The lateral distance between a proton pump and ATP synthase determines the ATP-synthesis rate
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28592883
PubMed Central
PMC5462737
DOI
10.1038/s41598-017-02836-4
PII: 10.1038/s41598-017-02836-4
Knihovny.cz E-zdroje
- MeSH
- adenosintrifosfát biosyntéza MeSH
- aktivace enzymů MeSH
- biochemické jevy MeSH
- biologické modely MeSH
- lipidové dvojvrstvy chemie metabolismus MeSH
- protonové ATPasy chemie metabolismus MeSH
- protonové pumpy chemie metabolismus MeSH
- transport proteinů MeSH
- vazba proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adenosintrifosfát MeSH
- lipidové dvojvrstvy MeSH
- protonové ATPasy MeSH
- protonové pumpy MeSH
We have investigated the effect of lipid composition on interactions between cytochrome bo 3 and ATP-synthase, and the ATP-synthesis activity driven by proton pumping. The two proteins were labeled by fluorescent probes and co-reconstituted in large (d ≅ 100 nm) or giant (d ≅ 10 µm) unilamellar lipid vesicles. Interactions were investigated using fluorescence correlation/cross-correlation spectroscopy and the activity was determined by measuring ATP production, driven by electron-proton transfer, as a function of time. We found that conditions that promoted direct interactions between the two proteins in the membrane (higher fraction DOPC lipids or labeling by hydrophobic molecules) correlated with an increased activity. These data indicate that the ATP-synthesis rate increases with decreasing distance between cytochrome bo 3 and the ATP-synthase, and involves proton transfer along the membrane surface. The maximum distance for lateral proton transfer along the surface was found to be ~80 nm.
Zobrazit více v PubMed
Rich PR, Maréchal A. The mitochondrial respiratory chain. Essays in Biochemistry. 2010;47:1–23. doi: 10.1042/bse0470001. PubMed DOI
Ädelroth P, Brzezinski P. Surface-mediated proton-transfer reactions in membrane-bound proteins. Biochim. Biophys. Acta. 2004;1655:102–115. doi: 10.1016/j.bbabio.2003.10.018. PubMed DOI
Mulkidjanian AY, Heberle J, Cherepanov DA. Protons @ interfaces: Implications for biological energy conversion. Biochimica et Biophysica Acta - Bioenergetics. 2006;1757:913–930. doi: 10.1016/j.bbabio.2006.02.015. PubMed DOI
Gutman M, Nachliel E. The Dynamics of Proton-Exchange between Bulk and Surface Groups. Biochim Biophys Acta. 1995;1231:123–138. doi: 10.1016/0005-2728(95)00074-S. DOI
Heberle J, Riesle J, Thiedemann G, Oesterhelt D, Dencher NA. Proton Migration Alone the Membrane-Surface and Retarded Surface to Bulk Transfer. Nature. 1994;370:379–382. doi: 10.1038/370379a0. PubMed DOI
Mulkidjanian AY, Cherepanov DA, Heberle J, Junge W. Proton transfer dynamics at membrane/water interface and mechanism of biological energy conversion. Biochemistry (Mosc) 2005;70:251–256. doi: 10.1007/s10541-005-0108-1. PubMed DOI
Heberle J. Proton transfer reactions across bacteriorhodopsin and along the membrane. Biochimica et Biophysica Acta - Bioenergetics. 2000;1458:135–147. doi: 10.1016/S0005-2728(00)00064-5. PubMed DOI
Smondyrev AM, Voth GA. Molecular dynamics simulation of proton transport near the surface of a phospholipid membrane. Biophys. J. 2002;82:1460–1468. doi: 10.1016/S0006-3495(02)75500-8. PubMed DOI PMC
