Plant hormone cytokinin at the crossroads of stress priming and control of photosynthesis

. 2022 ; 13 () : 1103088. [epub] 20230118

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid36743569

To cope with biotic and abiotic stress conditions, land plants have evolved several levels of protection, including delicate defense mechanisms to respond to changes in the environment. The benefits of inducible defense responses can be further augmented by defense priming, which allows plants to respond to a mild stimulus faster and more robustly than plants in the naïve (non-primed) state. Priming provides a low-cost protection of agriculturally important plants in a relatively safe and effective manner. Many different organic and inorganic compounds have been successfully tested to induce resistance in plants. Among the plethora of commonly used physicochemical techniques, priming by plant growth regulators (phytohormones and their derivatives) appears to be a viable approach with a wide range of applications. While several classes of plant hormones have been exploited in agriculture with promising results, much less attention has been paid to cytokinin, a major plant hormone involved in many biological processes including the regulation of photosynthesis. Cytokinins have been long known to be involved in the regulation of chlorophyll metabolism, among other functions, and are responsible for delaying the onset of senescence. A comprehensive overview of the possible mechanisms of the cytokinin-primed defense or stress-related responses, especially those related to photosynthesis, should provide better insight into some of the less understood aspects of this important group of plant growth regulators.

Zobrazit více v PubMed

Abhinandan K., Skori L., Stanic M., Hickerson N. M. N., Jamshed M., Samuel M. A. (2018). Abiotic stress signaling in wheat - an inclusive overview of hormonal interactions during abiotic stress responses in wheat. Front. Plant Sci. 9. doi: 10.3389/fpls.2018.00734 PubMed DOI PMC

Alharby H., Alzahrani Y. M., Rady M. (2020). Seeds pretreatment with zeatins or maize grain-derived organic biostimulant improved hormonal contents, polyamine gene expression, and salinity and drought tolerance of wheat. Int. J. Agric. Biol. 24, 714–724. doi: 10.17957/IJAB/15.1491 DOI

Amooaghaie R., Tabatabaie F. (2017). Osmopriming-induced salt tolerance during seed germination of alfalfa most likely mediates through H2O2 signaling and upregulation of heme oxygenase. Protoplasma 254, 1791–1803. doi: 10.1007/s00709-016-1069-5 PubMed DOI

Argueso C. T., Ferreira F. J., Epple P., To J. P. C., Hutchison C. E., Schaller G. E., et al. . (2012). Two-component elements mediate interactions between cytokinin and salicylic acid in plant immunity. PloS Genet. 8, e1002448. doi: 10.1371/journal.pgen.1002448 PubMed DOI PMC

Ariga H., Katori T., Tsuchimatsu T., Hirase T., Tajima Y., Parker J. E., et al. . (2017). NLR locus-mediated trade-off between abiotic and biotic stress adaptation in arabidopsis. Nat. Plants 3, 1–8. doi: 10.1038/nplants.2017.72 PubMed DOI

Arun M. N., Hebbar S. S., Bhanuprakash, Senthivel T., Nair A. K., Padmavathi G., et al. . (2022). "Seed priming: The way forward to mitigate abiotic stress in crops." in Plant stress physiology - perspectives in agriculture. (IntechOpen). doi: 10.5772/intechopen.102033 DOI

Aswathi K. P. R., Kalaji H. M., Puthur J. T. (2022). Seed priming of plants aiding in drought stress tolerance and faster recovery: a review. Plant Growth Regul. 97, 235–253. doi: 10.1007/s10725-021-00755-z DOI

Avramova Z. (2019). Defence-related priming and responses to recurring drought: Two manifestations of plant transcriptional memory mediated by the ABA and JA signalling pathways. Plant Cell Environ. 42, 983–997. doi: 10.1111/pce.13458 PubMed DOI

Badenoch-Jones J., Parker C. W., Letham D. S., Singh S. (1996). Effect of cytokinins supplied via the xylem at multiples of endogenous concentrations on transpiration and senescence in derooted seedlings of oat and wheat. Plant Cell Environ. 19, 504–516. doi: 10.1111/j.1365-3040.1996.tb00384.x DOI

Barciszewski J., Siboska G., Rattan S. I. S., Clark B. F. C. (2000). Occurrence, biosynthesis and properties of kinetin (N6-furfuryladenine). Plant Growth Regul. 32, 257–265. doi: 10.1023/A:1010772421545 DOI

Bjornson M., Benn G., Song X., Comai L., Franz A. K., Dandekar A. M., et al. . (2014). Distinct roles for mitogen-activated protein kinase signaling and CALMODULIN-BINDING TRANSCRIPTIONAL ACTIVATOR3 in regulating the peak time and amplitude of the plant general stress response. Plant Physiol. 166, 988–996. doi: 10.1104/pp.114.245944 PubMed DOI PMC

