Lipid Phase Behaviour of the Curvature Region of Thylakoid Membranes of Spinacia oleracea

. 2025 May-Jun ; 177 (3) : e70289.

Jazyk angličtina Země Dánsko Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40525547

Grantová podpora
CZ.10.03.01/00/22_003/0000003 European Union - LERCO
23-07744S Grantová Agentura České Republiky
Jane ja Aatos Erkon Säätiö
P1-0242 Slovenian Research and Innovation Agency (ARIS)

Thylakoid membranes (TMs) of oxygenic photosynthetic organisms are flat membrane vesicles, which form highly organised, interconnected membrane networks. In vascular plants, they are differentiated into stacked and unstacked regions, the grana and stroma lamellae, respectively; they are densely packed with protein complexes performing the light reactions of photosynthesis and generating a proton motive force (pmf). The maintenance of pmf and its utilisation for ATP synthesis requires sealing the TMs at their highly curved regions (CRs). These regions are devoid of chlorophyll-containing proteins but contain the curvature-inducing CURVATURE THYLAKOID1 (CURT1) proteins and are enriched in lipids. Because of the highly curved nature of this region, at the margins of grana and stroma TMs, the molecular organisation of lipid molecules is likely to possess distinct features compared to those in the major TM domains. To clarify this question, we isolated CR fractions from Spinacia oleracea and, using BN-PAGE and western blot analysis, verified that they are enriched in CURT1 proteins and in lipids. The lipid phase behaviour of these fractions was fingerprinted with 31P-NMR spectroscopy, which revealed that the bulk lipid molecules assume a non-bilayer, isotropic lipid phase. This finding underpins the importance of the main, non-bilayer lipid species, monogalactosyldiacylglycerol, of TMs in their self-assembly and functional activity.

Zobrazit více v PubMed

Albertsson, P. 2001. “A Quantitative Model of the Domain Structure of the Photosynthetic Membrane.” Trends in Plant Science 6: 349–358. PubMed

Andersson, B. , and Anderson J. M.. 1980. “Lateral Heterogenity in the Distribution of Chlorophyll‐Protein Complexes of the Thylakoid Membranes of Spinach‐Chloroplast.” Biochimica et Biophysica Acta 593: 427–440. PubMed

Armbruster, U. , Labs M., Pribil M., et al. 2013. “Arabidopsis CURVATURE THYLAKOID1 Proteins Modify THYLAKOID Architecture by Inducing Membrane Curvature.” Plant Cell 25: 2661–2678. PubMed PMC

Böde, K. , Javornik U., Dlouhý O., et al. 2024. “Role of Isotropic Lipid Phase in the Fusion of Photosystem II Membranes.” Photosynthesis Research 161: 127–140. PubMed PMC

Bussi, Y. , Shimoni E., Weiner A., et al. 2019. “Fundamental Helical Geometry Consolidates the Plant Photosynthetic Membrane.” Proceedings of the National Academy of Sciences of the United States of America 116: 22366–22375. PubMed PMC

Cullis, P. R. , and DE Kruijff B.. 1979. “Lipid Polymorphism and the Functional Roles of Lipids in Biological‐Membranes.” Biochimica et Biophysica Acta 559: 399–420. PubMed

Dekker, J. P. , and Boekema E. J.. 2005. “Supramolecular Organization of Thylakoid Membrane Proteins in Green Plants.” Biochimica et Biophysica Acta 1706: 12–39. PubMed

Dlouhý, O. , Javornik U., Zsiros O., et al. 2021. “Lipid Polymorphism of the Subchloroplast—Granum and Stroma Thylakoid Membrane—Particles. I. 31P‐NMR Spectroscopy.” Cells 10: 2354. PubMed PMC

Dlouhý, O. , Karlický V., Arshad R., et al. 2021. “Lipid Polymorphism of the Subchloroplast—Granum and Stroma Thylakoid Membrane–Particles. II. Structure and Functions.” Cells 10: 2363. PubMed PMC

Dlouhý, O. , Karlický V., Javornik U., et al. 2022. “Structural Entities Associated With Different Lipid Phases of Plant Thylakoid Membranes—Selective Susceptibilities to Different Lipases and Proteases.” Cells 11: 2681. PubMed PMC

Dlouhý, O. , Kurasová I., Karlický V., et al. 2020. “Modulation of Non‐Bilayer Lipid Phases and the Structure and Functions of Thylakoid Membranes: Effects on the Water‐Soluble Enzyme Violaxanthin de‐Epoxidase.” Scientific Reports 10: 11959. PubMed PMC

Duchene, S. , and Siegenthaler P. A.. 2000. “Do Glycerolipids Display Lateral Heterogeneity in the Thylakoid Membrane?” Lipids 35: 739–744. PubMed

