A Summary and Interpretation of a Decade of Findings. Radiat Res. 2021; 195(6):501–21. 10.1667/RADE-20-00217.1. PubMed DOI
Amundson SA. Transcriptomics for radiation biodosimetry: progress and challenges. Int J Radiat Biol. 2021:1–9. 10.1080/09553002.2021.1928784. PubMed DOI PMC
Port M, Majewski M, Abend M. Radiation Dose Is of Limited Clinical Usefulness in Persons with Acute Radiation Syndrome. Radiat Prot Dosimetry. 2019; 186(1):126–9. 10.1093/rpd/ncz058. PubMed DOI
Bailiff IK, Sholom S, McKeever SWS. Retrospective and emergency dosimetry in response to radiological incidents and nuclear mass-casualty events: A review. Radiat Meas. 2016; 94:83–139. 10.1016/j.radmeas.2016.09.004. DOI
Measurements ICoRUa. Methods for initial-phase assessment of individual doses following acute exposure to ionizing radiation. ICRU Report 94. SAGE Journals: ICRU-International Commission on Radiation Units and Measurements; 2019.
Cytogenetic Dosimetry: Applications in Preparedness for and Response to Radiation Emergencies. Vienna: International Atomic Energy Agency; 2011.
Di Giorgio M, Barquinero JF, Vallerga MB, Radl A, Taja MR, Seoane A, et al. Biological dosimetry intercomparison exercise: an evaluation of triage and routine mode results by robust methods. Radiat Res. 2011; 175(5):638–49. 10.1667/RR2425.1. PubMed DOI
Wilkins RC, Romm H, Oestreicher U, Marro L, Yoshida MA, Suto Y, et al. Biological Dosimetry by the Triage Dicentric Chromosome Assay - Further validation of International Networking. Radiat Meas. 2011; 46(9):923–8. 10.1016/j.radmeas.2011.03.012. PubMed DOI PMC
Oestreicher U, Samaga D, Ainsbury E, Antunes AC, Baeyens A, Barrios L, et al. RENEB intercomparisons applying the conventional Dicentric Chromosome Assay (DCA). Int J Radiat Biol. 2017; 93(1):20–9. 10.1080/09553002.2016.1233370. PubMed DOI
Royba E, Repin M, Pampou S, Karan C, Brenner DJ, Garty G. RABiT-II-DCA: A Fully-automated Dicentric Chromosome Assay in Multiwell Plates. Radiat Res. 2019; 192(3):311–23. 10.1667/RR15266.1. PubMed DOI PMC
Flegal FN, Devantier Y, McNamee JP, Wilkins RC. Quickscan dicentric chromosome analysis for radiation biodosimetry. Health Phys. 2010; 98(2):276–81. 10.1097/HP.0b013e3181aba9c7. PubMed DOI
Flegal FN, Devantier Y, Marro L, Wilkins RC. Validation of QuickScan dicentric chromosome analysis for high throughput radiation biological dosimetry. Health Phys. 2012; 102(2):143–53. 10.1097/HP.0b013e3182307758. PubMed DOI
Kulka U, Wojcik A, Di Giorgio M, Wilkins R, Suto Y, Jang S, et al. Biodosimetry and Biodosimetry Networks for Managing Radiation Emergency. Radiat Prot Dosimetry. 2018; 182(1):128–38. 10.1093/rpd/ncy137. PubMed DOI
Romm H, Beinke C, Garcia O, Di Giorgio M, Gregoire E, Livingston G, et al. A New Cytogenetic Biodosimetry Image Repository for the Dicentric Assay. Radiat Prot Dosimetry. 2016; 172(1-3):192–200. 10.1093/rpd/ncw158. PubMed DOI
Schunck C, Johannes T, Varga D, Lorch T, Plesch A. New developments in automated cytogenetic imaging: unattended scoring of dicentric chromosomes, micronuclei, single cell gel electrophoresis, and fluorescence signals. Cytogenet Genome Res. 2004; 104(1-4):383–9. 10.1159/000077520. PubMed DOI
