Robust Dipolar Layers between Organic Semiconductors and Silver for Energy-Level Alignment
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38551398
PubMed Central
PMC11009919
DOI
10.1021/acsami.3c18697
Knihovny.cz E-zdroje
- Klíčová slova
- charge injection layers, energy levels, low-energy electron microscopy, photoelectron spectroscopy, scanning tunneling microscopy, self-assembly, surfaces,
- Publikační typ
- časopisecké články MeSH
The interface between a metal electrode and an organic semiconductor (OS) layer has a defining role in the properties of the resulting device. To obtain the desired performance, interlayers are introduced to modify the adhesion and growth of OS and enhance the efficiency of charge transport through the interface. However, the employed interlayers face common challenges, including a lack of electric dipoles to tune the mutual position of energy levels, being too thick for efficient electronic transport, or being prone to intermixing with subsequently deposited OS layers. Here, we show that monolayers of 1,3,5-tris(4-carboxyphenyl)benzene (BTB) with fully deprotonated carboxyl groups on silver substrates form a compact layer resistant to intermixing while capable of mediating energy-level alignment and showing a large insensitivity to substrate termination. Employing a combination of surface-sensitive techniques, i.e., low-energy electron microscopy and diffraction, X-ray photoelectron spectroscopy, and scanning tunneling microscopy, we have comprehensively characterized the compact layer and proven its robustness against mixing with the subsequently deposited organic semiconductor layer. Density functional theory calculations show that the robustness arises from a strong interaction of carboxylate groups with the Ag surface, and thus, the BTB in the first layer is energetically favored. Synchrotron radiation photoelectron spectroscopy shows that this layer displays considerable electrical dipoles that can be utilized for work function engineering and electronic alignment of molecular frontier orbitals with respect to the substrate Fermi level. Our work thus provides a widely applicable molecular interlayer and general insights necessary for engineering of charge injection layers for efficient organic electronics.
Zobrazit více v PubMed
Huang Y.; Hsiang E.-L.; Deng M.-Y.; Wu S.-T. Mini-LED, Micro-LED and OLED Displays: Present Status and Future Perspectives. Light: Sci. Appl. 2020, 9 (1), 105.10.1038/s41377-020-0341-9. PubMed DOI PMC
Wang S.; Zhang H.; Zhang B.; Xie Z.; Wong W. Towards High-Power-Efficiency Solution-Processed OLEDs: Material and Device Perspectives. Mater. Sci. Eng., R 2020, 140, 10054710.1016/j.mser.2020.100547. DOI
Zou S.-J.; Shen Y.; Xie F. M.; Chen J. D.; Li Y. Q.; Tang J.-X. Recent Advances in Organic Light-Emitting Diodes: Toward Smart Lighting and Displays. Mater. Chem. Front. 2020, 4 (3), 788–820. 10.1039/C9QM00716D. DOI