Brenner W. G., Schmülling T. (2012). Transcript profiling of cytokinin action in arabidopsis roots and shoots discovers largely similar but also organ-specific responses. BMC Plant Biol. 12, 112. doi: 10.1186/1471-2229-12-112 PubMed DOI PMC

Bruce T. J. A., Matthes M. C., Napier J. A., Pickett J. A. (2007). Stressful “memories” of plants: Evidence and possible mechanisms. Plant Sci. 173, 603–608. doi: 10.1016/j.plantsci.2007.09.002 DOI

Bryksová M., Dabravolski S., Kučerová Z., Zavadil Kokáš F., Špundová M., Plíhalová L., et al. . (2020). Aromatic cytokinin arabinosides promote PAMP-like responses and positively regulate leaf longevity. ACS Chem. Biol. 15, 1949–1963. doi: 10.1021/acschembio.0c00306 PubMed DOI

Campos M. L., Yoshida Y., Major I. T., de Oliveira Ferreira D., Weraduwage S. M., Froehlich J. E., et al. . (2016). Rewiring of jasmonate and phytochrome b signalling uncouples plant growth-defense tradeoffs. Nat. Commun. 7, 12570. doi: 10.1038/ncomms12570 PubMed DOI PMC

Cary A. J., Liu W., Howell S. H. (1995). Cytokinin action is coupled to ethylene in its effects on the inhibition of root and hypocotyl elongation in arabidopsis thaliana seedlings. Plant Physiol. 107, 1075–1082. doi: 10.1104/pp.107.4.1075 PubMed DOI PMC

Chakrabarti N., Mukherji S. (2003). Alleviation of NaCl stress by pretreatment with phytohormones in vigna radiata. Biol. Plant 46, 589–594. doi: 10.1023/A:1024827931134 DOI

Cheikh N., Jones R. J. (1994). Disruption of maize kernel growth and development by heat stress (Role of Cytokinin/Abscisic acid balance). Plant Physiol. 106, 45–51. doi: 10.1104/pp.106.1.45 PubMed DOI PMC

Chen X., Ding Y., Yang Y., Song C., Wang B., Yang S., et al. . (2021). Protein kinases in plant responses to drought, salt, and cold stress. J. Integr. Plant Biol. 63, 53–78. doi: 10.1111/jipb.13061 PubMed DOI

Chernyad’ev I. I. (2009). The protective action of cytokinins on the photosynthetic machinery and productivity of plants under stress (review). Appl. Biochem. Microbiol. 45, 351–362. doi: 10.1134/S0003683809040012 PubMed DOI

Chipilski R., Moskova I., Pencheva A., Kocheva K. (2021). Field priming with cytokinins enhances seed viability of wheat after low temperature storage. Plant Soil Environ. 67 (2021), 77–84. doi: 10.17221/524/2020-PSE DOI

Choi J., Choi D., Lee S., Ryu C.-M., Hwang I. (2011). Cytokinins and plant immunity: old foes or new friends? Trends Plant Sci. 16, 388–394. doi: 10.1016/j.tplants.2011.03.003 PubMed DOI

Choi J., Huh S. U., Kojima M., Sakakibara H., Paek K.-H., Hwang I. (2010). The cytokinin-activated transcription factor ARR2 promotes plant immunity via TGA3/NPR1-dependent salicylic acid signaling in arabidopsis. Dev. Cell 19, 284–295. doi: 10.1016/j.devcel.2010.07.011 PubMed DOI

Choi W.-G., Toyota M., Kim S.-H., Hilleary R., Gilroy S. (2014). Salt stress-induced Ca2+ waves are associated with rapid, long-distance root-to-shoot signaling in plants. Proc. Natl. Acad. Sci. 111, 6497–6502. doi: 10.1073/pnas.1319955111 PubMed DOI PMC

Conrath U. (2006). Systemic acquired resistance. Plant Signal. Behav. 1, 179–184. doi: 10.4161/psb.1.4.3221 PubMed DOI PMC

Conrath U. (2011). Molecular aspects of defence priming. Trends Plant Sci. 16, 524–531. doi: 10.1016/j.tplants.2011.06.004 PubMed DOI

Conrath U., Beckers G. J. M., Flors V., García-Agustín P., Jakab G., Mauch F., et al. . (2006). Priming: Getting ready for battle. Mol. Plant-Microbe Interactions 19, 1062–1071. doi: 10.1094/MPMI-19-1062 PubMed DOI

Conrath U., Beckers G. J. M., Langenbach C. J. G., Jaskiewicz M. R. (2015). Priming for enhanced defense. Annu. Rev. Phytopathol. 53, 97–119. doi: 10.1146/annurev-phyto-080614-120132 PubMed DOI