Vaurijoux A, Gruel G, Pouzoulet F, Gregoire E, Martin C, Roch-Lefevre S, et al. Strategy for population triage based on dicentric analysis. Radiat Res. 2009; 171(5):541–8. 10.1667/RR1664.1. PubMed DOI
Gruel G, Gregoire E, Lecas S, Martin C, Roch-Lefevre S, Vaurijoux A, et al. Biological dosimetry by automated dicentric scoring in a simulated emergency. Radiat Res. 2013; 179(5):557–69. 10.1667/RR3196.1. PubMed DOI
Romm H, Ainsbury E, Barnard S, Barrios L, Barquinero JF, Beinke C, et al. Automatic scoring of dicentric chromosomes as a tool in large scale radiation accidents. Mutat Res. 2013; 756(1-2):174–83. 10.1016/j.mrgentox.2013.05.013. PubMed DOI
Oestreicher U, Endesfelder D, Gomolka M, Kesminiene A, Lang P, Lindholm C, et al. Automated scoring of dicentric chromosomes differentiates increased radiation sensitivity of young children after low dose CT exposure in vitro. Int J Radiat Biol. 2018; 94(11):1017–26. 10.1080/09553002.2018.1503429. PubMed DOI
Lloyd DC, Edwards AA, Moquet JE, Guerrero-Carbajal YC. The role of cytogenetics in early triage of radiation casualties. Appl Radiat Isot. 2000; 52(5):1107–12. 10.1016/s0969-8043(00)00054-3. PubMed DOI
Port M, Ostheim P, Majewski M, Voss T, Haupt J, Lamkowski A, et al. Rapid High-Throughput Diagnostic Triage after a Mass Radiation Exposure Event Using Early Gene Expression Changes. Radiat Res. 2019; 192(2):208–18. 10.1667/RR15360.1. PubMed DOI
Ostheim P, Coker O, Schule S, Hermann C, Combs SE, Trott KR, et al. Identifying a Diagnostic Window for the Use of Gene Expression Profiling to Predict Acute Radiation Syndrome. Radiat Res. 2021; 195(1):38–46. 10.1667/RADE-20-00126.1. PubMed DOI
Cruz-Garcia L, Nasser F, O’Brien G, Grepl J, Vinnikov V, Starenkiy V, et al. Transcriptional Dynamics of DNA Damage Responsive Genes in Circulating Leukocytes during Radiotherapy. Cancers (Basel). 2022; 14(11). 10.3390/cancers14112649. PubMed DOI PMC
Ostheim P, Don Mallawaratchy A, Muller T, Schule S, Hermann C, Popp T, et al. Acute radiation syndrome-related gene expression in irradiated peripheral blood cell populations. Int J Radiat Biol. 2021; 97(4):474–84. 10.1080/09553002.2021.1876953. PubMed DOI
Grace MB, Moyer BR, Prasher J, Cliffer KD, Ramakrishnan N, Kaminski J, et al. Rapid radiation dose assessment for radiological public health emergencies: roles of NIAID and BARDA. Health Phys. 2010; 98(2):172–8. 10.1097/01.HP.0000348001.60905.c0. PubMed DOI
Ainsbury EA, Bakhanova E, Barquinero JF, Brai M, Chumak V, Correcher V, et al. Review of retrospective dosimetry techniques for external ionising radiation exposures. Radiat Prot Dosimetry. 2011; 147(4):573–92. 10.1093/rpd/ncq499. PubMed DOI
Alexander GA, Swartz HM, Amundson SA, Blakely WF, Buddemeier B, Gallez B, et al. BiodosEPR-2006 Meeting: Acute dosimetry consensus committee recommendations on biodosimetry applications in events involving uses of radiation by terrorists and radiation accidents. Radiation Measurements. 2007; 42(6):972–96. 10.1016/j.radmeas.2007.05.035. DOI
Trompier F, Bassinet C, Clairand I. Radiation accident dosimetry on plastics by EPR spectrometry. Health Phys. 2010; 98(2):388–94. 10.1097/01.HP.0000346334.78268.31. PubMed DOI
Trompier F, De Angelis C, Monaca D, Sanità G, Roma S. Retrospective dose assessment in a radiation mass casualty by EPR and OSL in mobile phones 2012.
