Transcriptome Analysis of Rice Reveals the lncRNA-mRNA Regulatory Network in Response to Rice Black-Streaked Dwarf Virus Infection
Language English Country Switzerland Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
32867233
PubMed Central
PMC7552052
DOI
10.3390/v12090951
PII: v12090951
Knihovny.cz E-resources
- Keywords
- DElncRNA, DEmRNA, gene expression regulatory network, rice, rice black-streaked dwarf virus, rice calli, transcriptome analysis,
- MeSH
- RNA, Messenger genetics metabolism MeSH
- Plant Diseases genetics virology MeSH
- Gene Expression Regulation, Plant * MeSH
- RNA, Long Noncoding genetics metabolism MeSH
- RNA, Plant genetics metabolism MeSH
- Plant Viruses genetics physiology MeSH
- Gene Expression Profiling MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- RNA, Messenger MeSH
- RNA, Long Noncoding MeSH
- RNA, Plant MeSH
The plant genome can produce long non-coding RNAs (lncRNAs), some of which have been identified as important regulators of gene expression. To better understand the response mechanism of rice plants to Rice black-streaked dwarf virus (RBSDV) infection, we performed a comparative transcriptome analysis between the RBSDV-infected and non-infected rice plants. A total of 1342 mRNAs and 22 lncRNAs were identified to be differentially expressed after RBSDV infection. Most differentially expressed transcripts involved in the plant-pathogen interaction pathway were upregulated after RBSDV infection, indicating the activation of rice defense response by RBSDV. A network of differentially expressed lncRNAs (DElncRNAs) and mRNAs (DEmRNAs) was then constructed. In this network, there are 56 plant-pathogen interaction-related DEmRNAs co-expressing with 20 DElncRNAs, suggesting these DElncRNAs and DEmRNAs may play essential roles in rice innate immunity against RBSDV. Moreover, some of the lncRNA-mRNA regulatory relationships were experimentally verified in rice calli by a quick and effective method established in this study. Three DElncRNAs were selected to be tested, and the results indicated that five mRNAs were found to be regulated by them. Together, we give a whole landscape of rice mRNAs and lncRNAs in response to RBSDV infection, and a feasible method to rapidly verify the lncRNA-mRNA regulatory relationship in rice.
See more in PubMed
Zhang C., Liu Y., Liu L., Lou Z., Zhang H., Miao H., Hu X., Pang Y., Qiu B. Rice black streaked dwarf virus P9-1, an α-helical protein, self-interacts and forms viroplasms in vivo. J. Gen. Virol. 2008;89:1770–1776. doi: 10.1099/vir.0.2008/000109-0. PubMed DOI
Wang Z., Fang S., Zhang Z., Han C., Li D., Yu J. Development of an ID-ELISA for the detection of Rice black-streaked dwarf virus in plants. J. Virol. Methods. 2006;134:61–65. doi: 10.1016/j.jviromet.2005.11.019. PubMed DOI
Shikata E., Kitagawa Y. Rice black-streaked dwarf virus: Its properties, morphology and intracellular localization. Virology. 1977;77:826–842. doi: 10.1016/0042-6822(77)90502-5. PubMed DOI
Bai F.W., Qu Z.C., Yan J., Zhang H.W., Xu J., Ye M.M., Wu H.L., Liao X.G., Shen D.L. Identification of rice black streaked dwarf virus in different cereal crops with dwarfing symptoms in China. Acta Virol. 2001;45:335–339. PubMed
