Lipid Phase Behaviour of the Curvature Region of Thylakoid Membranes of Spinacia oleracea
Jazyk angličtina Země Dánsko Médium print
Typ dokumentu časopisecké články
Grantová podpora
CZ.10.03.01/00/22_003/0000003
European Union - LERCO
23-07744S
Grantová Agentura České Republiky
Jane ja Aatos Erkon Säätiö
P1-0242
Slovenian Research and Innovation Agency (ARIS)
PubMed
40525547
PubMed Central
PMC12172141
DOI
10.1111/ppl.70289
Knihovny.cz E-zdroje
- Klíčová slova
- 31P‐NMR, CURT1 protein, granum margin, non‐bilayer lipid phase, thylakoid membrane,
- MeSH
- lipidy * chemie MeSH
- rostlinné proteiny metabolismus MeSH
- Spinacia oleracea * metabolismus MeSH
- tylakoidy * metabolismus chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- lipidy * MeSH
- rostlinné proteiny MeSH
Thylakoid membranes (TMs) of oxygenic photosynthetic organisms are flat membrane vesicles, which form highly organised, interconnected membrane networks. In vascular plants, they are differentiated into stacked and unstacked regions, the grana and stroma lamellae, respectively; they are densely packed with protein complexes performing the light reactions of photosynthesis and generating a proton motive force (pmf). The maintenance of pmf and its utilisation for ATP synthesis requires sealing the TMs at their highly curved regions (CRs). These regions are devoid of chlorophyll-containing proteins but contain the curvature-inducing CURVATURE THYLAKOID1 (CURT1) proteins and are enriched in lipids. Because of the highly curved nature of this region, at the margins of grana and stroma TMs, the molecular organisation of lipid molecules is likely to possess distinct features compared to those in the major TM domains. To clarify this question, we isolated CR fractions from Spinacia oleracea and, using BN-PAGE and western blot analysis, verified that they are enriched in CURT1 proteins and in lipids. The lipid phase behaviour of these fractions was fingerprinted with 31P-NMR spectroscopy, which revealed that the bulk lipid molecules assume a non-bilayer, isotropic lipid phase. This finding underpins the importance of the main, non-bilayer lipid species, monogalactosyldiacylglycerol, of TMs in their self-assembly and functional activity.
Department of Life Technologies University of Turku Turku Finland
Faculty of Chemistry and Chemical Technology University of Ljubljana Ljubljana Slovenia
Faculty of Science University of Ostrava Ostrava Czech Republic
HUN REN Biological Research Centre Szeged Hungary
Institute of Biosciences and BioResources National Research Council of Italy Sesto Fiorentino Italy
Slovenian NMR Center National Institute of Chemistry Ljubljana Slovenia
Zobrazit více v PubMed
Albertsson, P. 2001. “A Quantitative Model of the Domain Structure of the Photosynthetic Membrane.” Trends in Plant Science 6: 349–358. PubMed
Andersson, B. , and Anderson J. M.. 1980. “Lateral Heterogenity in the Distribution of Chlorophyll‐Protein Complexes of the Thylakoid Membranes of Spinach‐Chloroplast.” Biochimica et Biophysica Acta 593: 427–440. PubMed
Armbruster, U. , Labs M., Pribil M., et al. 2013. “Arabidopsis CURVATURE THYLAKOID1 Proteins Modify THYLAKOID Architecture by Inducing Membrane Curvature.” Plant Cell 25: 2661–2678. PubMed PMC
Böde, K. , Javornik U., Dlouhý O., et al. 2024. “Role of Isotropic Lipid Phase in the Fusion of Photosystem II Membranes.” Photosynthesis Research 161: 127–140. PubMed PMC
Bussi, Y. , Shimoni E., Weiner A., et al. 2019. “Fundamental Helical Geometry Consolidates the Plant Photosynthetic Membrane.” Proceedings of the National Academy of Sciences of the United States of America 116: 22366–22375. PubMed PMC
Cullis, P. R. , and DE Kruijff B.. 1979. “Lipid Polymorphism and the Functional Roles of Lipids in Biological‐Membranes.” Biochimica et Biophysica Acta 559: 399–420. PubMed
Dekker, J. P. , and Boekema E. J.. 2005. “Supramolecular Organization of Thylakoid Membrane Proteins in Green Plants.” Biochimica et Biophysica Acta 1706: 12–39. PubMed
Dlouhý, O. , Javornik U., Zsiros O., et al. 2021. “Lipid Polymorphism of the Subchloroplast—Granum and Stroma Thylakoid Membrane—Particles. I. 31P‐NMR Spectroscopy.” Cells 10: 2354. PubMed PMC