Park S. K.; Kim J. H.; Park S. Y. Organic 2D Optoelectronic Crystals: Charge Transport, Emerging Functions, and Their Design Perspective. Adv. Mater. 2018, 30, 170475910.1002/adma.201704759. PubMed DOI
Gao J.; Wang J.; Xu C.; Hu Z.; Ma X.; Zhang X.; Niu L.; Zhang J.; Zhang F. A Critical Review on Efficient Thick-Film Organic Solar Cells. Sol. RRL 2020, 4, 200036410.1002/solr.202000364. DOI
Yu Y.; Ma Q.; Ling H.; Li W.; Ju R.; Bian L.; Shi N.; Qian Y.; Yi M.; Xie L.; Huang W. Small-Molecule-Based Organic Field-Effect Transistor for Nonvolatile Memory and Artificial Synapse. Adv. Funct. Mater. 2019, 29 (50), 190460210.1002/adfm.201904602. DOI
Waldrip M.; Jurchescu O. D.; Gundlach D. J.; Bittle E. G. Contact Resistance in Organic Field-Effect Transistors: Conquering the Barrier. Adv. Funct. Mater. 2020, 30, 190457610.1002/adfm.201904576. DOI
Klauk H. Will We See Gigahertz Organic Transistors?. Adv. Electron. Mater. 2018, 4, 170047410.1002/aelm.201700474. DOI
Koch N. Opportunities for Energy Level Tuning at Inorganic/Organic Semiconductor Interfaces. Appl. Phys. Lett. 2021, 119, 26050110.1063/5.0074963. DOI
Franco-Cañellas A.; Duhm S.; Gerlach A.; Schreiber F. Binding and Electronic Level Alignment of π -Conjugated Systems on Metals. Rep. Prog. Phys. 2020, 83 (6), 06650110.1088/1361-6633/ab7a42. PubMed DOI
Otero R.; Vázquez de Parga A. L.; Gallego J. M. Electronic, Structural and Chemical Effects of Charge-Transfer at Organic/Inorganic Interfaces. Surf. Sci. Rep. 2017, 72, 105–145. 10.1016/j.surfrep.2017.03.001. DOI
Fahlman M.; Fabiano S.; Gueskine V.; Simon D.; Berggren M.; Crispin X. Interfaces in Organic Electronics. Nat. Rev. Mater. 2019, 4 (10), 627–650. 10.1038/s41578-019-0127-y. DOI
Zojer E.; Taucher T. C.; Hofmann O. T. The Impact of Dipolar Layers on the Electronic Properties of Organic/Inorganic Hybrid Interfaces. Adv. Mater. Interfaces 2019, 6, 190058110.1002/admi.201900581. DOI
Goiri E.; Borghetti P.; El-Sayed A.; Ortega J. E.; de Oteyza D. G. Multi-Component Organic Layers on Metal Substrates. Adv. Mater. 2016, 28, 1340–1368. 10.1002/adma.201503570. PubMed DOI
Chen H.; Zhang W.; Li M.; He G.; Guo X. Interface Engineering in Organic Field-Effect Transistors: Principles, Applications, and Perspectives. Chem. Rev. 2020, 120 (5), 2879–2949. 10.1021/acs.chemrev.9b00532. PubMed DOI
Lim K.-G.; Ahn S.; Lee T.-W. Energy Level Alignment of Dipolar Interface Layer in Organic and Hybrid Perovskite Solar Cells. J. Mater. Chem. C 2018, 6, 2915–2924. 10.1039/C8TC00166A. DOI
Borchert J. W.; Weitz R. T.; Ludwigs S.; Klauk H. A Critical Outlook for the Pursuit of Lower Contact Resistance in Organic Transistors. Adv. Mater. 2022, 34 (2), 210407510.1002/adma.202104075. PubMed DOI PMC
Zojer E.; Terfort A.; Zharnikov M. Concept of Embedded Dipoles as a Versatile Tool for Surface Engineering. Acc. Chem. Res. 2022, 55, 1857–1867. 10.1021/acs.accounts.2c00173. PubMed DOI PMC
Casalini S.; Bortolotti C. A.; Leonardi F.; Biscarini F. Self-Assembled Monolayers in Organic Electronics. Chem. Soc. Rev. 2017, 46, 40–71. 10.1039/C6CS00509H. PubMed DOI