McKeever SWS, Sholom S, Chandler JR. Developments in the Use of Thermoluminescence and Optically Stimulated Luminescence From Mobile Phones in Emergency Dosimetry. Radiat Prot Dosimetry. 2020; 192(2):205–35. 10.1093/rpd/ncaa208. PubMed DOI
Beinke C, Siebenwirth C, Abend M, Port M. Contribution of Biological and EPR Dosimetry to the Medical Management Support of Acute Radiation Health Effects. Applied Magnetic Resonance. 2022; 53(1):265–87. 10.1007/s00723-021-01457-5. DOI
Abend M, Amundson SA, Badie C, Brzoska K, Hargitai R, Kriehuber R, et al. Inter-laboratory comparison of gene expression biodosimetry for protracted radiation exposures as part of the RENEB and EURADOS WG10 2019 exercise. Sci Rep. 2021; 11(1):9756. PubMed PMC
Abend M, Badie C, Quintens R, Kriehuber R, Manning G, Macaeva E, et al. Examining Radiation-Induced In Vivo and In Vitro Gene Expression Changes of the Peripheral Blood in Different Laboratories for Biodosimetry Purposes: First RENEB Gene Expression Study. Radiat Res. 2016; 185(2):109–23. 10.1667/RR14221.1. PubMed DOI
Waldner L, Bernhardsson C, Woda C, Trompier F, Van Hoey O, Kulka U, et al. The 2019-2020 EURADOS WG10 and RENEB Field Test of Retrospective Dosimetry Methods in a Small-Scale Incident Involving Ionizing Radiation. Radiat Res. 2021; 195(3):253–64. 10.1667/RADE-20-00243.1. PubMed DOI
Endesfelder D, Oestreicher U, Kulka U, Ainsbury EA, Moquet J, Barnard S, et al. RENEB/EURADOS field exercise 2019: robust dose estimation under outdoor conditions based on the dicentric chromosome assay. Int J Radiat Biol. 2021; 97(9):1181–98. 10.1080/09553002.2021.1941380. PubMed DOI
Gregoire E, Barquinero JF, Gruel G, Benadjaoud M, Martinez JS, Beinke C, et al. RENEB Inter-Laboratory comparison 2017: limits and pitfalls of ILCs. Int J Radiat Biol. 2021; 97(7):888–905. 10.1080/09553002.2021.1928782. PubMed DOI
Barquinero JF, Beinke C, Borras M, Buraczewska I, Darroudi F, Gregoire E, et al. RENEB biodosimetry intercomparison analyzing translocations by FISH. Int J Radiat Biol. 2017; 93(1):30–5. 10.1080/09553002.2016.1222092. PubMed DOI
Moquet J, Barnard S, Staynova A, Lindholm C, Monteiro Gil O, Martins V, et al. The second gamma-H2AX assay intercomparison exercise carried out in the framework of the European biodosimetry network (RENEB). Int J Radiat Biol. 2017; 93(1):58–64. 10.1080/09553002.2016.1207822. PubMed DOI
Terzoudi GI, Pantelias G, Darroudi F, Barszczewska K, Buraczewska I, Depuydt J, et al. Dose assessment intercomparisons within the RENEB network using G0-lymphocyte prematurely condensed chromosomes (PCC assay). Int J Radiat Biol. 2017; 93(1):48–57. 10.1080/09553002.2016.1234725. PubMed DOI PMC
Manning G, Macaeva E, Majewski M, Kriehuber R, Brzoska K, Abend M, et al. Comparable dose estimates of blinded whole blood samples are obtained independently of culture conditions and analytical approaches. Second RENEB gene expression study. Int J Radiat Biol. 2017; 93(1):87–98. 10.1080/09553002.2016.1227105. PubMed DOI
Barnard S, Ainsbury EA, Al-hafidh J, Hadjidekova V, Hristova R, Lindholm C, et al. The first gamma-H2AX biodosimetry intercomparison exercise of the developing European biodosimetry network RENEB. Radiat Prot Dosimetry. 2015; 164(3):265–70. 10.1093/rpd/ncu259. PubMed DOI
Barquinero J-F, Abe Y,NA, Endesfelder D, Georgieva D, Goh VST, et al. RENEB Inter-Laboratory Comparison 2021: The FISH-based translocation assay. Radiat Res 2023; 199. PubMed