Fang S., Yu J., Feng J., Han C., Li D., Liu Y. Identification of rice black-streaked dwarf fijivirus in maize with rough dwarf disease in China. Arch. Virol. 2001;146:167–170. doi: 10.1007/s007050170200. PubMed DOI
Luan J., Wang F., Li Y., Zhang B., Zhang J. Mapping quantitative trait loci conferring resistance to rice black-streaked virus in maize (Zea mays L.) Theor. Appl. Genet. 2012;125:781–791. doi: 10.1007/s00122-012-1871-1. PubMed DOI
Wu J., Ni Y., Liu H., Rao L., Zhou Y., Zhou X. Development and use of three monoclonal antibodies for the detection of rice black-streaked dwarf virus in field plants and planthopper vectors. Virol. J. 2013;10:114. doi: 10.1186/1743-422X-10-114. PubMed DOI PMC
Zhang H.M., Chen J.P., Adams M.J. Molecular characterisation of segments 1 to 6 of Rice black-streaked dwarf virus from China provides the complete genome. Arch. Virol. 2001;146:2331–2339. doi: 10.1007/s007050170006. PubMed DOI
Hibino H. Biology and Epidemiology. Annu. Rev. Phytopathol. 1996;34:249–274. doi: 10.1146/annurev.phyto.34.1.249. PubMed DOI
Conti M., Lovisolo O. Tubular Structures Associated with Maize Rough Dwarf Virus Particles in Crude Extracts: Electron Microscopy Study. J. Gen. Virol. 1971;13:173–176. doi: 10.1099/0022-1317-13-1-173. PubMed DOI
Zhang H., Tan X., Li L., He Y., Hong G., Li J., Lin L., Cheng Y., Yan F., Chen J., et al. Suppression of auxin signalling promotes rice susceptibility to Rice black streaked dwarf virus infection. Mol. Plant Pathol. 2019;20:1093–1104. doi: 10.1111/mpp.12814. PubMed DOI PMC
Xie K., Li L., Zhang H., Wang R., Tan X., He Y., Hong G., Li J., Ming F., Yao X., et al. Abscisic acid negatively modulates plant defence against rice black-streaked dwarf virus infection by suppressing the jasmonate pathway and regulating reactive oxygen species levels in rice. Plant. Cell Environ. 2018;41:2504–2514. doi: 10.1111/pce.13372. PubMed DOI
Zhou Y., Xu Z., Duan C., Chen Y., Meng Q., Wu J., Hao Z., Wang Z., Li M., Yong H., et al. Dual transcriptome analysis reveals insights into the response to Rice black-streaked dwarf virus in maize. J. Exp. Bot. 2016;67:4593–4609. doi: 10.1093/jxb/erw244. PubMed DOI PMC
Chaloner T., van Kan J.A.L., Grant-Downton R.T. RNA ‘Information Warfare’ in Pathogenic and Mutualistic Interactions. Trends Plant Sci. 2016;21:738–748. doi: 10.1016/j.tplants.2016.05.008. PubMed DOI
Xu L., Hu Y., Cao Y., Li J., Ma L., Li Y., Qi Y. An expression atlas of miRNAs in Arabidopsis thaliana. Sci. China Life Sci. 2018;61:178–189. doi: 10.1007/s11427-017-9199-1. PubMed DOI
Deng P., Liu S., Nie X., Weining S., Wu L. Conservation analysis of long non-coding RNAs in plants. Sci. China Life Sci. 2018;61:190–198. doi: 10.1007/s11427-017-9174-9. PubMed DOI
Ulitsky I. Evolution to the rescue: Using comparative genomics to understand long non-coding RNAs. Nat. Rev. Genet. 2016;17:601–614. doi: 10.1038/nrg.2016.85. PubMed DOI
Ding J., Lu Q., Ouyang Y., Mao H., Zhang P., Yao J., Xu C., Li X., Xiao J., Zhang Q. A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice. Proc. Natl. Acad. Sci. USA. 2012;109:2654–2659. doi: 10.1073/pnas.1121374109. PubMed DOI PMC