Cortleven A., Leuendorf J. E., Frank M., Pezzetta D., Bolt S., Schmülling T. (2019). Cytokinin action in response to abiotic and biotic stresses in plants. Plant Cell Environ. 42, 998–1018. doi: 10.1111/pce.13494 PubMed DOI

Cortleven A., Schmülling T. (2015). Regulation of chloroplast development and function by cytokinin. J. Exp. Bot. 66, 4999–5013. doi: 10.1093/jxb/erv132 PubMed DOI

Criado M. V., Caputo C., Roberts I. N., Castro M. A., Barneix A. J. (2009). Cytokinin-induced changes of nitrogen remobilization and chloroplast ultrastructure in wheat (Triticum aestivum). J. Plant Physiol. 166, 1775–1785. doi: 10.1016/j.jplph.2009.05.007 PubMed DOI

Das C., Sengupta T., Chattopadhyay S., Setua M., Das N. K., Saratchandra B. (2002). Involvement of kinetin and spermidine in controlling salinity stress in mulberry (Morus alba l. cv. S1). Acta Physiol. Plant 24, 53–57. doi: 10.1007/s11738-002-0021-9 DOI

Daszkowska-Golec A., Szarejko I. (2013). Open or close the gate - stomata action under the control of phytohormones in drought stress conditions. Front. Plant Sci. 4. doi: 10.3389/fpls.2013.00138 PubMed DOI PMC

de Moura F. B., Vieira M.R.da S., Simões A.do N., Ferreira-Silva S. L., de Souza ,. C. A. V., de Souza E. S., et al. . (2018). Physiological effect of kinetin on the photosynthetic apparatus and antioxidant enzymes activities during production of anthurium. Hortic. Plant J. 4, 182–192. doi: 10.1016/j.hpj.2018.04.001 DOI

Dervinis C., Frost C. J., Lawrence S. D., Novak N. G., Davis J. M. (2010). Cytokinin primes plant responses to wounding and reduces insect performance. J. Plant Growth Regul. 29, 289–296. doi: 10.1007/s00344-009-9135-2 DOI

de Zelicourt A., Colcombet J., Hirt H. (2016). The role of MAPK modules and ABA during abiotic stress signaling. Trends Plant Sci. 21, 677–685. doi: 10.1016/j.tplants.2016.04.004 PubMed DOI

Engelberth J., Alborn H. T., Schmelz E. A., Tumlinson J. H. (2004). Airborne signals prime plants against insect herbivore attack. Proc. Natl. Acad. Sci. 101, 1781–1785. doi: 10.1073/pnas.0308037100 PubMed DOI PMC

Engelberth J., Viswanathan S., Engelberth M. J. (2011). Low concentrations of salicylic acid stimulate insect elicitor responses in zea mays seedlings. J. Chem. Ecol. 37, 263–266. doi: 10.1007/s10886-011-9926-3 PubMed DOI

Fan Y., Ma C., Huang Z., Abid M., Jiang S., Dai T., et al. . (2018). Heat priming during early reproductive stages enhances thermo-tolerance to post-anthesis heat stress via improving photosynthesis and plant productivity in winter wheat (Triticum aestivum l.). Front. Plant Sci. 9. doi: 10.3389/fpls.2018.00805 PubMed DOI PMC

Farber M., Attia Z., Weiss D. (2016). Cytokinin activity increases stomatal density and transpiration rate in tomato. J. Exp. Bot. 67, 6351–6362. doi: 10.1093/jxb/erw398 PubMed DOI PMC

Farmer E. E., Ryan C. A. (1990). Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc. Natl. Acad. Sci. U. S. A. 87, 7713–7716. doi: 10.1073/pnas.87.19.7713 PubMed DOI PMC

Fathy M., Saad Eldin S. M., Naseem M., Dandekar T., Othman E. M. (2022). Cytokinins: Wide-spread signaling hormones from plants to humans with high medical potential. Nutrients 14, 1495. doi: 10.3390/nu14071495 PubMed DOI PMC

Fragnière C., Serrano M., Abou-Mansour E., Métraux J.-P., L’Haridon F. (2011). Salicylic acid and its location in response to biotic and abiotic stress. FEBS Lett. 585, 1847–1852. doi: 10.1016/j.febslet.2011.04.039 PubMed DOI

Frost C. J., Mescher M. C., Dervinis C., Davis J. M., Carlson J. E., De Moraes C. M. (2008). Priming defense genes and metabolites in hybrid poplar by the green leaf volatile cis-3-hexenyl acetate. New Phytol. 180, 722–734. doi: 10.1111/j.1469-8137.2008.02599.x PubMed DOI

