Exploring Intercellular Dynamics: Ultra-Weak Biophoton Emission as a Novel Indicator of Altered Cell Functions and Disease in Oligospermia Mice
Status PubMed-not-MEDLINE Jazyk angličtina Země Írán Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38318218
PubMed Central
PMC10843233
DOI
10.34172/jlms.2023.65
Knihovny.cz E-zdroje
- Klíčová slova
- Apoptosis, Photon emission, Spatial arrangement, Spermatogenesis,
- Publikační typ
- časopisecké články MeSH
Introduction: Biophoton emission, the spontaneous release of photons from living cells, has emerged as an attractive field of research in the study of biological systems. Scientists have recently discovered that changes in biophoton emission could serve as potential indicators of pathological conditions. This intriguing phenomenon suggests that cells might communicate and interact with each other through the exchange of these faint but significant light signals. Therefore, the present study introduces intercellular relationships with biophoton release to detect normal and abnormal cell functions to further achieve cellular interactions by focusing on cell and cell arrangement in disease conditions. Methods: Twenty male mice were assigned to control and busulfan groups. Five weeks after the injection of busulfan, the testis was removed, and then the stereological techniques and TUNEL assay were applied to estimate the histopathology of the testis tissue sections. Results: The findings revealed that the ultra-weak biophoton emission in the control group was significantly lower than in the busulfan group. The oligospermia mice model showed that it significantly changed the spatial arrangement of testicular cells and notably decreased the testis volume, length of seminiferous tubules, and the number of testicular cells. The results of the TUNEL assay showed that the percentage of apoptotic cells significantly increased in the busulfan group. Conclusion: The ultra-weak biophoton emission from testis tissue was reduced in oligospermia mice. As a result, the decline of ultra-weak biophoton can indicate a change in cell arrangement, a decrease in intercellular interaction, and eventually disease.
Anatomy Department School of Medicine Rasht University of Medical Sciences Gilan Iran
Department of Advanced Technology Shiraz University Shiraz Iran
Department of Physical Electronics Faculty of Science Masaryk University Brno Czech Republic
Department of Physics Shahid Beheshti University Tehran Iran
Zobrazit více v PubMed
Aronoff S. Plasmodesmata. Science. 1976;194(4261):176–7. doi: 10.1126/science.194.4261.176-a. PubMed DOI
Kučera O, Cifra M. Cell-to-cell signaling through light: just a ghost of chance? Cell Commun Signal. 2013;11:87. doi: 10.1186/1478-811x-11-87. PubMed DOI PMC
Bloemendal S, Kück U. Cell-to-cell communication in plants, animals, and fungi: a comparative review. Naturwissenschaften. 2013;100(1):3–19. doi: 10.1007/s00114-012-0988-z. PubMed DOI
Du J, Deng T, Cao B, Wang Z, Yang M, Han J. The application and trend of ultra-weak photon emission in biology and medicine. Front Chem. 2023;11:1140128. doi: 10.3389/fchem.2023.1140128. PubMed DOI PMC
Lucas WJ, Ham BK, Kim JY. Plasmodesmata - bridging the gap between neighboring plant cells. Trends Cell Biol. 2009;19(10):495–503. doi: 10.1016/j.tcb.2009.07.003. PubMed DOI
Sager RE, Lee JY. Plasmodesmata at a glance. J Cell Sci. 2018;131(11):jcs209346. doi: 10.1242/jcs.209346. PubMed DOI
Madl P, Verwanger T, Geppert M, Scholkmann F. Oscillations of ultra-weak photon emission from cancer and non-cancer cells stressed by culture medium change and TNF-α. Sci Rep. 2017;7(1):11249. doi: 10.1038/s41598-017-10949-z. PubMed DOI PMC
Pospísil P. Production of reactive oxygen species by photosystem II. Biochim Biophys Acta. 2009;1787(10):1151–60. doi: 10.1016/j.bbabio.2009.05.005. PubMed DOI
Prasad A, Pospíšil P. Towards the two-dimensional imaging of spontaneous ultra-weak photon emission from microbial, plant and animal cells. Sci Rep. 2013;3:1211. doi: 10.1038/srep01211. PubMed DOI PMC
Albrecht-Buehler G. Surface extensions of 3T3 cells towards distant infrared light sources. J Cell Biol. 1991;114(3):493–502. doi: 10.1083/jcb.114.3.493. PubMed DOI PMC
