Robust Dipolar Layers between Organic Semiconductors and Silver for Energy-Level Alignment

. 2024 Apr 10 ; 16 (14) : 18099-18111. [epub] 20240329

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38551398

The interface between a metal electrode and an organic semiconductor (OS) layer has a defining role in the properties of the resulting device. To obtain the desired performance, interlayers are introduced to modify the adhesion and growth of OS and enhance the efficiency of charge transport through the interface. However, the employed interlayers face common challenges, including a lack of electric dipoles to tune the mutual position of energy levels, being too thick for efficient electronic transport, or being prone to intermixing with subsequently deposited OS layers. Here, we show that monolayers of 1,3,5-tris(4-carboxyphenyl)benzene (BTB) with fully deprotonated carboxyl groups on silver substrates form a compact layer resistant to intermixing while capable of mediating energy-level alignment and showing a large insensitivity to substrate termination. Employing a combination of surface-sensitive techniques, i.e., low-energy electron microscopy and diffraction, X-ray photoelectron spectroscopy, and scanning tunneling microscopy, we have comprehensively characterized the compact layer and proven its robustness against mixing with the subsequently deposited organic semiconductor layer. Density functional theory calculations show that the robustness arises from a strong interaction of carboxylate groups with the Ag surface, and thus, the BTB in the first layer is energetically favored. Synchrotron radiation photoelectron spectroscopy shows that this layer displays considerable electrical dipoles that can be utilized for work function engineering and electronic alignment of molecular frontier orbitals with respect to the substrate Fermi level. Our work thus provides a widely applicable molecular interlayer and general insights necessary for engineering of charge injection layers for efficient organic electronics.

Zobrazit více v PubMed

Huang Y.; Hsiang E.-L.; Deng M.-Y.; Wu S.-T. Mini-LED, Micro-LED and OLED Displays: Present Status and Future Perspectives. Light: Sci. Appl. 2020, 9 (1), 105.10.1038/s41377-020-0341-9. PubMed DOI PMC

Wang S.; Zhang H.; Zhang B.; Xie Z.; Wong W. Towards High-Power-Efficiency Solution-Processed OLEDs: Material and Device Perspectives. Mater. Sci. Eng., R 2020, 140, 10054710.1016/j.mser.2020.100547. DOI

Zou S.-J.; Shen Y.; Xie F. M.; Chen J. D.; Li Y. Q.; Tang J.-X. Recent Advances in Organic Light-Emitting Diodes: Toward Smart Lighting and Displays. Mater. Chem. Front. 2020, 4 (3), 788–820. 10.1039/C9QM00716D. DOI

Park S. K.; Kim J. H.; Park S. Y. Organic 2D Optoelectronic Crystals: Charge Transport, Emerging Functions, and Their Design Perspective. Adv. Mater. 2018, 30, 170475910.1002/adma.201704759. PubMed DOI

Gao J.; Wang J.; Xu C.; Hu Z.; Ma X.; Zhang X.; Niu L.; Zhang J.; Zhang F. A Critical Review on Efficient Thick-Film Organic Solar Cells. Sol. RRL 2020, 4, 200036410.1002/solr.202000364. DOI

Yu Y.; Ma Q.; Ling H.; Li W.; Ju R.; Bian L.; Shi N.; Qian Y.; Yi M.; Xie L.; Huang W. Small-Molecule-Based Organic Field-Effect Transistor for Nonvolatile Memory and Artificial Synapse. Adv. Funct. Mater. 2019, 29 (50), 190460210.1002/adfm.201904602. DOI

Waldrip M.; Jurchescu O. D.; Gundlach D. J.; Bittle E. G. Contact Resistance in Organic Field-Effect Transistors: Conquering the Barrier. Adv. Funct. Mater. 2020, 30, 190457610.1002/adfm.201904576. DOI

Klauk H. Will We See Gigahertz Organic Transistors?. Adv. Electron. Mater. 2018, 4, 170047410.1002/aelm.201700474. DOI

Koch N. Opportunities for Energy Level Tuning at Inorganic/Organic Semiconductor Interfaces. Appl. Phys. Lett. 2021, 119, 26050110.1063/5.0074963. DOI