Garab, G. , Böde K., Dlouhý O., et al. 2025. “Lipid Polymorphism of Plant Thylakoid Membranes. The Dynamic Exchange Model—Facts and Hypotheses.” Physiologia Plantarum 177: e70230. PubMed PMC

Garab, G. , Yaguzhinsky L. S., Dlouhý O., Nesterov S. V., Špunda V., and Gasanoff E. S.. 2022. “Structural and Functional Roles of Non‐Bilayer Lipid Phases of Chloroplast Thylakoid Membranes and Mitochondrial Inner Membranes.” Progress in Lipid Research 86: 101163. PubMed

Goni, F. M. 2014. “The Basic Structure and Dynamics of Cell Membranes: An Update of the Singer‐Nicolson Model.” Biochimica et Biophysica Acta 1838: 1467–1476. PubMed

Goss, R. , and Latowski D.. 2020. “Lipid Dependence of Xanthophyll Cycling in Higher Plants and Algae.” Frontiers in Plant Science 11: 455. PubMed PMC

Heinz, S. , Rast A., Shao L., et al. 2016. “Thylakoid Membrane Architecture in Synechocystis Depends on CurT, a Homolog of the Granal CURVATURE THYLAKOID1 Proteins.” Plant Cell 28: 2238–2260. PubMed PMC

Koochak, H. , Puthiyaveetil S., Mullendore D. L., Li M., and Kirchhoff H.. 2019. “The Structural and Functional Domains of Plant Thylakoid Membranes.” Plant Journal 97: 412–429. PubMed

Krumova, S. B. , Dijkema C., de Waard P., van As H., Garab G., and van Amerongen H.. 2008. “Phase Behavior of Phosphatidylglycerol in Spinach Thylakoid Membranes as Revealed by 31P‐NMR.” Biochimica et Biophysica Acta 1778: 997–1003. PubMed

Kublicki, M. , Koszelewski D., Brodzka A., and Ostaszewski R.. 2021. “Wheat Germ Lipase: Isolation, Purification and Applications.” Critical Reviews in Biotechnology 42: 184. PubMed

Mustárdy, L. , and Garab G.. 2003. “Granum Revisited. A Three‐Dimensional Model ‐ Where Things Fall Into Place.” Trends in Plant Science 8: 117–122. PubMed

Sandoval‐Ibáñez, O. , Sharma A., Bykowski M., et al. 2021. “Curvature Thylakoid 1 Proteins Modulate Prolamellar Body Morphology and Promote Organized Thylakoid Biogenesis in PubMed PMC

Simidjiev, I. , Stoylova S., Amenitsch H., et al. 2000. “Self‐Assembly of Large, Ordered Lamellae From Non‐Bilayer Lipids and Integral Membrane Proteins In Vitro.” Proceedings of the National Academy of Sciences of the United States of America 97: 1473–1476. PubMed PMC

Suorsa, M. , Rantala M., Mamedov F., et al. 2015. “Light Acclimation Involves Dynamic Re‐Organization of the Pigment–Protein Megacomplexes in Non‐Appressed Thylakoid Domains.” Plant Journal 84: 360–373. PubMed

Trotta, A. , Bajwa A. A., Mancini I., Paakkarinen V., Pribil M., and Aro E.‐M.. 2019. “The Role of Phosphorylation Dynamics of CURVATURE THYLAKOID 1B in Plant Thylakoid Membranes.” Plant Physiology 181: 1615–1631. PubMed PMC

Trotta, A. , Gunell S., Bajwa A. A., Paakkarinen V., Fujii H., and Aro E.‐M.. 2025. “Defining the Heterogeneous Composition of Arabidopsis Thylakoid Membrane.” Plant Journal 121: e17259. PubMed PMC

Ughy, B. , Karlický V., Dlouhý O., et al. 2019. “Lipid‐Polymorphism of Plant Thylakoid Membranes. Enhanced Non‐Bilayer Lipid Phases Associated With Increased Membrane Permeability.” Physiologia Plantarum 166: 278–287. PubMed

van Eerden, F. J. , de Jong D. H., de Vries A. H., Wassenaar T. A., and Marrink S. J.. 2015. “Characterization of Thylakoid Lipid Membranes From Cyanobacteria and Higher Plants by Molecular Dynamics Simulations.” Biochimica et Biophysica Acta 1848, no. 6: 1319–1330. 10.1016/j.bbamem.2015.02.025. PubMed DOI

Watts, A. 2013. “NMR of Lipids.” In Encyclopedia of Biophysics, edited by Roberts G. C. K.. Springer Berlin Heidelberg.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...