Gopta OA, Cherepanov DA, Junge W, Mulkidjanian AY. Proton transfer from the bulk to the bound ubiquinone Q(B) of the reaction center in chromatophores of Rhodobacter sphaeroides: retarded conveyance by neutral water. Proc Natl Acad Sci USA. 1999;96:13159–13164. doi: 10.1073/pnas.96.23.13159. PubMed DOI PMC
Gutman M, Nachliel E, Moshiach S. Dynamics of proton diffusion within the hydration layer of phospholipid membrane. Biochemistry. 1989;28:2936–2940. doi: 10.1021/bi00433a029. PubMed DOI
Gutman M, Nachliel E. The Dynamic Aspects of Proton-Transfer Processes. Biochim. Biophys. Acta. 1990;1015:391–414. doi: 10.1016/0005-2728(90)90073-D. DOI
Sacks V, et al. The dynamic feature of the proton collecting antenna of a protein surface. Biochim. Biophys. Acta-Bioenerg. 1998;1365:232–240. doi: 10.1016/S0005-2728(98)00073-5. DOI
Marantz Y, Nachliel E, Aagaard A, Brzezinski P, Gutman M. The proton collecting function of the inner surface of cytochrome c oxidase from Rhodobacter sphaeroides. Proc Natl Acad Sci USA. 1998;95:8590–8595. doi: 10.1073/pnas.95.15.8590. PubMed DOI PMC
Brändén M, Sandén T, Brzezinski P, Widengren J. Localized proton microcircuits at the biological membrane-water interface. Proc Natl Acad Sci USA. 2006;103:19766–19770. doi: 10.1073/pnas.0605909103. PubMed DOI PMC
Öjemyr L, Sanden T, Widengren J, Brzezinski P. Lateral proton transfer between the membrane and a membrane protein. Biochemistry. 2009;48:2173–2179. doi: 10.1021/bi8022152. PubMed DOI
Sandén T, Salomonsson L, Brzezinski P, Widengren J. Surface-coupled proton exchange of a membrane-bound proton acceptor. Proc. Natl. Acad. Sci. USA. 2010;107:4129–4134. doi: 10.1073/pnas.0908671107. PubMed DOI PMC
Näsvik Öjemyr L, Lee HJ, Gennis RB, Brzezinski P. Functional interactions between membrane-bound transporters and membranes. Proc Natl Acad Sci USA. 2010;107:15763–15767. doi: 10.1073/pnas.1006109107. PubMed DOI PMC
Öjemyr LN, Von Ballmoos C, Faxén K, Svahn E, Brzezinski P. The membrane modulates internal proton transfer in cytochrome c oxidase. Biochemistry. 2012;51:1092–1100. doi: 10.1021/bi201795c. PubMed DOI
Serowy S, et al. Structural proton diffusion along lipid bilayers. Biophys. J. 2003;84:1031–1037. doi: 10.1016/S0006-3495(03)74919-4. PubMed DOI PMC
Antonenko YN, Pohl P. Coupling of proton source and sink via H+-migration along the membrane surface as revealed by double patch-clamp experiments. FEBS Lett. 1998;429:197–200. doi: 10.1016/S0014-5793(98)00590-0. PubMed DOI
Medvedev ES, Stuchebrukhov AA. Kinetics of proton diffusion in the regimes of fast and slow exchange between the membrane surface and the bulk solution. J Math Biol. 2006;52:209–234. doi: 10.1007/s00285-005-0354-2. PubMed DOI
Medvedev ES, Stuchebrukhov AA. Mechanism of long-range proton translocation along biological membranes. FEBS Lett. 2013;587:345–349. doi: 10.1016/j.febslet.2012.12.010. PubMed DOI PMC
Zhang C, et al. Water at hydrophobic interfaces delays proton surface-to-bulk transfer and provides a pathway for lateral proton diffusion. Proc. Natl. Acad. Sci. USA. 2012;109:9744–9749. doi: 10.1073/pnas.1121227109. PubMed DOI PMC