Franco-Cañellas A.; Duhm S.; Gerlach A.; Schreiber F. Binding and Electronic Level Alignment of π -Conjugated Systems on Metals. Rep. Prog. Phys. 2020, 83 (6), 06650110.1088/1361-6633/ab7a42. PubMed DOI

Otero R.; Vázquez de Parga A. L.; Gallego J. M. Electronic, Structural and Chemical Effects of Charge-Transfer at Organic/Inorganic Interfaces. Surf. Sci. Rep. 2017, 72, 105–145. 10.1016/j.surfrep.2017.03.001. DOI

Fahlman M.; Fabiano S.; Gueskine V.; Simon D.; Berggren M.; Crispin X. Interfaces in Organic Electronics. Nat. Rev. Mater. 2019, 4 (10), 627–650. 10.1038/s41578-019-0127-y. DOI

Zojer E.; Taucher T. C.; Hofmann O. T. The Impact of Dipolar Layers on the Electronic Properties of Organic/Inorganic Hybrid Interfaces. Adv. Mater. Interfaces 2019, 6, 190058110.1002/admi.201900581. DOI

Goiri E.; Borghetti P.; El-Sayed A.; Ortega J. E.; de Oteyza D. G. Multi-Component Organic Layers on Metal Substrates. Adv. Mater. 2016, 28, 1340–1368. 10.1002/adma.201503570. PubMed DOI

Chen H.; Zhang W.; Li M.; He G.; Guo X. Interface Engineering in Organic Field-Effect Transistors: Principles, Applications, and Perspectives. Chem. Rev. 2020, 120 (5), 2879–2949. 10.1021/acs.chemrev.9b00532. PubMed DOI

Lim K.-G.; Ahn S.; Lee T.-W. Energy Level Alignment of Dipolar Interface Layer in Organic and Hybrid Perovskite Solar Cells. J. Mater. Chem. C 2018, 6, 2915–2924. 10.1039/C8TC00166A. DOI

Borchert J. W.; Weitz R. T.; Ludwigs S.; Klauk H. A Critical Outlook for the Pursuit of Lower Contact Resistance in Organic Transistors. Adv. Mater. 2022, 34 (2), 210407510.1002/adma.202104075. PubMed DOI PMC

Zojer E.; Terfort A.; Zharnikov M. Concept of Embedded Dipoles as a Versatile Tool for Surface Engineering. Acc. Chem. Res. 2022, 55, 1857–1867. 10.1021/acs.accounts.2c00173. PubMed DOI PMC

Casalini S.; Bortolotti C. A.; Leonardi F.; Biscarini F. Self-Assembled Monolayers in Organic Electronics. Chem. Soc. Rev. 2017, 46, 40–71. 10.1039/C6CS00509H. PubMed DOI

Stoliar P.; Kshirsagar R.; Massi M.; Annibale P.; Albonetti C.; de Leeuw D. M.; Biscarini F. Charge Injection Across Self-Assembly Monolayers in Organic Field-Effect Transistors: Odd–Even Effects. J. Am. Chem. Soc. 2007, 129, 6477–6484. 10.1021/ja069235m. PubMed DOI

Kovalchuk A.; Abu-Husein T.; Fracasso D.; Egger D. A.; Zojer E.; Zharnikov M.; Terfort A.; Chiechi R. C. Transition Voltages Respond to Synthetic Reorientation of Embedded Dipoles in Self-Assembled Monolayers. Chem. Sci. 2016, 7, 781–787. 10.1039/C5SC03097H. PubMed DOI PMC

Zhang J. L.; Ye X.; Gu C.; Han C.; Sun S.; Wang L.; Chen W. Non-Covalent Interaction Controlled 2D Organic Semiconductor Films: Molecular Self-Assembly, Electronic and Optical Properties, and Electronic Devices. Surf. Sci. Rep. 2020, 75, 10048110.1016/j.surfrep.2020.100481. DOI

Amsalem P.; Wilke A.; Frisch J.; Niederhausen J.; Vollmer A.; Rieger R.; Müllen K.; Rabe J. P.; Koch N. Interlayer Molecular Diffusion and Thermodynamic Equilibrium in Organic Heterostructures on a Metal Electrode. J. Appl. Phys. 2011, 110 (11), 11370910.1063/1.3662878. DOI

