The impact of physiologically relevant temperatures on physical properties of thylakoid membranes: a molecular dynamics study

. 2023 ; 61 (4) : 441-450. [epub] 20231010

Status PubMed-not-MEDLINE Jazyk angličtina Země Česko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39649482

Thylakoid membranes are energy-converting membranes with a unique lipid composition. Though the membranes are primarily composed of proteins, their photosynthetic function is strongly influenced by the lipid constituents. Here we characterize, with molecular dynamics (MD) simulations, lipid bilayers with compositions representative of plant thylakoid membranes. We determine, in a wide range of temperatures, the physical parameters of the model membranes which are relevant for the photosynthetic function. We found a marked impact of temperature on membrane permeability due to a combination of increased compressibility and curvature of the membrane at elevated temperatures. With increasing temperatures, we observed increasingly smeared transmembrane density profiles of the membrane forming lipid headgroups predicting increased membrane flexibility. The diffusion coefficient of the lipids increased with temperature without apparent specificity for lipid species. Instead of a comprehensive experimental dataset in the relevant temperature range, we quantitatively compared and validated our MD results with MD simulations on a dipalmitoylphosphatidylcholine model system.

Zobrazit více v PubMed

Abraham M.J., Murtola T., Schulz R. et al.: GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. – SoftwareX 1-2: 19-25, 2015. 10.1016/j.softx.2015.06.001 DOI

Barrero-Sicilia C., Silvestre S., Haslam R.P., Michaelson L.V.: Lipid remodelling: Unravelling the response to cold stress in Arabidopsis and its extremophile relative Eutrema salsugineum. – Plant Sci. 263: 194-200, 2017. 10.1016/j.plantsci.2017.07.017 PubMed DOI PMC

Basu Ball W., Neff J.K., Gohil V.M.: The role of nonbilayer phospholipids in mitochondrial structure and function. – FEBS Lett. 592: 1273-1290, 2018. 10.1002/1873-3468.12887 PubMed DOI PMC

Berendsen H.J.C., Postma J.P.M., van Gunsteren W.F. et al.: Molecular dynamics with coupling to an external bath. – J. Chem. Phys. 81: 3684-3690, 1984. 10.1063/1.448118 DOI

Brooks B.R., Brooks III C.L., Mackerell Jr. A.D. et al.: CHARMM: The biomolecular simulation program. – J. Comput. Chem. 30: 1545-1614, 2009. 10.1002/jcc.21287 PubMed DOI PMC

Bruininks B.M.H., Souza P.C.T., Marrink S.J.: A Practical View of the Martini Force Field. – In: Bonomi M., Camilloni C. (ed.): Biomolecular Simulations: Methods and Protocols. Pp. 105-127. Humana Press, New York: 2019. 10.1007/978-1-4939-9608-7_5 PubMed DOI

Bussi G., Donadio D., Parrinello M.: Canonical sampling through velocity rescaling. – J. Chem. Phys. 126: 014101, 2007. 10.1063/1.2408420 PubMed DOI

Chavent M., Duncan A.L., Sansom M.S.P.: Molecular dynamics simulations of membrane proteins and their interactions: from nanoscale to mesoscale. – Curr. Opin. Struct. Biol. 40: 8-16, 2016. 10.1016/j.sbi.2016.06.007 PubMed DOI PMC

Chen Z., Mao Y., Yang J. et al.: Characterizing the binding of annexin V to a lipid bilayer using molecular dynamics simulations. – Proteins 82: 312-322, 2014. 10.1002/prot.24389 PubMed DOI

Daskalakis V., Papadatos S., Kleinekathöfer U.: Fine tuning of the photosystem II major antenna mobility within the thylakoid membrane of higher plants. – BBA-Biomembranes 1861: 183059, 2019. 10.1016/j.bbamem.2019.183059 PubMed DOI

de Jong D.H., Singh G., Bennett W.F.D. et al.: Improved parameters for the Martini coarse-grained protein force field. – J. Chem. Theory Comput. 9: 687-697, 2013. 10.1021/ct300646g PubMed DOI

Dell'Aglio E.: Carotenoid composition affects thylakoid morphology and membrane fluidity. – Plant Physiol. 185: 21-22, 2021. 10.1093/plphys/kiaa020 PubMed DOI PMC

Du Y., Fu X., Chu Y. et al.: Biosynthesis and the roles of plant sterols in development and stress responses. – Int. J. Mol. Sci. 23: 2332, 2022. 10.3390/ijms23042332 PubMed DOI PMC

Feller S.E., Pastor R.W.: Constant surface tension simulations of lipid bilayers: The sensitivity of surface areas and compressibilities. – J. Chem. Phys. 111: 1281-1287, 1999. 10.1063/1.479313 DOI