Stoliar P.; Kshirsagar R.; Massi M.; Annibale P.; Albonetti C.; de Leeuw D. M.; Biscarini F. Charge Injection Across Self-Assembly Monolayers in Organic Field-Effect Transistors: Odd–Even Effects. J. Am. Chem. Soc. 2007, 129, 6477–6484. 10.1021/ja069235m. PubMed DOI
Kovalchuk A.; Abu-Husein T.; Fracasso D.; Egger D. A.; Zojer E.; Zharnikov M.; Terfort A.; Chiechi R. C. Transition Voltages Respond to Synthetic Reorientation of Embedded Dipoles in Self-Assembled Monolayers. Chem. Sci. 2016, 7, 781–787. 10.1039/C5SC03097H. PubMed DOI PMC
Zhang J. L.; Ye X.; Gu C.; Han C.; Sun S.; Wang L.; Chen W. Non-Covalent Interaction Controlled 2D Organic Semiconductor Films: Molecular Self-Assembly, Electronic and Optical Properties, and Electronic Devices. Surf. Sci. Rep. 2020, 75, 10048110.1016/j.surfrep.2020.100481. DOI
Amsalem P.; Wilke A.; Frisch J.; Niederhausen J.; Vollmer A.; Rieger R.; Müllen K.; Rabe J. P.; Koch N. Interlayer Molecular Diffusion and Thermodynamic Equilibrium in Organic Heterostructures on a Metal Electrode. J. Appl. Phys. 2011, 110 (11), 11370910.1063/1.3662878. DOI
Sun L.; Liu C.; Queteschiner D.; Weidlinger G.; Zeppenfeld P. Layer Inversion in Organic Heterostructures. Phys. Chem. Chem. Phys. 2011, 13 (29), 13382.10.1039/c1cp21151j. PubMed DOI
Häming M.; Greif M.; Sauer C.; Schöll A.; Reinert F. Electronic Structure of Ultrathin Heteromolecular Organic-Metal Interfaces: SnPc/PTCDA/Ag(111) and SnPc/Ag(111). Phys. Rev. B 2010, 82, 23543210.1103/PhysRevB.82.235432. DOI
Egger D. A.; Ruiz V. G.; Saidi W. A.; Bučko T.; Tkatchenko A.; Zojer E. Understanding Structure and Bonding of Multilayered Metal–Organic Nanostructures. J. Phys. Chem. C 2013, 117, 3055–3061. 10.1021/jp309943k. PubMed DOI PMC
Gallego J. M.; Ecija D.; Martín N.; Otero R.; Miranda R. An STM Study of Molecular Exchange Processes in Organic Thin Film Growth. Chem. Commun. 2014, 50 (69), 9954–9957. 10.1039/C4CC03656E. PubMed DOI
Stadtmüller B.; Schröder S.; Kumpf C. Heteromolecular Metal-Organic Interfaces: Electronic and Structural Fingerprints of Chemical Bonding. J. Electron Spectrosc. Relat. Phenom. 2015, 204, 80–91. 10.1016/j.elspec.2015.03.003. DOI
Borghetti P.; de Oteyza D. G.; Rogero C.; Goiri E.; Verdini A.; Cossaro A.; Floreano L.; Ortega J. E. Molecular-Level Realignment in Donor–Acceptor Bilayer Blends on Metals. J. Phys. Chem. C 2016, 120, 5997–6005. 10.1021/acs.jpcc.5b11373. DOI
Thussing S.; Jakob P. Thermal Stability and Interlayer Exchange Processes in Heterolayers of CuPc and PTCDA on Ag(111). J. Phys. Chem. C 2017, 121, 13680–13691. 10.1021/acs.jpcc.7b02377. PubMed DOI
Wang Q.; Franco-Cañellas A.; Ji P.; Bürker C.; Wang R.-B.; Broch K.; Thakur P. K.; Lee T.-L.; Zhang H.; Gerlach A.; et al. Bilayer Formation vs Molecular Exchange in Organic Heterostructures: Strong Impact of Subtle Changes in Molecular Structure. J. Phys. Chem. C 2018, 122, 9480–9490. 10.1021/acs.jpcc.8b01529. DOI