Giron D., Kaiser W., Imbault N., Casas J. (2007). Cytokinin-mediated leaf manipulation by a leafminer caterpillar. Biol. Lett. 3, 340–343. doi: 10.1098/rsbl.2007.0051 PubMed DOI PMC

Gujjar R. S., Banyen P., Chuekong W., Worakan P., Roytrakul S., Supaibulwatana K. (2020). A synthetic cytokinin improves photosynthesis in rice under drought stress by modulating the abundance of proteins related to stomatal conductance, chlorophyll contents, and rubisco activity. Plants 9, 1106. doi: 10.3390/plants9091106 PubMed DOI PMC

Haisel D., Pospíšilová J., Synková H., Schnablová R., Baťková P. (2006). Effects of abscisic acid or benzyladenine on pigment contents, chlorophyll fluorescence, and chloroplast ultrastructure during water stress and after rehydration. Photosynthetica 44, 606–614. doi: 10.1007/s11099-006-0079-5 DOI

Hare P. D., Cress W. A., van Staden J. (1997). The involvement of cytokinins in plant responses to environmental stress. Plant Growth Regul. 23, 79–103. doi: 10.1023/A:1005954525087 DOI

Hilker M., Schmülling T. (2019). Stress priming, memory, and signalling in plants. Plant Cell Environ. 42, 753–761. doi: 10.1111/pce.13526 PubMed DOI

Hirao T., Okazawa A., Harada K., Kobayashi A., Muranaka T., Hirata K. (2012). Green leaf volatiles enhance methyl jasmonate response in arabidopsis. J. Biosci. Bioeng. 114, 540–545. doi: 10.1016/j.jbiosc.2012.06.010 PubMed DOI

Holeski L. M., Jander G., Agrawal A. A. (2012). Transgenerational defense induction and epigenetic inheritance in plants. Trends Ecol. Evol. 27, 618–626. doi: 10.1016/j.tree.2012.07.011 PubMed DOI

Hönig M., Plíhalová L., Husičková A., Nisler J., Doležal K. (2018). Role of cytokinins in senescence, antioxidant defence and photosynthesis. Int. J. Mol. Sci. 19, 4045. doi: 10.3390/ijms19124045 PubMed DOI PMC

Hu L., Wang Z., Huang B. (2012). Growth and physiological recovery of Kentucky bluegrass from drought stress as affected by a synthetic cytokinin 6-benzylaminopurine. Crop Sci. 52, 2332–2340. doi: 10.2135/cropsci2012.02.0106 DOI

Iqbal M., Ashraf M. (2005). Presowing seed treatment with cytokinins and its effect on growth, photosynthetic rate, ionic levels and yield of two wheat cultivars differing in salt tolerance. J. Integr. Plant Biol. 47, 1315–1325. doi: 10.1111/j.1744-7909.2005.00163.x DOI

Iqbal M., Ashraf M., Jamil A. (2006). Seed enhancement with cytokinins: changes in growth and grain yield in salt stressed wheat plants. Plant Growth Regul. 50, 29–39. doi: 10.1007/s10725-006-9123-5 DOI

Islam M. R., Islam M. S., Akter N., Mohi-Ud-Din M., Mostofa M. G. (2022. b). Foliar application of cytokinin modulates gas exchange features, water relation and biochemical responses to improve growth performance of maize under drought stress. Phyton 91, 633–649. doi: 10.32604/phyton.2022.018074 DOI

Islam M. R., Rahman M. M., Mohi-Ud-Din M., Akter M., Zaman E., Keya S. S., et al. . (2022. a). Cytokinin and gibberellic acid-mediated waterlogging tolerance of mungbean (Vigna radiata l. wilczek). PeerJ 10, e12862. doi: 10.7717/peerj.12862 PubMed DOI PMC

Janečková H., Husičková A., Lazár D., Ferretti U., Pospíšil P., Špundová M. (2019). Exogenous application of cytokinin during dark senescence eliminates the acceleration of photosystem II impairment caused by chlorophyll b deficiency in barley. Plant Physiol. Biochem. 136, 43–51. doi: 10.1016/j.plaphy.2019.01.005 PubMed DOI

Ji N., Wang J., Zuo X., Li Y., Li M., Wang K., et al. . (2021). PpWRKY45 is involved in methyl jasmonate primed disease resistance by enhancing the expression of jasmonate acid biosynthetic and pathogenesis-related genes of peach fruit. Postharvest Biol. Technol. 172, 111390. doi: 10.1016/j.postharvbio.2020.111390 DOI

Johnson R., Puthur J. T. (2022). Biostimulant priming in oryza sativa: a novel approach to reprogram the functional biology under nutrient-deficient soil. Cereal Res. Commun. 50, 45–52. doi: 10.1007/s42976-021-00150-4 DOI