Gaede H.C., Gawrisch K.: Lateral diffusion rates of lipid, water, and a hydrophobic drug in a multilamellar liposome. – Biophys. J. 85: 1734-1740, 2003. 10.1016/S0006-3495(03)74603-7 PubMed DOI PMC

Garab G., Yaguzhinsky L.S., Dlouhý O. et al.: Structural and functional roles of non-bilayer lipid phases of chloroplast thylakoid membranes and mitochondrial inner membranes. – Prog. Lipid Res. 86: 101163, 2022. 10.1016/j.plipres.2022.101163 PubMed DOI

Gowers R., Linke M., Barnoud J. et al.: MDAnalysis: A Python package for the rapid analysis of molecular dynamics simulations. – In: Proceedings of the 15th Python in Science Conference, Austin, Texas: (July 11–17, 2016). Pp. 98-105. SCIPY, Austin: 2016. https://conference.scipy.org/proceedings/scipy2016/pdfs/oliver_beckstein.pdf

Guixà-González R., Rodriguez-Espigares I., Ramírez-Anguita J.M. et al.: MEMBPLUGIN: studying membrane complexity in VMD. – Bioinformatics 30: 1478-1480, 2014. 10.1093/bioinformatics/btu037 PubMed DOI

Gupta S., De Mel J.U., Schneider G.J.: Dynamics of liposomes in the fluid phase. – Curr. Opin. Colloid Interface Sci. 42: 121-136, 2019. 10.1016/j.cocis.2019.05.003 DOI

Higashi Y., Saito K.: Lipidomic studies of membrane glycerolipids in plant leaves under heat stress. – Prog. Lipid Res. 75: 100990, 2019. 10.1016/j.plipres.2019.100990 PubMed DOI

Hollingsworth S.A., Dror R.O.: Molecular dynamics simulation for all. – Neuron 99: 1129-1143, 2018. 10.1016/j.neuron.2018.08.011 PubMed DOI PMC

Humphrey W., Dalke A., Schulten K.: VMD: Visual molecular dynamics. – J. Mol. Graph. 14: 33-38, 1996. 10.1016/0263-7855(96)00018-5 PubMed DOI

Jo S., Kim T., Im W.: Automated builder and database of protein/membrane complexes for molecular dynamics simulations. – PLoS ONE 2: e880, 2007. 10.1371/journal.pone.0000880 PubMed DOI PMC

Jo S., Kim T., Iyer V.G., Im W.: CHARMM-GUI: A web-based graphical user interface for CHARMM. – J. Comput. Chem. 29: 1859-1865, 2008. 10.1002/jcc.20945 PubMed DOI

Jo S., Lim J.B., Klauda J.B., Im W.: CHARMM-GUI Membrane Builder for mixed bilayers and its application to yeast membranes. – Biophys. J. 97: 50-58, 2009. 10.1016/j.bpj.2009.04.013 PubMed DOI PMC

Jodaitis L., van Oene T., Martens C.: Assessing the role of lipids in the molecular mechanism of membrane proteins. – Int. J. Mol. Sci. 22: 7267, 2021. 10.3390/ijms22147267 PubMed DOI PMC

Kirchhoff H., Mukherjee U., Galla H.-J.: Molecular architecture of the thylakoid membrane: lipid diffusion space for plastoquinone. – Biochemistry 41: 4872-4882, 2002. 10.1021/bi011650y PubMed DOI

Kobayashi K.: Role of membrane glycerolipids in photosynthesis, thylakoid biogenesis and chloroplast development. – J. Plant Res. 129: 565-580, 2016. 10.1007/s10265-016-0827-y PubMed DOI PMC

Lee J., Cheng X., Swails J.M. et al.: CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. – J. Chem. Theory Comput. 12: 405-413, 2016. 10.1021/acs.jctc.5b00935 PubMed DOI PMC

Lee J., Patel D.S., Ståhle J. et al.: CHARMM-GUI Membrane Builder for complex biological membrane simulations with glycolipids and lipoglycans. – J. Chem. Theory Comput. 15: 775-786, 2019. 10.1021/acs.jctc.8b01066 PubMed DOI

Michaud-Agrawal N., Denning E.J., Woolf T.B., Beckstein O.: MDAnalysis: A toolkit for the analysis of molecular dynamics simulations. – J. Comput. Chem. 32: 2319-2327, 2011. 10.1002/jcc.21787 PubMed DOI PMC

Parrinello M., Rahman A.: Polymorphic transitions in single crystals: A new molecular dynamics method. – J. Appl. Phys. 52: 7182-7190, 1981. 10.1063/1.328693 DOI

Piggot T.J., Allison J.R., Sessions R.B., Essex J.W.: On the calculation of acyl chain order parameters from lipid simulations. – J. Chem. Theory Comput. 13: 5683-5696, 2017. 10.1021/acs.jctc.7b00643 PubMed DOI