Lerch A.; Zimmermann J. E.; Namgalies A.; Stallberg K.; Höfer U. Two-Photon Photoemission Spectroscopy of Unoccupied Electronic States at CuPc/PTCDA/Ag(1 1 1) Interfaces. J. Phys.: Condens. Matter 2018, 30, 49400110.1088/1361-648X/aaec53. PubMed DOI
Wang Q.; Franco-Cañellas A.; Yang J.; Hausch J.; Struzek S.; Chen M.; Thakur P. K.; Gerlach A.; Duhm S.; Schreiber F. Heteromolecular Bilayers on a Weakly Interacting Substrate: Physisorptive Bonding and Molecular Distortions of Copper–Hexadecafluorophthalocyanine. ACS Appl. Mater. Interfaces 2020, 12, 14542–14551. 10.1021/acsami.9b22812. PubMed DOI
Stará V.; Procházka P.; Planer J.; Shahsavar A.; Makoveev A. O.; Skála T.; Blatnik M.; Čechal J. Tunable Energy-Level Alignment in Multilayers of Carboxylic Acids on Silver. Phys. Rev. Appl. 2022, 18 (4), 04404810.1103/PhysRevApplied.18.044048. DOI
Schlotter N. E.; Porter M. D.; Bright T. B.; Allara D. L. Formation and Structure of a Spontaneously Adsorbed Monolayer of Arachidic on Silver. Chem. Phys. Lett. 1986, 132, 93–98. 10.1016/0009-2614(86)80702-3. DOI
Tao Y. T. Structural Comparison of Self-Assembled Monolayers of n-Alkanoic Acids on the Surfaces of Silver, Copper, and Aluminum. J. Am. Chem. Soc. 1993, 115, 4350–4358. 10.1021/ja00063a062. DOI
Tao Y. T.; Huang C. Y.; Chiou D. R.; Chen L. J. Infrared and Atomic Force Microscopy Imaging Study of the Reorganization of Self-Assembled Monolayers of Carboxylic Acids on Silver Surface. Langmuir 2002, 18, 8400–8406. 10.1021/la025805u. DOI
Aitchison H.; Lu H.; Hogan S. W. L.; Früchtl H.; Cebula I.; Zharnikov M.; Buck M. Self-Assembled Monolayers of Oligophenylenecarboxylic Acids on Silver Formed at the Liquid–Solid Interface. Langmuir 2016, 32, 9397–9409. 10.1021/acs.langmuir.6b01773. PubMed DOI
Krzykawska A.; Ossowski J.; Żaba T.; Cyganik P. Binding Groups for Highly Ordered SAM Formation: Carboxylic versus Thiol. Chem. Commun. 2017, 53, 5748–5751. 10.1039/C7CC01939D. PubMed DOI
Krzykawska A.; Szwed M.; Ossowski J.; Cyganik P. Odd–Even Effect in Molecular Packing of Self-Assembled Monolayers of Biphenyl-Substituted Fatty Acid on Ag(111). J. Phys. Chem. C 2018, 122, 919–928. 10.1021/acs.jpcc.7b10806. DOI
Goronzy D. P.; Ebrahimi M.; Rosei F.; Arramel; Fang Y.; De Feyter S.; Tait S. L.; Wang C.; Beton P. H.; Wee A. T. S.; et al. Supramolecular Assemblies on Surfaces: Nanopatterning, Functionality, and Reactivity. ACS Nano 2018, 12, 7445–7481. 10.1021/acsnano.8b03513. PubMed DOI
Deimel P. S.; Feulner P.; Barth J. V.; Allegretti F. Spatial Decoupling of Macrocyclic Metal–Organic Complexes from a Metal Support: A 4-Fluorothiophenol Self-Assembled Monolayer as a Thermally Removable Spacer. Phys. Chem. Chem. Phys. 2019, 21, 10992–11003. 10.1039/C9CP01583C. PubMed DOI
Widdascheck F.; Bischof D.; Witte G. Engineering of Printable and Air-Stable Silver Electrodes with High Work Function Using Contact Primer Layer: From Organometallic Interphases to Sharp Interfaces. Adv. Funct. Mater. 2021, 31 (49), 210668710.1002/adfm.202106687. DOI