Kang N. Y., Cho C., Kim N. Y., Kim J. (2012). Cytokinin receptor-dependent and receptor-independent pathways in the dehydration response of arabidopsis thaliana. J. Plant Physiol. 169, 1382–1391. doi: 10.1016/j.jplph.2012.05.007 PubMed DOI

Kauss H., Jeblick W. (1995). Pretreatment of parsley suspension cultures with salicylic acid enhances spontaneous and elicited production of H2O2. Plant Physiol. 108, 1171–1178. doi: 10.1104/pp.108.3.1171 PubMed DOI PMC

Kerchev P., van der Meer T., Sujeeth N., Verlee A., Stevens C. V., Van Breusegem F., et al. . (2020). Molecular priming as an approach to induce tolerance against abiotic and oxidative stresses in crop plants. Biotechnol. Adv. 40, 107503. doi: 10.1016/j.biotechadv.2019.107503 PubMed DOI

Koprna R., De Diego N., Dundálková L., Spíchal L. (2016). Use of cytokinins as agrochemicals. Bioorg. Med. Chem. 24, 484–492. doi: 10.1016/j.bmc.2015.12.022 PubMed DOI

Kučerová Z., Rác M., Mikulík J., Plíhal O., Pospíšil P., Bryksová M., et al. . (2020). The anti-senescence activity of cytokinin arabinosides in wheat and arabidopsis is negatively correlated with ethylene production. Int. J. Mol. Sci. 21, 8109. doi: 10.3390/ijms21218109 PubMed DOI PMC

Kusnetsov V., Herrmann R. G., Kulaeva O. N., Oelmüller R. (1998). Cytokinin stimulates and abscisic acid inhibits greening of etiolated lupinus luteus cotyledons by affecting the expression of the light-sensitive protochlorophyllide oxidoreductase. Mol. Gen. Genet. MGG 259, 21–28. doi: 10.1007/PL00008626 PubMed DOI

Lau S.-E., Teo W. F. A., Teoh E. Y., Tan B. C. (2022). Microbiome engineering and plant biostimulants for sustainable crop improvement and mitigation of biotic and abiotic stresses. Discovery Food 2, 9. doi: 10.1007/s44187-022-00009-5 PubMed DOI PMC

Lazár D. (2015). Parameters of photosynthetic energy partitioning. J. Plant Physiol. 175, 131–147. doi: 10.1016/j.jplph.2014.10.021 PubMed DOI

Lemmens E., Deleu L. J., De Brier N., De Man W. L., De Proft M., Prinsen E., et al. . (2019). The impact of hydro-priming and osmo-priming on seedling characteristics, plant hormone concentrations, activity of selected hydrolytic enzymes, and cell wall and phytate hydrolysis in sprouted wheat (Triticum aestivum l.). ACS Omega 4, 22089–22100. doi: 10.1021/acsomega.9b03210 PubMed DOI PMC

Li X., Xu K. (2014). Effects of exogenous hormones on leaf photosynthesis of panax ginseng. Photosynthetica 52, 152–156. doi: 10.1007/s11099-014-0005-1 DOI

Li C.-H., Yu N., Jiang S.-M., Shangguan X.-X., Wang L.-J., Chen X.-Y. (2008). Down-regulation of s-adenosyl-L: -homocysteine hydrolase reveals a role of cytokinin in promoting transmethylation reactions. Planta 228, 125–136. doi: 10.1007/s00425-008-0724-2 PubMed DOI

Mangena P. (2020). Role of benzyladenine seed priming on growth and physiological and biochemical response of soybean plants grown under high salinity stress condition. Int. J. Agron. 2020, e8847098. doi: 10.1155/2020/8847098 DOI

Masuta C., Tanaka H., Uehara K., Kuwata S., Koiwai A., Noma M. (1995). Broad resistance to plant viruses in transgenic plants conferred by antisense inhibition of a host gene essential in s-adenosylmethionine-dependent transmethylation reactions. Proc. Natl. Acad. Sci. U. S. A. 92, 6117–6121. doi: 10.1073/pnas.92.13.6117 PubMed DOI PMC

Mauch-Mani B., Baccelli I., Luna E., Flors V. (2017). Defense priming: An adaptive part of induced resistance. Annu. Rev. Plant Biol. 68, 485–512. doi: 10.1146/annurev-arplant-042916-041132 PubMed DOI

Mik V., Szüčová L., Šmehilová M., Zatloukal M., Doležal K., Nisler J., et al. . (2011). N9-substituted derivatives of kinetin: Effective anti-senescence agents. Phytochemistry 72, 821–831. doi: 10.1016/j.phytochem.2011.02.002 PubMed DOI