Sun L.; Liu C.; Queteschiner D.; Weidlinger G.; Zeppenfeld P. Layer Inversion in Organic Heterostructures. Phys. Chem. Chem. Phys. 2011, 13 (29), 13382.10.1039/c1cp21151j. PubMed DOI

Häming M.; Greif M.; Sauer C.; Schöll A.; Reinert F. Electronic Structure of Ultrathin Heteromolecular Organic-Metal Interfaces: SnPc/PTCDA/Ag(111) and SnPc/Ag(111). Phys. Rev. B 2010, 82, 23543210.1103/PhysRevB.82.235432. DOI

Egger D. A.; Ruiz V. G.; Saidi W. A.; Bučko T.; Tkatchenko A.; Zojer E. Understanding Structure and Bonding of Multilayered Metal–Organic Nanostructures. J. Phys. Chem. C 2013, 117, 3055–3061. 10.1021/jp309943k. PubMed DOI PMC

Gallego J. M.; Ecija D.; Martín N.; Otero R.; Miranda R. An STM Study of Molecular Exchange Processes in Organic Thin Film Growth. Chem. Commun. 2014, 50 (69), 9954–9957. 10.1039/C4CC03656E. PubMed DOI

Stadtmüller B.; Schröder S.; Kumpf C. Heteromolecular Metal-Organic Interfaces: Electronic and Structural Fingerprints of Chemical Bonding. J. Electron Spectrosc. Relat. Phenom. 2015, 204, 80–91. 10.1016/j.elspec.2015.03.003. DOI

Borghetti P.; de Oteyza D. G.; Rogero C.; Goiri E.; Verdini A.; Cossaro A.; Floreano L.; Ortega J. E. Molecular-Level Realignment in Donor–Acceptor Bilayer Blends on Metals. J. Phys. Chem. C 2016, 120, 5997–6005. 10.1021/acs.jpcc.5b11373. DOI

Thussing S.; Jakob P. Thermal Stability and Interlayer Exchange Processes in Heterolayers of CuPc and PTCDA on Ag(111). J. Phys. Chem. C 2017, 121, 13680–13691. 10.1021/acs.jpcc.7b02377. PubMed DOI

Wang Q.; Franco-Cañellas A.; Ji P.; Bürker C.; Wang R.-B.; Broch K.; Thakur P. K.; Lee T.-L.; Zhang H.; Gerlach A.; et al. Bilayer Formation vs Molecular Exchange in Organic Heterostructures: Strong Impact of Subtle Changes in Molecular Structure. J. Phys. Chem. C 2018, 122, 9480–9490. 10.1021/acs.jpcc.8b01529. DOI

Lerch A.; Zimmermann J. E.; Namgalies A.; Stallberg K.; Höfer U. Two-Photon Photoemission Spectroscopy of Unoccupied Electronic States at CuPc/PTCDA/Ag(1 1 1) Interfaces. J. Phys.: Condens. Matter 2018, 30, 49400110.1088/1361-648X/aaec53. PubMed DOI

Wang Q.; Franco-Cañellas A.; Yang J.; Hausch J.; Struzek S.; Chen M.; Thakur P. K.; Gerlach A.; Duhm S.; Schreiber F. Heteromolecular Bilayers on a Weakly Interacting Substrate: Physisorptive Bonding and Molecular Distortions of Copper–Hexadecafluorophthalocyanine. ACS Appl. Mater. Interfaces 2020, 12, 14542–14551. 10.1021/acsami.9b22812. PubMed DOI

Stará V.; Procházka P.; Planer J.; Shahsavar A.; Makoveev A. O.; Skála T.; Blatnik M.; Čechal J. Tunable Energy-Level Alignment in Multilayers of Carboxylic Acids on Silver. Phys. Rev. Appl. 2022, 18 (4), 04404810.1103/PhysRevApplied.18.044048. DOI

Schlotter N. E.; Porter M. D.; Bright T. B.; Allara D. L. Formation and Structure of a Spontaneously Adsorbed Monolayer of Arachidic on Silver. Chem. Phys. Lett. 1986, 132, 93–98. 10.1016/0009-2614(86)80702-3. DOI