Wang Y., Luo X., Sun F., Hu J., Zha X., Su W., Yang J. Overexpressing lncRNA LAIR increases grain yield and regulates neighbouring gene cluster expression in rice. Nat. Commun. 2018;9:3516. doi: 10.1038/s41467-018-05829-7. PubMed DOI PMC
Liu J., Wang H., Chua N.-H. Long noncoding RNA transcriptome of plants. Plant Biotechnol. J. 2015;13:319–328. doi: 10.1111/pbi.12336. PubMed DOI
Liu J., Jung C., Xu J., Wang H., Deng S., Bernad L., Arenas-Huertero C., Chua N.-H. Genome-Wide Analysis Uncovers Regulation of Long Intergenic Noncoding RNAs in Arabidopsis. Plant Cell. 2012;24:4333–4345. doi: 10.1105/tpc.112.102855. PubMed DOI PMC
Zhu Q.-H., Stephen S., Taylor J., Helliwell C.A., Wang M.-B. Long noncoding RNAs responsive to Fusarium oxysporum infection in Arabidopsis thaliana. New Phytol. 2014;201:574–584. doi: 10.1111/nph.12537. PubMed DOI
Seo J.S., Sun H.-X., Park B.S., Huang C.-H., Yeh S.-D., Jung C., Chua N.-H. ELF18-INDUCED LONG-NONCODING RNA Associates with Mediator to Enhance Expression of Innate Immune Response Genes in Arabidopsis. Plant Cell. 2017;29:1024–1038. doi: 10.1105/tpc.16.00886. PubMed DOI PMC
Gao R., Liu P., Irwanto N., Loh D.R., Wong S.-M. Upregulation of LINC-AP2 is negatively correlated with AP2 gene expression with Turnip crinkle virus infection in Arabidopsis thaliana. Plant Cell Rep. 2016;35:2257–2267. doi: 10.1007/s00299-016-2032-9. PubMed DOI
Yang Y., Liu T., Shen D., Wang J., Ling X., Hu Z., Chen T., Hu J., Huang J., Yu W., et al. Tomato yellow leaf curl virus intergenic siRNAs target a host long noncoding RNA to modulate disease symptoms. PLoS Pathog. 2019;15:1–22. doi: 10.1371/journal.ppat.1007534. PubMed DOI PMC
Langmead B., Salzberg S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods. 2012;9:357–359. doi: 10.1038/nmeth.1923. PubMed DOI PMC
Kim D., Pertea G., Trapnell C., Pimentel H., Kelley R., Salzberg S.L. TopHat2: Accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14:R36. doi: 10.1186/gb-2013-14-4-r36. PubMed DOI PMC
Kong L., Zhang Y., Ye Z.-Q., Liu X.-Q., Zhao S.-Q., Wei L., Gao G. CPC: Assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Res. 2007;35:W345–W349. doi: 10.1093/nar/gkm391. PubMed DOI PMC
Sun L., Luo H., Bu D., Zhao G., Yu K., Zhang C., Liu Y., Chen R., Zhao Y. Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts. Nucleic Acids Res. 2013;41:e166. doi: 10.1093/nar/gkt646. PubMed DOI PMC
Mistry J., Bateman A., Finn R.D. Predicting active site residue annotations in the Pfam database. BMC Bioinform. 2007;8:298. doi: 10.1186/1471-2105-8-298. PubMed DOI PMC
Trapnell C., Williams B.A., Pertea G., Mortazavi A., Kwan G., van Baren M.J., Salzberg S.L., Wold B.J., Pachter L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 2010;28:511–515. doi: 10.1038/nbt.1621. PubMed DOI PMC
Warnes G., Bolker B., Bonebakker L., Gentleman R., Huber W., Liaw A., Lumley T., Mächler M., Magnusson A., Möller S. gplots: Various R programming tools for plotting data. [(accessed on 25 February 2018)]; Available online: https://cran.r-project.org/package=gplots.