Mishina T. E., Zeier J. (2007). Pathogen-associated molecular pattern recognition rather than development of tissue necrosis contributes to bacterial induction of systemic acquired resistance in arabidopsis. Plant J. Cell Mol. Biol. 50, 500–513. doi: 10.1111/j.1365-313X.2007.03067.x PubMed DOI

Mohammadi H., Janmohammadi M., Sabaghnia N. (2015). Chlorophyll fluorescence response of wheat to exogenous application of growth regulators under terminal drought stress. Ann. Univ. Mariae Curie-Sklodowska Sect. C – Biol. 70, 13. doi: 10.17951/c.2015.70.1.13 DOI

Moradi F., Ismail A. M. (2007). Responses of photosynthesis, chlorophyll fluorescence and ROS-scavenging systems to salt stress during seedling and reproductive stages in rice. Ann. Bot. 99, 1161–1173. doi: 10.1093/aob/mcm052 PubMed DOI PMC

Müller M., Munné-Bosch S. (2021). Hormonal impact on photosynthesis and photoprotection in plants. Plant Physiol. 185, 1500–1522. doi: 10.1093/plphys/kiaa119 PubMed DOI PMC

Mur L. A. J., Naylor G., Warner S. A. J., Sugars J. M., White R. F., Draper J. (1996). Salicylic acid potentiates defence gene expression in tissue exhibiting acquired resistance to pathogen attack. Plant J. 9, 559–571. doi: 10.1046/j.1365-313X.1996.09040559.x DOI

Naeem M. S., Jin Z. L., Wan G. L., Liu D., Liu H. B., Yoneyama K., et al. . (2010). 5-aminolevulinic acid improves photosynthetic gas exchange capacity and ion uptake under salinity stress in oilseed rape (Brassica napus l.). Plant Soil 332, 405–415. doi: 10.1007/s11104-010-0306-5 DOI

Nawaz A., Amjad M., Khan S. M., Afzal I., Ahmed T., Iqbal Q., et al. . (2013). Tomato seed invigoration with cytokinins. JAPS J. Anim. Plant Sci. 23, 121–128.

Nisler J., Zatloukal M., Spichal L., Koprna R., Dolezal K., Strnad M. (2015). 1,2,3-thiadiazol-5yl-urea derivatives, use thereof for regulating plant senescence and preparations containing these derivatives. U. S. Patent 9,993,002.

Oh M.-H., Kim J.-H., Zulfugarov I. S., Moon Y.-H., Rhew T.-H., Lee C.-H. (2005). Effects of benzyladenine and abscisic acid on the disassembly process of photosystems in anArabidopsis delayed-senescence mutant,ore9. J. Plant Biol. 48, 170–177. doi: 10.1007/BF03030405 DOI

Onkokesung N., Baldwin I. T., Gális I. (2010). The role of jasmonic acid and ethylene crosstalk in direct defense of nicotiana attenuata plants against chewing herbivores. Plant Signal. Behav. 5, 1305–1307. doi: 10.4161/psb.5.10.13124 PubMed DOI PMC

Pharmawati M., Billington T., Gehring C. A. (1998). Stomatal guard cell responses to kinetin and natriuretic peptides are cGMP-dependent. Cell. Mol. Life Sci. CMLS 54, 272–276. doi: 10.1007/s000180050149 PubMed DOI PMC

Pieterse C. M. J., Leon-Reyes A., van der Ent S., Van Wees S. C. M. (2009). Networking by small-molecule hormones in plant immunity. Nat. Chem. Biol. 5, 308–316. doi: 10.1038/nchembio.164 PubMed DOI

Pieterse C. M. J., Zamioudis C., Berendsen R. L., Weller D. M., Van Wees S. C. M., Bakker P. A. H. M. (2014). Induced systemic resistance by beneficial microbes. Annu. Rev. Phytopathol. 52, 347–375. doi: 10.1146/annurev-phyto-082712-102340 PubMed DOI

Plíhalová L., Vylíčilová H., Doležal K., Zahajská L., Zatloukal M., Strnad M. (2016). Synthesis of aromatic cytokinins for plant biotechnology. New Biotechnol. 33, 614–624. doi: 10.1016/j.nbt.2015.11.009 PubMed DOI

Pospíšilová J. (2003). Interaction of cytokinins and abscisic acid during regulation of stomatal opening in bean leaves. Photosynthetica 41, 49–56. doi: 10.1023/A:1025852210937 DOI

Reed R. C., Bradford K. J., Khanday I. (2022). Seed germination and vigor: Ensuring crop sustainability in a changing climate. Heredity 128, 450–459. doi: 10.1038/s41437-022-00497-2 PubMed DOI PMC

Roháček K. (2002). Chlorophyll fluorescence parameters: The definitions, photosynthetic meaning, and mutual relationships. Photosynthetica 40, 13–29. doi: 10.1023/A:1020125719386 DOI

Roser M., Ritchie H., Ortiz-Ospina E. (2013). World population growth. In: Our world data. Available at: https://ourworldindata.org/world-population-growth (Accessed September 11, 2020).

