Spectral light quality differentially modulates PSII energy partitioning among soybean genotypes
Jazyk angličtina Země Česko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
41551677
PubMed Central
PMC12805461
DOI
10.32615/ps.2025.029
PII: PS63309
Knihovny.cz E-zdroje
- Klíčová slova
- Glycine max, photosystem II, quantum yields, quenching analysis, red light syndrome, relaxation analysis,
- MeSH
- chlorofyl metabolismus MeSH
- fotosyntéza * účinky záření MeSH
- fotosystém II (proteinový komplex) * metabolismus MeSH
- genotyp MeSH
- Glycine max * genetika účinky záření metabolismus fyziologie MeSH
- světlo * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chlorofyl MeSH
- fotosystém II (proteinový komplex) * MeSH
Cultivated soybean is a globally important crop; understanding its responses to different light spectra within the canopy is essential, especially considering the limited agricultural area. Energy flux and spectral quality are key components of the light environment that determine photosynthesis and, consequently, plant growth. These factors influence the composition and structure of photosystem II, thereby affecting energy partitioning between photochemical and nonphotochemical processes. This study evaluated the photosynthetic performance of two soybean genotypes under four light environments with distinct spectral compositions but equal energy flux. Results showed that PSII efficiency improved by the wavelengths outside the PAR range, irrespective of genotype. However, quantum yield parameters revealed genotype-specific responses under blue and red light. Plants exposed exclusively to red light exhibited reduced photosynthetic efficiency and increased photodamage after prolonged exposure, consistent with red light syndrome.
Zobrazit více v PubMed
Ahn T.K., Avenson T.J., Peers G. et al. : Investigating energy partitioning during photosynthesis using an expanded quantum yield convention. – Chem. Phys. 357: 151-158, 2009. 10.1016/j.chemphys.2008.12.003 DOI
Baker N.R.: Chlorophyll fluorescence: a probe of photosynthesis PubMed DOI
Bates D., Mächler M., Bolker B., Walker S.: Fitting linear mixed-effects models using lme4. – J. Stat. Softw. 67: 1-48, 2015. 10.18637/jss.v067.i01 DOI
Broughton W.J., Dilworth M.J.: Control of leghaemoglobin synthesis in snake beans. – Biochem. J. 125: 1075-1080, 1971. 10.1042/BJ1251075 PubMed DOI PMC
Brown C.S., Schuerger A.C., Sager J.C.: Growth and photomorphogenesis of pepper plants under red light-emitting diodes with supplemental blue or far-red lighting. – J. Am. Soc. Hortic. Sci. 120: 808-813, 1995. 10.21273/jashs.120.5.808 PubMed DOI
Courbier S., Pierik R.: Canopy light quality modulates stress responses in plants. – iScience 22: 441-452, 2019. 10.1016/J.ISCI.2019.11.035 PubMed DOI PMC
Demmig-Adams B., Adams III W.W., Barker D.H. et al. : Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. – Physiol. Plantarum 98: 253-264, 1996. 10.1034/j.1399-3054.1996.980206.x DOI
Demotes-Mainard S., Péron T., Corot A. et al. : Plant responses to red and far-red lights, applications in horticulture. – Environ. Exp. Bot. 121: 4-21, 2016.