Endesfelder D, Oestreicher U, Bucher M, Beinke C, Siebenwirth C, Ainsbury E, et al. RENEB Inter-Laboratory Comparison 2021: The Dicentric Chromosome Assay. Radiat Res 2023; 199. PubMed
Vral A, Endesfelder D, Balázs K, Beinke C, Cuceu Petrenci C, Finot F, et al. RENEB Inter-Laboratory Comparison 2021: The Cytokinesis-Block Micronucleus Assay. Radiat Res. 2023; 199:571–582. PubMed
Moquet J, Ainsbury E, Balázs K, Barnard S, Hristova R, Lumniczky K, et al. RENEB Inter-Laboratory Comparison 2021: The gamma-H2AX foci assay. Radiat Res 2023; 199. PubMed
Abend M, Amundson SA, Badie C, Brzoska K, Kriehuber R, Lacombe J, et al. RENEB Inter-Laboratory Comparison 2021: The gene expression assay Radiat Res 2023; 199. PubMed PMC
Jaworska A, Ainsbury EA, Fattibene P, Lindholm C, Oestreicher U, Rothkamm K, et al. Operational guidance for radiation emergency response organisations in Europe for using biodosimetric tools developed in EU MULTIBIODOSE project. Radiat Prot Dosimetry. 2014; 164(1-2):165–9. 10.1093/rpd/ncu294. PubMed DOI
Endesfelder D, Oestreicher U, JF B, Vral A, Terzoudi G, Moquet J, et al. What we have learned from RENEB inter-laboratory comparisons since 2012 with focus on ILC 2021. Radiat Res 2023; 199. PubMed
DIN 6809-5 Klinische Dosimetrie Teil 5: Anwendung von Röntgenstrahlen mit Röhrenspannungen von 100 bis 400 kV in der Strahlentherapie. 1996.
ISO 13304-2:2020 - Radiological Protection - Minimum Criteria For Electron Paramagnetic Resonance (EPR) Spectroscopy For Retrospective Dosimetry Of Ionizing Radiation - Part 2: Ex Vivo Human Tooth Enamel Dosimetry. International Organization for Standardization; 2020 2020-07.
Ivannikov AI, Tikunov DD, Borysheva NB, Trompier F, Skvortsov VG, Stepanenko VF, et al. Calibration of EPR signal dose response of tooth enamel to photons: experiment and Monte Carlo simulation. Radiat Prot Dosimetry. 2004; 108(4):303–15. 10.1093/rpd/nch040. PubMed DOI
Fattibene P, Callens F. EPR dosimetry with tooth enamel: A review. Appl Radiat Isot. 2010; 68(11):2033–116. 10.1016/j.apradiso.2010.05.016. PubMed DOI
Trompier F, Tikunov DD, Ivannikov A, Clairand I. ESR investigation of joint use of dentin and tooth enamel to estimate photon and neutron dose components of a mixed field. Radiat Prot Dosimetry. 2006; 120(1-4):191–6. 10.1093/rpd/nci650. PubMed DOI
Ekendahl D, Judas L. Retrospective dosimetry with alumina substrate from electronic components. Radiat Prot Dosimetry. 2012; 150(2):134–41. 10.1093/rpd/ncr380. PubMed DOI
Discher M, Greiter M, Woda C. Photon energy dependence and angular response of glass display used in mobile phones for accident dosimetry. Radiat Meas. 2014; 71:471–4. 10.1016/j.radmeas.2014.04.011. DOI
Bassinet C, Pirault N, Baumann M, Clairand I. Radiation accident dosimetry: TL properties of mobile phone screen glass. Radiat Meas. 2014; 71:461–5. 10.1016/j.radmeas.2014.03.025. DOI
Bassinet C, Woda C, Bortolin E, Della Monaca S, Fattibene P, Quattrini MC, et al. Retrospective radiation dosimetry using OSL of electronic components: Results of an inter-laboratory comparison. Radiat Meas. 2014; 71:475–9. 10.1016/j.radmeas.2014.03.016. DOI
Eakins JS, Hager LG, Kouroukla E, Smith RW, Tanner RJ. The Phe Fortuitous Dosimetry Capability Based on Optically Stimulated Luminescence of Mobile Phones. Radiat Prot Dosimetry. 2016; 170(1-4):412–5. 10.1093/rpd/ncv520. PubMed DOI
BSI. ISO19238. 2014 International Organization for Standardization (ISO), radiation protection performance criteria for service laboratories performing biological dosimetry by cytogenetics. BSI; 2014-02.