Schäfer M., Meza-Canales I. D., Brütting C., Baldwin I. T., Meldau S. (2015). Cytokinin concentrations and CHASE-DOMAIN CONTAINING HIS KINASE 2 (NaCHK2)- and NaCHK3-mediated perception modulate herbivory-induced defense signaling and defenses in nicotiana attenuata. New Phytol. 207, 645–658. doi: 10.1111/nph.13404 PubMed DOI

Shao R., Wang K., Shangguan Z. (2010). Cytokinin-induced photosynthetic adaptability of zea mays l. to drought stress associated with nitric oxide signal: Probed by ESR spectroscopy and fast OJIP fluorescence rise. J. Plant Physiol. 167, 472–479. doi: 10.1016/j.jplph.2009.10.020 PubMed DOI

Singewar K., Fladung M., Robischon M. (2021). Methyl salicylate as a signaling compound that contributes to forest ecosystem stability. Trees 35, 1755–1769. doi: 10.1007/s00468-021-02191-y DOI

Sobol S., Chayut N., Nave N., Kafle D., Hegele M., Kaminetsky R., et al. . (2014). Genetic variation in yield under hot ambient temperatures spotlights a role for cytokinin in protection of developing floral primordia. Plant Cell Environ. 37, 643–657. doi: 10.1111/pce.12184 PubMed DOI

Song G. C., Ryu C.-M. (2018). Evidence for volatile memory in plants: Boosting defence priming through the recurrent application of plant volatiles. Mol. Cells 41, 724–732. doi: 10.14348/molcells.2018.0104 PubMed DOI PMC

Song X.-G., She X.-P., He J.-M., Huang C., Song T., Song X.-G., et al. . (2006). Cytokinin- and auxin-induced stomatal opening involves a decrease in levels of hydrogen peroxide in guard cells of vicia faba. Funct. Plant Biol. 33, 573–583. doi: 10.1071/FP05232 PubMed DOI

Sorrentino M., De Diego N., Ugena L., Spíchal L., Lucini L., Miras-Moreno B., et al. . (2021). Seed priming with protein hydrolysates improves arabidopsis growth and stress tolerance to abiotic stresses. Front. Plant Sci. 12. doi: 10.3389/fpls.2021.626301 PubMed DOI PMC

Tanaka Y., Sano T., Tamaoki M., Nakajima N., Kondo N., Hasezawa S. (2006). Cytokinin and auxin inhibit abscisic acid-induced stomatal closure by enhancing ethylene production in arabidopsis. J. Exp. Bot. 57, 2259–2266. doi: 10.1093/jxb/erj193 PubMed DOI

Thomashow M. F. (2010). Molecular basis of plant cold acclimation: Insights gained from studying the CBF cold response pathway. Plant Physiol. 154, 571–577. doi: 10.1104/pp.110.161794 PubMed DOI PMC

Ton J., Mauch-Mani B. (2004). β-amino-butyric acid-induced resistance against necrotrophic pathogens is based on ABA-dependent priming for callose. Plant J. 38, 119–130. doi: 10.1111/j.1365-313X.2004.02028.x PubMed DOI

Tsuda K., Mine A., Bethke G., Igarashi D., Botanga C. J., Tsuda Y., et al. . (2013). Dual regulation of gene expression mediated by extended MAPK activation and salicylic acid contributes to robust innate immunity in arabidopsis thaliana. PloS Genet. 9, e1004015. doi: 10.1371/journal.pgen.1004015 PubMed DOI PMC

Vedenicheva N., Futorna O., Shcherbatyuk M., Kosakivska I. (2022). Effect of seed priming with zeatin on secale cereale l. growth and cytokinins homeostasis under hyperthermia. J. Crop Improv. 36, 656–674. doi: 10.1080/15427528.2021.2000909 DOI

Vincent C., Rowland D., Schaffer B., Bassil E., Racette K., Zurweller B. (2020). Primed acclimation: A physiological process offers a strategy for more resilient and irrigation-efficient crop production. Plant Sci. 295, 110240. doi: 10.1016/j.plantsci.2019.110240 PubMed DOI

von Caemmerer S., Farquhar G. D. (1981). Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153, 376–387. doi: 10.1007/BF00384257 PubMed DOI

Vylíčilová H., Husičková A., Spíchal L., Srovnal J., Doležal K., Plíhal O., et al. . (2016). C2-substituted aromatic cytokinin sugar conjugates delay the onset of senescence by maintaining the activity of the photosynthetic apparatus. Phytochemistry 122, 22–33. doi: 10.1016/j.phytochem.2015.12.001 PubMed DOI