Tsuchida K, Iwasa T, Kobayashi M. Imaging of ultraweak photon emission for evaluating the oxidative stress of human skin. J Photochem Photobiol B. 2019;198:111562. doi: 10.1016/j.jphotobiol.2019.111562. PubMed DOI
Wu Q, Lu S, Zhang L, Zhao L. LncRNA HOXA-AS2 activates the notch pathway to promote cervical cancer cell proliferation and migration. Reprod Sci. 2021;28(10):3000–9. doi: 10.1007/s43032-021-00626-y. PubMed DOI
Zapata F, Pastor-Ruiz V, Ortega-Ojeda F, Montalvo G, Ruiz-Zolle AV, García-Ruiz C. Human ultra-weak photon emission as non-invasive spectroscopic tool for diagnosis of internal states - a review. J Photochem Photobiol B. 2021;216:112141. doi: 10.1016/j.jphotobiol.2021.112141. PubMed DOI
Reed MG, Howard CV, GS DEY. One-stop stereology: the estimation of 3D parameters using isotropic rulers. J Microsc. 2010;239(1):54–65. doi: 10.1111/j.1365-2818.2009.03356.x. PubMed DOI
Johnsen SG. Testicular biopsy score count--a method for registration of spermatogenesis in human testes: normal values and results in 335 hypogonadal males. Hormones. 1970;1(1):2–25. doi: 10.1159/000178170. PubMed DOI
Peirouvi T, Aliaghaei A, Eslami Farsani B, Ziaeipour S, Ebrahimi V, Forozesh M, et al. COVID-19 disrupts the blood-testis barrier through the induction of inflammatory cytokines and disruption of junctional proteins. Inflamm Res. 2021;70(10-12):1165–75. doi: 10.1007/s00011-021-01497-4. PubMed DOI PMC
Mattfeldt T, Eckel S, Fleischer F, Schmidt V. Statistical analysis of reduced pair correlation functions of capillaries in the prostate gland. J Microsc. 2006;223(Pt 2):107–19. doi: 10.1111/j.1365-2818.2006.01604.x. PubMed DOI
Mayhew TM. Second-order stereology and ultrastructural examination of the spatial arrangements of tissue compartments within glomeruli of normal and diabetic kidneys. J Microsc. 1999;195(Pt 2):87–95. doi: 10.1046/j.1365-2818.1999.00593.x. PubMed DOI
Sajadi E, Dadras S, Bayat M, Abdi S, Nazarian H, Ziaeipour S, et al. Impaired spermatogenesis associated with changes in spatial arrangement of Sertoli and spermatogonial cells following induced diabetes. J Cell Biochem. 2019;120(10):17312–25. doi: 10.1002/jcb.28995. PubMed DOI
Krasnoperov RA, Stoyan D. Second-order stereology of spatial fibre systems. J Microsc. 2004;216(Pt 2):156–64. doi: 10.1111/j.0022-2720.2004.01407.x. PubMed DOI
Ilkhani S, Moradi A, Aliaghaei A, Norouzian M, Abdi S, Rojhani E, et al. Spatial arrangement of testicular cells disrupted by transient scrotal hyperthermia and subsequent impairment of spermatogenesis. Andrologia. 2020;52(9):e13664. doi: 10.1111/and.13664. PubMed DOI
Devaraj B, Kobayashi M, Takeda M, Ito H, Jin M, Inaba H. Detection and characterization of ultraweak biophotons from life processes. In: Optical Methods in Biomedical and Environmental Sciences. Amsterdam: Elsevier; 1994. p. 3-6.
Cohen S, Popp FA. Whole-body counting of biophotons and its relation to biological rhythms. In: Chang JJ, Fisch J, Popp FA, eds. Biophotons. Dordrecht: Springer; 1998. p. 183-91. 10.1007/978-94-017-0928-6_13. DOI
Jung HH, Woo WM, Yang JM, Choi C, Lee J, Yoon G, et al. Left-right asymmetry of biophoton emission from hemiparesis patients. Indian J Exp Biol. 2003;41(5):452–6. PubMed
Van Wijk R, Van Wijk EPA, Pang J, Yang M, Yan Y, Han J. Integrating ultra-weak photon emission analysis in mitochondrial research. Front Physiol. 2020;11:717. doi: 10.3389/fphys.2020.00717. PubMed DOI PMC
Mordente A, Meucci E, Silvestrini A, Martorana GE, Giardina B. Anthracyclines and mitochondria. In: Scatena R, Bottoni P, Giardina B, eds. Advances in Mitochondrial Medicine. Dordrecht: Springer; 2012. p. 385-419. 10.1007/978-94-007-2869-1_18. PubMed DOI
DeVita VT Jr, Chu E. A history of cancer chemotherapy. Cancer Res. 2008;68(21):8643–53. doi: 10.1158/0008-5472.can-07-6611. PubMed DOI
Burger K, Mühl B, Harasim T, Rohrmoser M, Malamoussi A, Orban M, et al. Chemotherapeutic drugs inhibit ribosome biogenesis at various levels. J Biol Chem. 2010;285(16):12416–25. doi: 10.1074/jbc.M109.074211. PubMed DOI PMC
Pokorný J, Jelínek F, Trkal V. Electric field around microtubules. Bioelectrochem Bioenerg. 1998;45(2):239–45. doi: 10.1016/s0302-4598(98)00100-7. DOI
Nan X, Sims PA, Chen P, Xie XS. Observation of individual microtubule motor steps in living cells with endocytosed quantum dots. J Phys Chem B. 2005;109(51):24220–4. doi: 10.1021/jp056360w. PubMed DOI