Fang P., Lu R., Sun F., Lan Y., Shen W., Du L., Zhou Y., Zhou T. Assessment of reference gene stability in Rice stripe virus and Rice black streaked dwarf virus infection rice by quantitative Real-time PCR. Virol. J. 2015;12:175. doi: 10.1186/s12985-015-0405-2. PubMed DOI PMC
Livak K.J., Schmittgen T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
Hiei Y., Komari T. Agrobacterium-mediated transformation of rice using immature embryos or calli induced from mature seed. Nat. Protoc. 2008;3:824–834. doi: 10.1038/nprot.2008.46. PubMed DOI
Quinodoz S., Guttman M. Long noncoding RNAs: An emerging link between gene regulation and nuclear organization. Trends Cell Biol. 2014;24:651–663. doi: 10.1016/j.tcb.2014.08.009. PubMed DOI PMC
Kumar M., Brar A., Yadav M., Chawade A., Vivekanand V., Pareek N. Chitinases—Potential Candidates for Enhanced Plant Resistance towards Fungal Pathogens. Agriculture. 2018;8:88. doi: 10.3390/agriculture8070088. DOI
He Y., Zhang H., Sun Z., Li J., Hong G., Zhu Q., Zhou X., MacFarlane S., Yan F., Chen J. Jasmonic acid-mediated defense suppresses brassinosteroid-mediated susceptibility to Rice black streaked dwarf virus infection in rice. New Phytol. 2017;214:388–399. doi: 10.1111/nph.14376. PubMed DOI
Rinn J.L., Chang H.Y. Genome Regulation by Long Noncoding RNAs. Annu. Rev. Biochem. 2012;81:145–166. doi: 10.1146/annurev-biochem-051410-092902. PubMed DOI PMC
He L., Chen X., Yang J., Zhang T., Li J., Zhang S., Zhong K., Zhang H., Chen J., Yang J. Rice black-streaked dwarf virus-encoded P5-1 regulates the ubiquitination activity of SCF E3 ligases and inhibits jasmonate signaling to benefit its infection in rice. New Phytol. 2020;225:896–912. doi: 10.1111/nph.16066. PubMed DOI PMC
Mierziak J., Kostyn K., Kulma A. Flavonoids as Important Molecules of Plant Interactions with the Environment. Molecules. 2014;19:16240–16265. doi: 10.3390/molecules191016240. PubMed DOI PMC
Aldon D., Mbengue M., Mazars C., Galaud J.P. Calcium Signalling in Plant Biotic Interactions. Int. J. Mol. Sci. 2018;19:665. doi: 10.3390/ijms19030665. PubMed DOI PMC
Pandey S.P., Somssich I.E. The Role of WRKY Transcription Factors in Plant Immunity: Figure 1. Plant Physiol. 2009;150:1648–1655. doi: 10.1104/pp.109.138990. PubMed DOI PMC
Wang H., Niu Q., Wu H., Liu J., Ye J., Yu N., Chua N. Analysis of non-coding transcriptome in rice and maize uncovers roles of conserved lncRNAs associated with agriculture traits. Plant J. 2015;84:404–416. doi: 10.1111/tpj.13018. PubMed DOI
Ulitsky I., Bartel D.P. lincRNAs: Genomics, Evolution, and Mechanisms. Cell. 2013;154:26–46. doi: 10.1016/j.cell.2013.06.020. PubMed DOI PMC
Chekanova J.A. Long non-coding RNAs and their functions in plants. Curr. Opin. Plant Biol. 2015;27:207–216. doi: 10.1016/j.pbi.2015.08.003. PubMed DOI
Zhang Y.-C., Liao J.-Y., Li Z.-Y., Yu Y., Zhang J.-P., Li Q.-F., Qu L.-H., Shu W.-S., Chen Y.-Q. Genome-wide screening and functional analysis identify a large number of long noncoding RNAs involved in the sexual reproduction of rice. Genome Biol. 2014;15:512. doi: 10.1186/s13059-014-0512-1. PubMed DOI PMC