Tao Y. T. Structural Comparison of Self-Assembled Monolayers of n-Alkanoic Acids on the Surfaces of Silver, Copper, and Aluminum. J. Am. Chem. Soc. 1993, 115, 4350–4358. 10.1021/ja00063a062. DOI

Tao Y. T.; Huang C. Y.; Chiou D. R.; Chen L. J. Infrared and Atomic Force Microscopy Imaging Study of the Reorganization of Self-Assembled Monolayers of Carboxylic Acids on Silver Surface. Langmuir 2002, 18, 8400–8406. 10.1021/la025805u. DOI

Aitchison H.; Lu H.; Hogan S. W. L.; Früchtl H.; Cebula I.; Zharnikov M.; Buck M. Self-Assembled Monolayers of Oligophenylenecarboxylic Acids on Silver Formed at the Liquid–Solid Interface. Langmuir 2016, 32, 9397–9409. 10.1021/acs.langmuir.6b01773. PubMed DOI

Krzykawska A.; Ossowski J.; Żaba T.; Cyganik P. Binding Groups for Highly Ordered SAM Formation: Carboxylic versus Thiol. Chem. Commun. 2017, 53, 5748–5751. 10.1039/C7CC01939D. PubMed DOI

Krzykawska A.; Szwed M.; Ossowski J.; Cyganik P. Odd–Even Effect in Molecular Packing of Self-Assembled Monolayers of Biphenyl-Substituted Fatty Acid on Ag(111). J. Phys. Chem. C 2018, 122, 919–928. 10.1021/acs.jpcc.7b10806. DOI

Goronzy D. P.; Ebrahimi M.; Rosei F.; Arramel; Fang Y.; De Feyter S.; Tait S. L.; Wang C.; Beton P. H.; Wee A. T. S.; et al. Supramolecular Assemblies on Surfaces: Nanopatterning, Functionality, and Reactivity. ACS Nano 2018, 12, 7445–7481. 10.1021/acsnano.8b03513. PubMed DOI

Deimel P. S.; Feulner P.; Barth J. V.; Allegretti F. Spatial Decoupling of Macrocyclic Metal–Organic Complexes from a Metal Support: A 4-Fluorothiophenol Self-Assembled Monolayer as a Thermally Removable Spacer. Phys. Chem. Chem. Phys. 2019, 21, 10992–11003. 10.1039/C9CP01583C. PubMed DOI

Widdascheck F.; Bischof D.; Witte G. Engineering of Printable and Air-Stable Silver Electrodes with High Work Function Using Contact Primer Layer: From Organometallic Interphases to Sharp Interfaces. Adv. Funct. Mater. 2021, 31 (49), 210668710.1002/adfm.202106687. DOI

Stadtmüller B.; Sueyoshi T.; Kichin G.; Kröger I.; Soubatch S.; Temirov R.; Tautz F. S.; Kumpf C. Commensurate Registry and Chemisorption at a Hetero-Organic Interface. Phys. Rev. Lett. 2012, 108 (10), 1–5. 10.1103/PhysRevLett.108.106103. PubMed DOI

Procházka P.; Gosalvez M. A.; Kormoš L.; De La Torre B.; Gallardo A.; Alberdi-Rodriguez J.; Chutora T.; Makoveev A. O.; Shahsavar A.; Arnau A.; et al. Multiscale Analysis of Phase Transformations in Self-Assembled Layers of 4,4′-Biphenyl Dicarboxylic Acid on the Ag(001) Surface. ACS Nano 2020, 14, 7269–7279. 10.1021/acsnano.0c02491. PubMed DOI

Kormoš L.; Procházka P.; Makoveev A. O.; Čechal J. Complex K-Uniform Tilings by a Simple Bitopic Precursor Self-Assembled on Ag(001) Surface. Nat. Commun. 2020, 11, 185610.1038/s41467-020-15727-6. PubMed DOI PMC