Wang K., Jin P., Han L., Shang H., Tang S., Rui H., et al. . (2014). Methyl jasmonate induces resistance against penicillium citrinum in Chinese bayberry by priming of defense responses. Postharvest Biol. Technol. 98, 90–97. doi: 10.1016/j.postharvbio.2014.07.009 DOI

Wani S. H., Kumar V., Shriram V., Sah S. K. (2016). Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J. 4, 162–176. doi: 10.1016/j.cj.2016.01.010 DOI

Wu C., Cui K., Wang W., Li Q., Fahad S., Hu Q., et al. . (2016). Heat-induced phytohormone changes are associated with disrupted early reproductive development and reduced yield in rice. Sci. Rep. 6, 34978. doi: 10.1038/srep34978 PubMed DOI PMC

Wu C., Cui K., Wang W., Li Q., Fahad S., Hu Q., et al. . (2017). Heat-induced cytokinin transportation and degradation are associated with reduced panicle cytokinin expression and fewer spikelets per panicle in rice. Front. Plant Sci. 8. doi: 10.3389/fpls.2017.00371 PubMed DOI PMC

Wu A., Hammer G. L., Doherty A., von Caemmerer S., Farquhar G. D. (2019). Quantifying impacts of enhancing photosynthesis on crop yield. Nat. Plants 5, 380–388. doi: 10.1038/s41477-019-0398-8 PubMed DOI

Wu L.-Y., Shang G.-D., Wang F.-X., Gao J., Wan M.-C., Xu Z.-G., et al. . (2022). Dynamic chromatin state profiling reveals regulatory roles of auxin and cytokinin in shoot regeneration. Dev. Cell 57, 526–542.e7. doi: 10.1016/j.devcel.2021.12.019 PubMed DOI

Wu X., Zhu Z., Li X., Zha D. (2012). Effects of cytokinin on photosynthetic gas exchange, chlorophyll fluorescence parameters and antioxidative system in seedlings of eggplant (Solanum melongena l.) under salinity stress. Acta Physiol. Plant 34, 2105–2114. doi: 10.1007/s11738-012-1010-2 DOI

Yakhin O. I., Lubyanov A. A., Yakhin I. A., Brown P. H. (2016). Biostimulants in plant science: A global perspective. Front. Plant Sci. 7. doi: 10.3389/fpls.2016.02049 PubMed DOI PMC

Yang D. Q., Luo Y. L., Dong W. H., Yin Y. P., Li Y., Wang Z. L. (2018). Response of photosystem II performance and antioxidant enzyme activities in stay-green wheat to cytokinin. Photosynthetica 56, 567–577. doi: 10.1007/s11099-017-0708-1 DOI

Zatloukal M., Plihalova L., Klaskova J., Spichal L., Koprna R., Dolezal K., et al. . (2015). Substituted 6-anilino-9-heterocyclylpurine derivatives for inhibition of plant stress. U. S. Patent 10,662,194.

Zavaleta-Mancera H. A., López-Delgado H., Loza-Tavera H., Mora-Herrera M., Trevilla-García C., Vargas-Suárez M., et al. . (2007). Cytokinin promotes catalase and ascorbate peroxidase activities and preserves the chloroplast integrity during dark-senescence. J. Plant Physiol. 164, 1572–1582. doi: 10.1016/j.jplph.2007.02.003 PubMed DOI

Zdarska M., Dobisová T., Gelová Z., Pernisová M., Dabravolski S., Hejátko J. (2015). Illuminating light, cytokinin, and ethylene signalling crosstalk in plant development. J. Exp. Bot. 66, 4913–4931. doi: 10.1093/jxb/erv261 PubMed DOI

Zhang X., Liu D., Gao D., Zhao W., Du H., Qiu Z., et al. . (2022). Cytokinin confers brown planthopper resistance by elevating jasmonic acid pathway in rice. Int. J. Mol. Sci. 23, 5946. doi: 10.3390/ijms23115946 PubMed DOI PMC

Zhao M., Wang L., Wang J., Jin J., Zhang N., Lei L., et al. . (2020). Induction of priming by cold stress via inducible volatile cues in neighboring tea plants. J. Integr. Plant Biol. 62, 1461–1468. doi: 10.1111/jipb.12937 PubMed DOI

Zuñiga-Mayo V. M., Baños-Bayardo C. R., Díaz-Ramírez D., Marsch-Martínez N., de Folter S. (2018). Conserved and novel responses to cytokinin treatments during flower and fruit development in brassica napus and arabidopsis thaliana. Sci. Rep. 8, 6836. doi: 10.1038/s41598-018-25017-3 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...