Li L., Eichten S.R., Shimizu R., Petsch K., Yeh C.-T., Wu W., Chettoor A.M., Givan S.A., Cole R.A., Fowler J.E., et al. Genome-wide discovery and characterization of maize long non-coding RNAs. Genome Biol. 2014;15:R40. doi: 10.1186/gb-2014-15-2-r40. PubMed DOI PMC
Wang M., Yuan D., Tu L., Gao W., He Y., Hu H., Wang P., Liu N., Lindsey K., Zhang X. Long noncoding RNAs and their proposed functions in fibre development of cotton (Gossypium spp.) New Phytol. 2015;207:1181–1197. doi: 10.1111/nph.13429. PubMed DOI
Wang T.-Z., Liu M., Zhao M.-G., Chen R., Zhang W.-H. Identification and characterization of long non-coding RNAs involved in osmotic and salt stress in Medicago truncatula using genome-wide high-throughput sequencing. BMC Plant Biol. 2015;15:131. doi: 10.1186/s12870-015-0530-5. PubMed DOI PMC
Ahmed M.M.S., Ji W., Wang M., Bian S., Xu M., Wang W., Zhang J., Xu Z., Yu M., Liu Q., et al. Transcriptional changes of rice in response to rice black-streaked dwarf virus. Gene. 2017;628:38–47. doi: 10.1016/j.gene.2017.07.015. PubMed DOI
Lee H.-A., Yeom S.-I. Plant NB-LRR proteins: Tightly regulated sensors in a complex manner. Brief. Funct. Genomics. 2015;14:233–242. doi: 10.1093/bfgp/elv012. PubMed DOI
Zhang L., Du L., Poovaiah B.W. Calcium signaling and biotic defense responses in plants. Plant Signal. Behav. 2014;9:e973818. doi: 10.4161/15592324.2014.973818. PubMed DOI PMC
Campos L., López-Gresa M.P., Fuertes D., Bellés J.M., Rodrigo I., Lisón P. Tomato glycosyltransferase Twi1 plays a role in flavonoid glycosylation and defence against virus. BMC Plant Biol. 2019;19:450. doi: 10.1186/s12870-019-2063-9. PubMed DOI PMC
French C.J., Towers G.H.N. Inhibition of infectivity of potato virus X by flavonoids. Phytochemistry. 1992;31:3017–3020. doi: 10.1016/0031-9422(92)83438-5. DOI
Dai Z., Tan J., Zhou C., Yang X., Yang F., Zhang S., Sun S., Miao X., Shi Z. The OsmiR396-OsGRF8-OsF3H-flavonoid pathway mediates resistance to the brown planthopper in rice (Oryza sativa) Plant Biotechnol. J. 2019;17:1657–1669. doi: 10.1111/pbi.13091. PubMed DOI PMC
Tanabe S., Ashikari M., Fujioka S., Takatsuto S., Yoshida S., Yano M., Yoshimura A., Kitano H., Matsuoka M., Fujisawa Y., et al. A Novel Cytochrome P450 Is Implicated in Brassinosteroid Biosynthesis via the Characterization of a Rice Dwarf Mutant, dwarf11, with Reduced Seed Length. Plant Cell. 2005;17:776–790. doi: 10.1105/tpc.104.024950. PubMed DOI PMC
He Y., Hong G., Zhang H., Tan X., Li L., Kong Y., Sang T., Xie K., Wei J., Li J., et al. The OsGSK2 Kinase Integrates Brassinosteroid and Jasmonic Acid Signaling by Interacting with OsJAZ4. Plant Cell. 2020;3 doi: 10.1105/tpc.19.00499. PubMed DOI PMC
Chujo T., Miyamoto K., Shimogawa T., Shimizu T., Otake Y., Yokotani N., Nishizawa Y., Shibuya N., Nojiri H., Yamane H., et al. OsWRKY28, a PAMP-responsive transrepressor, negatively regulates innate immune responses in rice against rice blast fungus. Plant Mol. Biol. 2013;82:23–37. doi: 10.1007/s11103-013-0032-5. PubMed DOI
Identifying Putative Resistance Genes for Barley Yellow Dwarf Virus-PAV in Wheat and Barley