Pronk S., Páll S., Schulz R. et al.: GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. – Bioinformatics 29: 845-854, 2013. 10.1093/bioinformatics/btt055 PubMed DOI PMC

Rathod A.K., Chavda D., Manna M.: Phase transition and phase separation in realistic thylakoid lipid membrane of marine algae in all-atom simulations. – J. Chem. Inf. Model. 63: 3328-3339, 2023. 10.1021/acs.jcim.2c01614 PubMed DOI

Róg T., Girych M., Bunker A.: Mechanistic understanding from molecular dynamics in pharmaceutical research 2: Lipid membrane in drug design. – Pharmaceuticals 14: 1062, 2021. 10.3390/ph14101062 PubMed DOI PMC

Song Y., Guallar V., Baker N.A.: Molecular dynamics simulations of salicylate effects on the micro- and mesoscopic properties of a dipalmitoylphosphatidylcholine bilayer. – Biochemistry 44: 13425-13438, 2005. 10.1021/bi0506829 PubMed DOI PMC

Thallmair S., Vainikka P.A., Marrink S.J.: Lipid fingerprints and cofactor dynamics of light-harvesting complex II in different membranes. – Biophys. J. 116: 1446-1455, 2019. 10.1016/j.bpj.2019.03.009 PubMed DOI PMC

Tieleman D.P., Marrink S.J., Berendsen H.J.: A computer perspective of membranes: molecular dynamics studies of lipid bilayer systems. – BBA-Rev. Biomembr. 1331: 235-270, 1997. 10.1016/S0304-4157(97)00008-7 PubMed DOI

Tironi I.G., Sperb R., Smith P.E., van Gunsteren W.F.: A generalized reaction field method for molecular dynamics simulations. – J. Chem. Phys. 102: 5451-5459, 1995. 10.1063/1.469273 DOI

van Eerden F.J., de Jong D.H., de Vries A.H. et al.: Characterization of thylakoid lipid membranes from cyanobacteria and higher plants by molecular dynamics simulations. – BBA-Biomembranes 1848: 1319-1330, 2015. 10.1016/j.bbamem.2015.02.025 PubMed DOI

van Eerden F.J., Melo M.N., Frederix P.W.J.M. et al.: Exchange pathways of plastoquinone and plastoquinol in the photosystem II complex. – Nat. Commun. 8: 15214, 2017a. 10.1038/ncomms15214 PubMed DOI PMC

van Eerden F.J., Melo M.N., Frederix P.W.J.M., Marrink S.J.: Prediction of thylakoid lipid binding sites on photosystem II. – Biophys. J. 113: 2669-2681, 2017b. 10.1016/j.bpj.2017.09.039 PubMed DOI PMC

van Eerden F.J., van den Berg T., Frederix P.W.J.M. et al.: Molecular dynamics of photosystem II embedded in the thylakoid membrane. – J. Phys. Chem. B 121: 3237-3249, 2017c. 10.1021/acs.jpcb.6b06865 PubMed DOI

Velitchkova M., Lazarova D., Popova A.: Response of isolated thylakoid membranes with altered fluidity to short term heat stress. – Physiol. Mol. Biol. Plants 15: 43-52, 2009. 10.1007/s12298-009-0004-z PubMed DOI PMC

Venable R.M., Krämer A., Pastor R.W.: Molecular dynamics simulations of membrane permeability. – Chem. Rev. 119: 5954-5997, 2019. 10.1021/acs.chemrev.8b00486 PubMed DOI PMC

Watkins S.L.: Current trends and changes in use of membrane molecular dynamics simulations within academia and the pharmaceutical industry. – Membranes 13: 148, 2023. 10.3390/membranes13020148 PubMed DOI PMC

Wilhelm C., Goss R., Garab G.: The fluid-mosaic membrane theory in the context of photosynthetic membranes: Is the thylakoid membrane more like a mixed crystal or like a fluid? – J. Plant Physiol. 252: 153246, 2020. 10.1016/j.jplph.2020.153246 PubMed DOI

Wu E.L., Cheng X., Jo S. et al.: CHARMM-GUI Membrane Builder toward realistic biological membrane simulations. – J. Comput. Chem. 35: 1997-2004, 2014. 10.1002/jcc.23702 PubMed DOI PMC

Yesylevskyy S., Rivel T., Ramseyer C.: Curvature increases permeability of the plasma membrane for ions, water and the anti-cancer drugs cisplatin and gemcitabine. – Sci. Rep.-UK 9: 17214, 2019. 10.1038/s41598-019-53952-2 PubMed DOI PMC

Yesylevskyy S.O., Schäfer L.V., Sengupta D., Marrink S.J.: Polarizable water model for the coarse-grained MARTINI force field. – PLoS Comput. Biol. 6: e1000810, 2010. 10.1371/journal.pcbi.1000810 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...