Yamashita T, Voth GA. Properties of hydrated excess protons near phospholipid bilayers. J. Phys. Chem. B. 2010;114:592–603. doi: 10.1021/jp908768c. PubMed DOI
Xu L, Öjemyr LN, Bergstrand J, Brzezinski P, Widengren J. Protonation Dynamics on Lipid Nanodiscs: Influence of the Membrane Surface Area and External Buffers. Biophys. J. 2016;110:1993–2003. doi: 10.1016/j.bpj.2016.03.035. PubMed DOI PMC
Nilsson, T. et al. Lipid-mediated Protein-protein Interactions Modulate Respiration-driven ATP Synthesis. Scientific Reports6, doi:10.1038/srep24113 (2016). PubMed PMC
Von Ballmoos C, Biner O, Nilsson T, Brzezinski P. Mimicking respiratory phosphorylation using purified enzymes. Biochimica et Biophysica Acta - Bioenergetics. 2016;1857:321–331. doi: 10.1016/j.bbabio.2015.12.007. PubMed DOI
Dezi M, Di Cicco A, Bassereau P, Lévy D. Detergent-mediated incorporation of transmembrane proteins in giant unilamellar vesicles with controlled physiological contents. Proc. Natl. Acad. Sci. USA. 2013;110:7276–7281. doi: 10.1073/pnas.1303857110. PubMed DOI PMC
Walde P, Cosentino K, Engel H, Stano P. Giant vesicles: preparations and applications. ChemBioChem. 2010;11:848–865. doi: 10.1002/cbic.201000010. PubMed DOI
Strömqvist J, et al. A modified FCCS procedure applied to Ly49A-MHC class I cis- Interaction studies in cell membranes. Biophys. J. 2011;101:1257–1269. doi: 10.1016/j.bpj.2011.06.057. PubMed DOI PMC
Hughes LD, Rawle RJ, Boxer SG. Choose your label wisely: water-soluble fluorophores often interact with lipid bilayers. PLoS ONE. 2014;9:e87649. doi: 10.1371/journal.pone.0087649. PubMed DOI PMC
Zanetti-Domingues LC, Tynan CJ, Rolfe DJ, Clarke DT, Martin-Fernandez M. Hydrophobic fluorescent probes introduce artifacts into single molecule tracking experiments due to non-specific binding. PLoS ONE. 2013;8:e74200. doi: 10.1371/journal.pone.0074200. PubMed DOI PMC
Wurm CA, et al. Novel red fluorophores with superior performance in STED microscopy. Optical Nanoscopy. 2012;1:1–7. doi: 10.1186/2192-2853-1-7. DOI
Ramadurai S, et al. Lateral diffusion of membrane proteins. J. Am. Chem. Soc. 2009;131:12650–12656. doi: 10.1021/ja902853g. PubMed DOI
Quemeneur F, et al. Shape matters in protein mobility within membranes. Proceedings of the National Academy of Sciences. 2014;111:5083–5087. doi: 10.1073/pnas.1321054111. PubMed DOI PMC
Baker LA, Watt IN, Runswick MJ, Walker JE, Rubinstein JL. Arrangement of subunits in intact mammalian mitochondrial ATP synthase determined by cryo-EM. Proceedings of the National Academy of Sciences. 2012;109:11675–11680. doi: 10.1073/pnas.1204935109. PubMed DOI PMC
Davies KM, Anselmi C, Wittig I, Faraldo-Gómez JD, Kühlbrandt W. Structure of the yeast F1Fo-ATP synthase dimer and its role in shaping the mitochondrial cristae. Proceedings of the National Academy of Sciences. 2012;109:13602–13607. doi: 10.1073/pnas.1204593109. PubMed DOI PMC
Cherepanov DA, Feniouk BA, Junge W, Mulkidjanian AY. Low dielectric permittivity of water at the membrane interface: effect on the energy coupling mechanism in biological membranes. Biophys J. 2003;85:1307–1316. doi: 10.1016/S0006-3495(03)74565-2. PubMed DOI PMC