Dlouhý, O. , Karlický V., Arshad R., et al. 2021. “Lipid Polymorphism of the Subchloroplast—Granum and Stroma Thylakoid Membrane–Particles. II. Structure and Functions.” Cells 10: 2363. PubMed PMC
Dlouhý, O. , Karlický V., Javornik U., et al. 2022. “Structural Entities Associated With Different Lipid Phases of Plant Thylakoid Membranes—Selective Susceptibilities to Different Lipases and Proteases.” Cells 11: 2681. PubMed PMC
Dlouhý, O. , Kurasová I., Karlický V., et al. 2020. “Modulation of Non‐Bilayer Lipid Phases and the Structure and Functions of Thylakoid Membranes: Effects on the Water‐Soluble Enzyme Violaxanthin de‐Epoxidase.” Scientific Reports 10: 11959. PubMed PMC
Duchene, S. , and Siegenthaler P. A.. 2000. “Do Glycerolipids Display Lateral Heterogeneity in the Thylakoid Membrane?” Lipids 35: 739–744. PubMed
Garab, G. , Böde K., Dlouhý O., et al. 2025. “Lipid Polymorphism of Plant Thylakoid Membranes. The Dynamic Exchange Model—Facts and Hypotheses.” Physiologia Plantarum 177: e70230. PubMed PMC
Garab, G. , Yaguzhinsky L. S., Dlouhý O., Nesterov S. V., Špunda V., and Gasanoff E. S.. 2022. “Structural and Functional Roles of Non‐Bilayer Lipid Phases of Chloroplast Thylakoid Membranes and Mitochondrial Inner Membranes.” Progress in Lipid Research 86: 101163. PubMed
Goni, F. M. 2014. “The Basic Structure and Dynamics of Cell Membranes: An Update of the Singer‐Nicolson Model.” Biochimica et Biophysica Acta 1838: 1467–1476. PubMed
Goss, R. , and Latowski D.. 2020. “Lipid Dependence of Xanthophyll Cycling in Higher Plants and Algae.” Frontiers in Plant Science 11: 455. PubMed PMC
Heinz, S. , Rast A., Shao L., et al. 2016. “Thylakoid Membrane Architecture in Synechocystis Depends on CurT, a Homolog of the Granal CURVATURE THYLAKOID1 Proteins.” Plant Cell 28: 2238–2260. PubMed PMC
Koochak, H. , Puthiyaveetil S., Mullendore D. L., Li M., and Kirchhoff H.. 2019. “The Structural and Functional Domains of Plant Thylakoid Membranes.” Plant Journal 97: 412–429. PubMed
Krumova, S. B. , Dijkema C., de Waard P., van As H., Garab G., and van Amerongen H.. 2008. “Phase Behavior of Phosphatidylglycerol in Spinach Thylakoid Membranes as Revealed by 31P‐NMR.” Biochimica et Biophysica Acta 1778: 997–1003. PubMed
Kublicki, M. , Koszelewski D., Brodzka A., and Ostaszewski R.. 2021. “Wheat Germ Lipase: Isolation, Purification and Applications.” Critical Reviews in Biotechnology 42: 184. PubMed
Mustárdy, L. , and Garab G.. 2003. “Granum Revisited. A Three‐Dimensional Model ‐ Where Things Fall Into Place.” Trends in Plant Science 8: 117–122. PubMed
Sandoval‐Ibáñez, O. , Sharma A., Bykowski M., et al. 2021. “Curvature Thylakoid 1 Proteins Modulate Prolamellar Body Morphology and Promote Organized Thylakoid Biogenesis in PubMed PMC
Simidjiev, I. , Stoylova S., Amenitsch H., et al. 2000. “Self‐Assembly of Large, Ordered Lamellae From Non‐Bilayer Lipids and Integral Membrane Proteins In Vitro.” Proceedings of the National Academy of Sciences of the United States of America 97: 1473–1476. PubMed PMC
Suorsa, M. , Rantala M., Mamedov F., et al. 2015. “Light Acclimation Involves Dynamic Re‐Organization of the Pigment–Protein Megacomplexes in Non‐Appressed Thylakoid Domains.” Plant Journal 84: 360–373. PubMed
Trotta, A. , Bajwa A. A., Mancini I., Paakkarinen V., Pribil M., and Aro E.‐M.. 2019. “The Role of Phosphorylation Dynamics of CURVATURE THYLAKOID 1B in Plant Thylakoid Membranes.” Plant Physiology 181: 1615–1631. PubMed PMC
Trotta, A. , Gunell S., Bajwa A. A., Paakkarinen V., Fujii H., and Aro E.‐M.. 2025. “Defining the Heterogeneous Composition of Arabidopsis Thylakoid Membrane.” Plant Journal 121: e17259. PubMed PMC
Ughy, B. , Karlický V., Dlouhý O., et al. 2019. “Lipid‐Polymorphism of Plant Thylakoid Membranes. Enhanced Non‐Bilayer Lipid Phases Associated With Increased Membrane Permeability.” Physiologia Plantarum 166: 278–287. PubMed
van Eerden, F. J. , de Jong D. H., de Vries A. H., Wassenaar T. A., and Marrink S. J.. 2015. “Characterization of Thylakoid Lipid Membranes From Cyanobacteria and Higher Plants by Molecular Dynamics Simulations.” Biochimica et Biophysica Acta 1848, no. 6: 1319–1330. 10.1016/j.bbamem.2015.02.025. PubMed DOI
Watts, A. 2013. “NMR of Lipids.” In Encyclopedia of Biophysics, edited by Roberts G. C. K.. Springer Berlin Heidelberg.