Stadtmüller B.; Sueyoshi T.; Kichin G.; Kröger I.; Soubatch S.; Temirov R.; Tautz F. S.; Kumpf C. Commensurate Registry and Chemisorption at a Hetero-Organic Interface. Phys. Rev. Lett. 2012, 108 (10), 1–5. 10.1103/PhysRevLett.108.106103. PubMed DOI
Procházka P.; Gosalvez M. A.; Kormoš L.; De La Torre B.; Gallardo A.; Alberdi-Rodriguez J.; Chutora T.; Makoveev A. O.; Shahsavar A.; Arnau A.; et al. Multiscale Analysis of Phase Transformations in Self-Assembled Layers of 4,4′-Biphenyl Dicarboxylic Acid on the Ag(001) Surface. ACS Nano 2020, 14, 7269–7279. 10.1021/acsnano.0c02491. PubMed DOI
Kormoš L.; Procházka P.; Makoveev A. O.; Čechal J. Complex K-Uniform Tilings by a Simple Bitopic Precursor Self-Assembled on Ag(001) Surface. Nat. Commun. 2020, 11, 185610.1038/s41467-020-15727-6. PubMed DOI PMC
Procházka P.; Kormoš L.; Shahsavar A.; Stará V.; Makoveev A. O.; Skála T.; Blatnik M.; Čechal J. Phase Transformations in a Complete Monolayer of 4,4′-Biphenyl-Dicarboxylic Acid on Ag(0 0 1). Appl. Surf. Sci. 2021, 547, 14911510.1016/j.apsusc.2021.149115. DOI
Makoveev A. O.; Procházka P.; Blatnik M.; Kormoš L.; Skála T.; Čechal J. Role of Phase Stabilization and Surface Orientation in 4,4′-Biphenyl-Dicarboxylic Acid Self-Assembly and Transformation on Silver Substrates. J. Phys. Chem. C 2022, 126, 9989–9997. 10.1021/acs.jpcc.2c02538. DOI
Makoveev A.; Procházka P.; Shahsavar A.; Kormoš L.; Krajňák T.; Stará V.; Čechal J. Kinetic Control of Self-Assembly Using a Low-Energy Electron Beam. Appl. Surf. Sci. 2022, 600, 15410610.1016/j.apsusc.2022.154106. DOI
Fratini S.; Nikolka M.; Salleo A.; Schweicher G.; Sirringhaus H. Charge Transport in High-Mobility Conjugated Polymers and Molecular Semiconductors. Nat. Mater. 2020, 19, 491–502. 10.1038/s41563-020-0647-2. PubMed DOI
MacLeod J. Design and Construction of On-Surface Molecular Nanoarchitectures: Lessons and Trends from Trimesic Acid and Other Small Carboxlyated Building Blocks. J. Phys. D: Appl. Phys. 2019, 53, 04300210.1088/1361-6463/ab4c4d. DOI
Kormoš L.; Procházka P.; Šikola T.; Čechal J. Molecular Passivation of Substrate Step Edges as Origin of Unusual Growth Behavior of 4,4′-Biphenyl Dicarboxylic Acid on Cu(001). J. Phys. Chem. C 2018, 122, 2815–2820. 10.1021/acs.jpcc.7b11436. DOI
Derry G. N.; Kern M. E.; Worth E. H. Recommended Values of Clean Metal Surface Work Functions. J. Vac. Sci. Technol., A 2015, 33, 06080110.1116/1.4934685. DOI
El-Sayed A.; Borghetti P.; Goiri E.; Rogero C.; Floreano L.; Lovat G.; Mowbray D. J.; Cabellos J. L.; Wakayama Y.; Rubio A.; et al. Understanding Energy-Level Alignment in Donor–Acceptor/Metal Interfaces from Core-Level Shifts. ACS Nano 2013, 7, 6914–6920. 10.1021/nn4020888. PubMed DOI
Ruben M.; Payer D.; Landa A.; Comisso A.; Gattinoni C.; Lin N.; Collin J.-P.; Sauvage J.-P.; De Vita A.; Kern K. 2D Supramolecular Assemblies of Benzene-1,3,5-Triyl-Tribenzoic Acid: Temperature-Induced Phase Transformations and Hierarchical Organization with Macrocyclic Molecules. J. Am. Chem. Soc. 2006, 128 (49), 15644–15651. 10.1021/ja063601k. PubMed DOI