Devlin P.F., Christie J.M., Terry M.J.: Many hands make light work. – J. Exp. Bot. 58: 3071-3077, 2007. 10.1093/jxb/erm251 PubMed DOI
Didaran F., Kordrostami M., Ghasemi-Soloklui A.A. et al. : The mechanisms of photoinhibition and repair in plants under high light conditions and interplay with abiotic stressors. – J. Photoch. Photobio. B 259: 113004, 2024. 10.1016/j.jphotobiol.2024.113004 PubMed DOI
Dougher T.A., Bugbee B.: Long-term blue light effects on the histology of lettuce and soybean leaves and stems. – J. Am. Soc. Hortic. Sci. 29: 467-472, 2004. 10.21273/JASHS.129.4.0467 DOI
Fang L., Ma Z., Wang Q. et al. : Plant growth and photosynthetic characteristics of soybean seedlings under different LED lighting quality conditions. – J. Plant Growth Regul. 40: 668-678, 2021. 10.1007/s00344-020-10131-2 DOI
Fehr W.R., Caviness C.E.: Stages of Soybean Development. Special Report 80. Pp. 12. Iowa Agricultural Experiment Station, Iowa State University, Ames: 1977. https://dr.lib.iastate.edu/handle/20.500.12876/90239
Genty B., Briantais J.-M., Baker N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. – BBA-Gen. Subjects 990: 87-92, 1989. 10.1016/S0304-4165(89)80016-9 DOI
Hamdani S., Khan N., Perveen S. et al. : Changes in the photosynthesis properties and photoprotection capacity in rice ( PubMed DOI
Hartman G.L., West E.D., Herman T.K.: Crops that feed the World 2. Soybean – worldwide production, use, and constraints caused by pathogens and pests. – Food Secur. 3: 5-17, 2011. 10.1007/S12571-010-0108-X DOI
Hendrickson L., Furbank R.T., Chow W.S.: A simple alternative approach to assessing the fate of absorbed light energy using chlorophyll fluorescence. – Photosynth. Res. 82: 73-81, 2004. 10.1023/B:PRES.0000040446.87305.f4 PubMed DOI
Hikosaka K., Kato M.C., Hirose T.: Photosynthetic rates and partitioning of absorbed light energy in photoinhibited leaves. – Physiol. Plantarum 121: 699-708, 2004. 10.1111/j.1399-3054.2004.00364.x DOI
Hirai T., Amaki W., Watanabe H.: Action of blue or red monochromatic light on stem internodal growth depends on plant species. – Acta Hortic. 711: 345-350, 2006. 10.17660/ActaHortic.2006.711.47 DOI
Hitz T., Hartung J., Graeff-Hönninger S., Munz S.: Morphological response of soybean ( DOI
Hogewoning S.W., Douwstra P., Trouwborst G. et al. : An artificial solar spectrum substantially alters plant development compared with usual climate room irradiance spectra. – J. Exp. Bot. 61: 1267-1276, 2010a. 10.1093/jxb/erq005 PubMed DOI
Hogewoning S.W., Trouwborst G., Maljaars H. et al. : Blue light dose-responses of leaf photosynthesis, morphology, and chemical composition of PubMed DOI PMC
Huber M., Nieuwendijk N.M., Pantazopoulou C.K., Pierik R.: Light signalling shapes plant–plant interactions in dense canopies. – Plant Cell Environ. 44: 1014-1029, 2021. 10.1111/pce.13912 PubMed DOI PMC
Kasajima I., Takahara K., Kawai-Yamada M.. Uchimiya H.: Estimation of the relative sizes of rate constants for chlorophyll de-excitation processes through comparison of inverse fluorescence intensities. – Plant Cell Physiol. 50: 1600-1616, 2009. 10.1093/pcp/pcp102 PubMed DOI
Kochetova G.V., Avercheva O.V., Bassarskaya E.M., Zhigalova T.V.: Light quality as a driver of photosynthetic apparatus development. – Biophys. Rev. 14: 779-803, 2022. 10.1007/s12551-022-00985-z PubMed DOI PMC
Kramer D.M., Johnson G., Kiirats O., Edwards G.E.: New fluorescence parameters for the determination of Q PubMed DOI
Lazar D., Stirbet A., Björn L.O., Govindjee G.: Light quality, oxygenic photosynthesis and more. – Photosynthetica 60: 25-58, 2022. 10.32615/ps.2021.055 PubMed DOI PMC
Lazár D.: Parameters of photosynthetic energy partitioning. – J. Plant Physiol. 175: 131-147, 2015. 10.1016/j.jplph.2014.10.021 PubMed DOI
Lenth R.V.: emmeans: Estimated Marginal Means, aka Least-Squares Means.