Hernández A, Endesfelder D, Einbeck J, Puig P, Benadjaoud A, Higueras M, et al. Biodose Tools: An R Shiny Application for Biological Dosimetry 2019. [Available from: https://aldomann.shinyapps.io/biodose-tools-beta/_w_7bf9e171/_w_b69c9547/_w_bd0125fb/. PubMed
DiCarlo AL, Homer MJ, Coleman CN. United States medical preparedness for nuclear and radiological emergencies. J Radiol Prot. 2021; 41(4). 10.1088/1361-6498/ac0d3f. PubMed DOI PMC
Discher M, Woda C, Ekendahl D, Rojas-Palma C, Steinhäusler F. Evaluation of physical retrospective dosimetry methods in a realistic accident scenario: Results of a field test. Radiation Measurements. 2021; 142:106544. 10.1016/j.radmeas.2021.106544. DOI
Rojas-Palma C, Woda C, Discher M, Steinhäusler F. On the use of retrospective dosimetry to assist in the radiological triage of mass casualties exposed to ionising radiation. J Radiol Prot. 2020; 40(4). 10.1088/1361-6498/abc181. PubMed DOI
Trompier F, Burbidge C, Bassinet C, Baumann M, Bortolin E, De Angelis C, et al. Overview of physical dosimetry methods for triage application integrated in the new European network RENEB. Int J Radiat Biol. 2017; 93(1):65–74. 10.1080/09553002.2016.1221545. PubMed DOI
Farese AM, MacVittie TJ. Filgrastim for the treatment of hematopoietic acute radiation syndrome. Drugs Today (Barc). 2015; 51(9):537–48. 10.1358/dot.2015.51.9.2386730. PubMed DOI
Herodin F, Drouet M. Cytokine-based treatment of accidentally irradiated victims and new approaches. Exp Hematol. 2005; 33(10):1071–80. 10.1016/j.exphem.2005.04.007. PubMed DOI
Rothkamm K, Horn S, Scherthan H, Rossler U, De Amicis A, Barnard S, et al. Laboratory intercomparison on the gamma-H2AX foci assay. Radiat Res. 2013; 180(2):149–55. 10.1667/RR3238.1. PubMed DOI
Badie C, Kabacik S, Balagurunathan Y, Bernard N, Brengues M, Faggioni G, et al. Laboratory intercomparison of gene expression assays. Radiat Res. 2013; 180(2):138–48. 10.1667/RR3236.1. PubMed DOI PMC
Jacobs AR, Guyon T, Headley V, Nair M, Ricketts W, Gray G, et al. Role of a high throughput biodosimetry test in treatment prioritization after a nuclear incident. Int J Radiat Biol. 2020; 96(1):57–66. 10.1080/09553002.2018.1532615. PubMed DOI
Gu J, Norquist A, Brooks C, Repin M, Mukherjee S, Lacombe J, et al. Development of an integrated fingerstick blood self-collection device for radiation countermeasures. PLoS One. 2019; 14(10):e0222951. 10.1371/journal.pone.0222951. PubMed DOI PMC
Beinke C, Barnard S, Boulay-Greene H, De Amicis A, De Sanctis S, Herodin F, et al. Laboratory intercomparison of the dicentric chromosome analysis assay. Radiat Res. 2013; 180(2):129–37. 10.1667/RR3235.1. PubMed DOI
Discher M, Hiller M, Woda C. MCNP simulations of a glass display used in a mobile phone as an accident dosimeter. Radiation Measurements. 2015; 75:21–8. 10.1016/j.radmeas.2015.02.013. DOI
Kim H, Yu H, Discher M, Kim MC, Choi Y, Lee H, et al. A small-scale realistic inter-laboratory accident dosimetry comparison using the TL/OSL from mobile phone components. Radiation Measurements. 2022; 150:106696. 10.1016/j.radmeas.2021.106696. DOI