Georgievskii Y, Medvedev ES, Stuchebrukhov AA. Proton transport via the membrane surface. Biophys. J. 2002;82:2833–2846. doi: 10.1016/S0006-3495(02)75626-9. PubMed DOI PMC
Springer A, Hagen V, Cherepanov DA, Antonenko YN, Pohl P. Protons migrate along interfacial water without significant contributions from jumps between ionizable groups on the membrane surface. Proc. Natl. Acad. Sci. USA. 2011;108:14461–14466. doi: 10.1073/pnas.1107476108. PubMed DOI PMC
Alexiev U, Mollaaghababa R, Scherrer P, Khorana HG, Heyn MP. Rapid Long-Range Proton Diffusion Along the Surface of the Purple Membrane and Delayed Proton-Transfer into the Bulk. Proc. Natl. Acad. Sci. USA. 1995;92:372–376. doi: 10.1073/pnas.92.2.372. PubMed DOI PMC
Kühlbrandt, W. Structure and function of mitochondrial membrane protein complexes. BMC Biology13, doi:10.1186/s12915-015-0201-x (2015). PubMed PMC
Rieger, B., Junge, W. & Busch, K. B. Lateral pH gradient between OXPHOS complex IV and F(0)F(1) ATP-synthase in folded mitochondrial membranes. Nat Commun5(3103), doi:10.1038/ncomms4103 (2014). PubMed
Vukotic M, et al. Rcf1 mediates cytochrome oxidase assembly and respirasome formation, revealing heterogeneity of the enzyme complex. Cell Metabolism. 2012;15:336–347. doi: 10.1016/j.cmet.2012.01.016. PubMed DOI
Strogolova V, Furness A, Micaela MR, Garlich J, Stuart RA. Rcf1 and Rcf2, members of the hypoxia-induced gene 1 protein family, are critical components of the mitochondrial cytochrome bc 1-cytochrome c oxidase supercomplex. Molecular and Cellular Biology. 2012;32:1363–1373. doi: 10.1128/MCB.06369-11. PubMed DOI PMC
Rydström Lundin C, Von Ballmoos C, Ott M, Ädelroth P, Brzezinski P. Regulatory role of the respiratory supercomplex factors in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA. 2016;113:E4476–E4485. doi: 10.1073/pnas.1601196113. PubMed DOI PMC
Chen YC, et al. Identification of a protein mediating respiratory supercomplex stability. Cell Metabolism. 2012;15:348–360. doi: 10.1016/j.cmet.2012.02.006. PubMed DOI PMC
Wiedenmann A, Dimroth P, von Ballmoos C. Δψ and ΔpH are equivalent driving forces for proton transport through isolated F0 complexes of ATP synthases. Biochimica et Biophysica Acta - Bioenergetics. 2008;1777:1301–1310. doi: 10.1016/j.bbabio.2008.06.008. PubMed DOI
Frericks HL, Zhou DH, Yap LL, Gennis RB, Rienstra CM. Magic-angle spinning solid-state NMR of a 144 kDa membrane protein complex: E. coli cytochrome bo3 oxidase. Journal of Biomolecular NMR. 2006;36:55–71. doi: 10.1007/s10858-006-9070-5. PubMed DOI
Nordlund G, Brzezinski P, Von Ballmoos C. SNARE-fusion mediated insertion of membrane proteins into native and artificial membranes. Nature Communications. 2014;5:4303. doi: 10.1038/ncomms5303. PubMed DOI
Sýkora J, et al. Exploring fluorescence antibunching in solution to determine the stoichiometry of molecular complexes. Analytical Chemistry. 2007;79:4040–4049. doi: 10.1021/ac062024f. PubMed DOI
Chandrasekhar S. Stochastic problems in physics and astronomy. Reviews of Modern Physics. 1943;15:1–89. doi: 10.1103/RevModPhys.15.1. DOI
Lipid polymorphism of plant thylakoid membranes. The dynamic exchange model - facts and hypotheses