Liu X.Y., Chang T.T., Guo S.R. et al. : Effect of different light quality of LED on growth and photosynthetic character in cherry tomato seedling. – Acta Hortic. 907: 325-330, 2011. 10.17660/ActaHortic.2011.907.53 DOI
Logan B.A., Demmig-Adams B., Adams III W.W., Bilger W.: Context, quantification, and measurement guide for non-photochemical quenching of chlorophyll fluorescence. – In: Demmig-Adams B., Garab G., Adams III W., Govindjee (ed.): Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria. Advances in Photosynthesis and Respiration. Pp. 187-201. Vol. 40. Springer, Dordrecht: 2014. 10.1007/978-94-017-9032-1_7 DOI
Ma Z., Nian H., Luo S. et al. : Growth responses of soybean ( DOI
Matsuda R., Ohashi-Kaneko K., Fujiwara K. et al. : Photosynthetic characteristics of rice leaves grown under red light with or without supplemental blue light. – Plant Cell Physiol. 45: 1870-1874, 2004. 10.1093/pcp/pch203 PubMed DOI
Maxwell K., Johnson G.N.: Chlorophyll fluorescence – a practical guide. – J. Exp. Bot. 51: 659-668, 2000. 10.1093/JEXBOT/51.345.659 PubMed DOI
Morgan D.C, O'Brien T., Smith H.: Rapid photomodulation of stem extension in light-grown PubMed
Nelson J.A., Bugbee B.: Economic analysis of greenhouse lighting: light emitting diodes PubMed DOI PMC
Nobel P.S.: Physicochemical and Environmental Plant Physiology. Fourth Edition. Pp. 604. Academic Press, Oxford: 2009. 10.1016/B978-0-12-374143-1.X0001-4 DOI
Oguchi R., Douwstra P., Fujita T. et al. : Intra-leaf gradients of photoinhibition induced by different color lights: implications for the dual mechanisms of photoinhibition and for the application of conventional chlorophyll fluorometers. – New Phytol. 191: 146-159, 2011. 10.1111/j.1469-8137.2011.03669.x PubMed DOI
Ohashi-Kaneko K., Matsuda R., Goto E. et al. : Growth of rice plants under red light with or without supplemental blue light. – Soil Sci. Plant Nutr. 52: 444-452, 2006. 10.1111/J.1747-0765.2006.00063.X DOI
Oxborough K., Baker N.R.: Resolving chlorophyll DOI
Quero G., Bonnecarrère V., Fernández S. et al. : Light-use efficiency and energy partitioning in rice is cultivar dependent. – Photosynth. Res. 140: 51-63, 2019. 10.1007/s11120-018-0605-x PubMed DOI
Quero G., Bonnecarrère V., Simondi S. et al. : Genetic architecture of photosynthesis energy partitioning as revealed by a genome-wide association approach. – Photosynth. Res. 150: 97-115, 2021. 10.1007/s11120-020-00721-2 PubMed DOI
R Core Team:
Rueden C.T., Schindelin J., Hiner M.C. et al. : ImageJ2: ImageJ for the next generation of scientific image data. – BMC Bioinformatics 18: 529, 2017. 10.1186/s12859-017-1934-z PubMed DOI PMC
Sena S., Kumari S., Kumar V., Husen A.: Light emitting diode (LED) lights for the improvement of plant performance and production: a comprehensive review. – Curr. Res. Biotechnol. 7: 100184, 2024. 10.1016/j.crbiot.2024.100184 DOI
Skálová H., Krahulec F., During H.J. et al. : Grassland canopy composition and spatial heterogeneity in the light quality. – Plant Ecol. 143: 129-139, 1999. 10.1023/A:1009899803229 DOI
Stirbet A., Lazár D., Guo Y., Govindjee G.: Photosynthesis: basics, history and modelling. – Ann. Bot.-London 126: 511-537, 2020. 10.1093/aob/mcz171 PubMed DOI PMC
Takemiya A., Inoue S.I., Doi M. et al. : Phototropins promote plant growth in response to blue light in low light environments. – Plant Cell 17: 1120-1127, 2005. 10.1105/TPC.104.030049 PubMed DOI PMC