Chandler JR, Sholom S, McKeever SWS, Bakhanova E, Chumak V, Velásquez D, et al. Dose conversion factors for absorbed dose in a mobile phone to absorbed dose in critical organs in an anthropomorphic phantom for emergency dosimetry applications: OSL and TL experimental results, and Monte Carlo simulations. Radiat Meas. 2022; 154:106781. 10.1016/j.radmeas.2022.106781. DOI
Eakins JS, Kouroukla E. Luminescence-based retrospective dosimetry using Al2O3 from mobile phones: a simulation approach to determine the effects of position. J Radiol Prot. 2015; 35(2):343–81. 10.1088/0952-4746/35/2/343. PubMed DOI
Kim MC, Kim H, Han H, Lee J, Lee SK, Chang I, et al. A study on dose conversion from a material to human body using mesh phantom for retrospective dosimetry. Radiat Meas. 2019; 126:106126. 10.1016/j.radmeas.2019.106126. DOI
Discher M, Eakins J, Woda C, Tanner R. Translation of the absorbed dose in the mobile phone to organ doses of an ICRP voxel phantom using MCNPX simulation of an Ir-192 point source. Radiat Meas. 2021; 146:106603. 10.1016/j.radmeas.2021.106603. DOI
Marciniak A, Juniewicz M, Ciesielski B, Prawdzik-Dampc A, Karczewski J. Comparison of three methods of EPR retrospective dosimetry in watch glass. Frontiers in Public Health. 2022; 10. 10.3389/fpubh.2022.1063769. PubMed DOI PMC
Scherthan H, Hieber L, Braselmann H, Meineke V, Zitzelsberger H. Accumulation of DSBs in gamma-H2AX domains fuel chromosomal aberrations. Biochem Biophys Res Commun. 2008; 371(4):694–7. 10.1016/j.bbrc.2008.04.127. PubMed DOI
Rothkamm K, Barnard S, Moquet J, Ellender M, Rana Z, Burdak-Rothkamm S. DNA damage foci: Meaning and significance. Environ Mol Mutagen. 2015; 56(6):491–504. 10.1002/em.21944. PubMed DOI
Riecke A, Rufa CG, Cordes M, Hartmann J, Meineke V, Abend M. Gene expression comparisons performed for biodosimetry purposes on in vitro peripheral blood cellular subsets and irradiated individuals. Radiat Res. 2012; 178(3):234–43. 10.1667/rr2738.1. PubMed DOI
Agbenyegah S, Abend M, Atkinson MJ, Combs SE, Trott KR, Port M, et al. Impact of Inter-Individual Variance in the Expression of a Radiation-Responsive Gene Panel Used for Triage. Radiat Res. 2018; 190(3):226–35. 10.1667/RR15013.1. PubMed DOI
Rothkamm K, Balroop S, Shekhdar J, Fernie P, Goh V. Leukocyte DNA damage after multi-detector row CT: a quantitative biomarker of low-level radiation exposure. Radiology. 2007; 242(1):244–51. 10.1148/radiol.2421060171. PubMed DOI
Redon CE, Nakamura AJ, Gouliaeva K, Rahman A, Blakely WF, Bonner WM. Q(gamma-H2AX), an analysis method for partial-body radiation exposure using gamma-H2AX in nonhuman primate lymphocytes. Radiat Meas. 2011; 46(9):877–81. 10.1016/j.radmeas.2011.02.017. PubMed DOI PMC
Ainsbury EA, Livingston GK, Abbott MG, Moquet JE, Hone PA, Jenkins MS, et al. Interlaboratory variation in scoring dicentric chromosomes in a case of partial-body x-ray exposure: implications for biodosimetry networking and cytogenetic “triage mode” scoring. Radiat Res. 2009; 172(6):746–52. 10.1667/RR1934.1. PubMed DOI
Vinnikov VA, Ainsbury EA, Maznyk NA, Lloyd DC, Rothkamm K. Limitations associated with analysis of cytogenetic data for biological dosimetry. Radiat Res. 2010; 174(4):403–14. 10.1667/RR2228.1. PubMed DOI