Svane K. L.; Baviloliaei M. S.; Hammer B.; Diekhöner L. An Extended Chiral Surface Coordination Network Based on Ag7-Clusters. J. Chem. Phys. 2018, 149, 164710.10.1063/1.5051510. PubMed DOI
Mohammad A. B.; Hwa Lim K.; Yudanov I. V.; Neyman K. M.; Rösch N. A Computational Study of H 2 Dissociation on Silver Surfaces: The Effect of Oxygen in the Added Row Structure of Ag(110). Phys. Chem. Chem. Phys. 2007, 9, 1247–1254. 10.1039/B616675J. PubMed DOI
Henneke C.; Felter J.; Schwarz D.; Tautz F. S.; Kumpf C. Controlling the Growth of Multiple Ordered Heteromolecular Phases by Utilizing Intermolecular Repulsion. Nat. Mater. 2017, 16, 628–633. 10.1038/NMAT4858. PubMed DOI
Schnadt J.; Rauls E.; Xu W.; Vang R. T.; Knudsen J.; Lagsgaard E.; Li Z.; Hammer B.; Besenbacher F. Extended One-Dimensional Supramolecular Assembly on a Stepped Surface. Phys. Rev. Lett. 2008, 100 (4), 04610310.1103/PhysRevLett.100.046103. PubMed DOI
Schnadt J.; Xu W.; Vang R. T.; Knudsen J.; Li Z.; Lægsgaard E.; Besenbacher F. Interplay of Adsorbate-Adsorbate and Adsorbate-Substrate Interactions in Self-Assembled Molecular Surface Nanostructures. Nano Res. 2010, 3, 459–471. 10.1007/s12274-010-0005-9. DOI
Pascual J. I.; Barth J. V.; Ceballos G.; Trimarchi G.; De Vita A.; Kern K.; Rust H. P. Mesoscopic Chiral Reshaping of the Ag(110) Surface Induced by the Organic Molecule PVBA. J. Chem. Phys. 2004, 120, 11367–11370. 10.1063/1.1763836. PubMed DOI
Kim J.-H.; Ribierre J.-C.; Yang Y. S.; Adachi C.; Kawai M.; Jung J.; Fukushima T.; Kim Y. Seamless Growth of a Supramolecular Carpet. Nat. Commun. 2016, 7, 1065310.1038/ncomms10653. PubMed DOI PMC
Kley C. S.; Čechal J.; Kumagai T.; Schramm F.; Ruben M.; Stepanow S.; Kern K. Highly Adaptable Two-Dimensional Metal-Organic Coordination Networks on Metal Surfaces. J. Am. Chem. Soc. 2012, 134, 6072–6075. 10.1021/ja211749b. PubMed DOI
Mete E.; Demiroğlu İ.; Fatih Danışman M.; Ellialtıoğlu Ş. Pentacene Multilayers on Ag(111) Surface. J. Phys. Chem. C 2010, 114, 2724–2729. 10.1021/jp910703n. DOI
Procházka P.; Čechal J. ProLEED Studio: Software for Modeling Low-Energy Electron Diffraction Patterns. J. Appl. Crystallogr. 2024, 57, 187–193. 10.1107/S1600576723010312. PubMed DOI PMC
Kresse G.; Hafner J. Ab Initio Molecular Dynamics for Liquid Metals. Phys. Rev. B 1993, 47, 558–561. 10.1103/PhysRevB.47.558. PubMed DOI
Kresse G.; Joubert D. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Phys. Rev. B 1999, 59, 1758–1775. 10.1103/PhysRevB.59.1758. DOI
Perdew J. P.; Burke K.; Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. 10.1103/PhysRevLett.77.3865. PubMed DOI
Grimme S.; Antony J.; Ehrlich S.; Krieg H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132, 15410410.1063/1.3382344. PubMed DOI
Klimeš J.; Bowler D. R.; Michaelides A. Van Der Waals Density Functionals Applied to Solids. Phys. Rev. B 2011, 83, 19513110.1103/PhysRevB.83.195131. DOI
Monkhorst H. J.; Pack J. D. Special Points for Brillouin-Zone Integrations. Phys. Rev. B 1976, 13, 5188–5192. 10.1103/PhysRevB.13.5188. DOI