Terashima I., Fujita T., Inoue T. et al. : Green light drives leaf photosynthesis more efficiently than red light in strong white light: revisiting the enigmatic question of why leaves are green. – Plant Cell Physiol. 50: 684-697, 2009. 10.1093/pcp/pcp034 PubMed DOI
Trivellini A., Toscano S., Romano D., Ferrante A.: LED lighting to produce high-quality ornamental plants. – Plants-Basel 12: 1667, 2023. 10.3390/PLANTS12081667 PubMed DOI PMC
Trojak M., Skowron E., Sobala T. et al. : Effects of partial replacement of red by green light in the growth spectrum on photomorphogenesis and photosynthesis in tomato plants. – Photosynth. Res. 151: 295-312, 2022. 10.1007/S11120-021-00879-3 PubMed DOI PMC
Trouwborst G., Hogewoning S.W., van Kooten O. et al. : Plasticity of photosynthesis after the ‘red light syndrome’ in cucumber. – Environ. Exp. Bot. 121: 75-82, 2016. 10.1016/j.envexpbot.2015.05.002 DOI
Vitale E., Velikova V., Tsonev T. et al. : The interplay between light quality and biostimulant application affects the antioxidant capacity and photosynthetic traits of soybean ( PubMed DOI PMC
Walter A., Schöbel H.: Shed light on photosynthetic organisms: a physical perspective to correct light measurements. – Photosynth. Res. 156: 325-336, 2023. 10.1007/S11120-023-01001-5 PubMed DOI PMC
Wang J., Lu W., Tong Y., Yang Q.: Leaf morphology, photosynthetic performance, chlorophyll fluorescence, stomatal development of lettuce ( PubMed DOI PMC
Yang L.Y., Wang L.T., Ma J.H. et al. : Effects of light quality on growth and development, photosynthetic characteristics and content of carbohydrates in tobacco ( DOI
Yorio N.C., Goins G.D., Kagie H.R. et al. : Improving spinach, radish, and lettuce growth under red light-emitting diodes (LEDs) with blue light supplementation. – HortScience 36: 380-383, 2001. 10.21273/hortsci.36.2.380 PubMed DOI
Yudina L., Sukhova E., Mudrilov M. et al. : Ratio of intensities of blue and red light at cultivation influences photosynthetic light reactions, respiration, growth, and reflectance indices in lettuce. – Biology 11: 60, 2022. 10.3390/biology11010060 PubMed DOI PMC
Zavafer A.: A theoretical framework of the hybrid mechanism of photosystem II photodamage. – Photosynth. Res. 149: 107-120, 2021. 10.1007/s11120-021-00843-1 PubMed DOI
Zavafer A., Cheah M.H., Hillier W. et al. : Photodamage to the oxygen evolving complex of photosystem II by visible light. – Sci. Rep.-UK 5: 16363, 2015a. 10.1038/SREP16363 PubMed DOI PMC
Zavafer A., Chow W.S., Cheah M.H.: The action spectrum of Photosystem II photoinactivation in visible light. – J. Photoch. Photobio. B 152: 247-260, 2015b. 10.1016/j.jphotobiol.2015.08.007 PubMed DOI
Zhang M., Liu S., Wang Z. et al. : Progress in soybean functional genomics over the past decade. – Plant Biotechnol. J. 20: 256-282, 2022. 10.1111/PBI.13682 PubMed DOI PMC
Zhang Y., Kaiser E., Zhang Y. et al. : Red/blue light ratio strongly affects steady-state photosynthesis, but hardly affects photosynthetic induction in tomato ( PubMed DOI
Zheng L., Van Labeke M.-C.: Long-term effects of red- and blue-light emitting diodes on leaf anatomy and photosynthetic efficiency of three ornamental pot plants. – Front. Plant Sci. 8: 917, 2017. 10.3389/fpls.2017.00917 PubMed DOI PMC
Zheng L., Van Labeke M.-C.: Effects of different irradiation levels of light quality on