Procházka P.; Kormoš L.; Shahsavar A.; Stará V.; Makoveev A. O.; Skála T.; Blatnik M.; Čechal J. Phase Transformations in a Complete Monolayer of 4,4′-Biphenyl-Dicarboxylic Acid on Ag(0 0 1). Appl. Surf. Sci. 2021, 547, 14911510.1016/j.apsusc.2021.149115. DOI

Makoveev A. O.; Procházka P.; Blatnik M.; Kormoš L.; Skála T.; Čechal J. Role of Phase Stabilization and Surface Orientation in 4,4′-Biphenyl-Dicarboxylic Acid Self-Assembly and Transformation on Silver Substrates. J. Phys. Chem. C 2022, 126, 9989–9997. 10.1021/acs.jpcc.2c02538. DOI

Makoveev A.; Procházka P.; Shahsavar A.; Kormoš L.; Krajňák T.; Stará V.; Čechal J. Kinetic Control of Self-Assembly Using a Low-Energy Electron Beam. Appl. Surf. Sci. 2022, 600, 15410610.1016/j.apsusc.2022.154106. DOI

Fratini S.; Nikolka M.; Salleo A.; Schweicher G.; Sirringhaus H. Charge Transport in High-Mobility Conjugated Polymers and Molecular Semiconductors. Nat. Mater. 2020, 19, 491–502. 10.1038/s41563-020-0647-2. PubMed DOI

MacLeod J. Design and Construction of On-Surface Molecular Nanoarchitectures: Lessons and Trends from Trimesic Acid and Other Small Carboxlyated Building Blocks. J. Phys. D: Appl. Phys. 2019, 53, 04300210.1088/1361-6463/ab4c4d. DOI

Kormoš L.; Procházka P.; Šikola T.; Čechal J. Molecular Passivation of Substrate Step Edges as Origin of Unusual Growth Behavior of 4,4′-Biphenyl Dicarboxylic Acid on Cu(001). J. Phys. Chem. C 2018, 122, 2815–2820. 10.1021/acs.jpcc.7b11436. DOI

Derry G. N.; Kern M. E.; Worth E. H. Recommended Values of Clean Metal Surface Work Functions. J. Vac. Sci. Technol., A 2015, 33, 06080110.1116/1.4934685. DOI

El-Sayed A.; Borghetti P.; Goiri E.; Rogero C.; Floreano L.; Lovat G.; Mowbray D. J.; Cabellos J. L.; Wakayama Y.; Rubio A.; et al. Understanding Energy-Level Alignment in Donor–Acceptor/Metal Interfaces from Core-Level Shifts. ACS Nano 2013, 7, 6914–6920. 10.1021/nn4020888. PubMed DOI

Ruben M.; Payer D.; Landa A.; Comisso A.; Gattinoni C.; Lin N.; Collin J.-P.; Sauvage J.-P.; De Vita A.; Kern K. 2D Supramolecular Assemblies of Benzene-1,3,5-Triyl-Tribenzoic Acid: Temperature-Induced Phase Transformations and Hierarchical Organization with Macrocyclic Molecules. J. Am. Chem. Soc. 2006, 128 (49), 15644–15651. 10.1021/ja063601k. PubMed DOI

Svane K. L.; Baviloliaei M. S.; Hammer B.; Diekhöner L. An Extended Chiral Surface Coordination Network Based on Ag7-Clusters. J. Chem. Phys. 2018, 149, 164710.10.1063/1.5051510. PubMed DOI

Mohammad A. B.; Hwa Lim K.; Yudanov I. V.; Neyman K. M.; Rösch N. A Computational Study of H 2 Dissociation on Silver Surfaces: The Effect of Oxygen in the Added Row Structure of Ag(110). Phys. Chem. Chem. Phys. 2007, 9, 1247–1254. 10.1039/B616675J. PubMed DOI

Henneke C.; Felter J.; Schwarz D.; Tautz F. S.; Kumpf C. Controlling the Growth of Multiple Ordered Heteromolecular Phases by Utilizing Intermolecular Repulsion. Nat. Mater. 2017, 16, 628–633. 10.1038/NMAT4858. PubMed DOI

Schnadt J.; Rauls E.; Xu W.; Vang R. T.; Knudsen J.; Lagsgaard E.; Li Z.; Hammer B.; Besenbacher F. Extended One-Dimensional Supramolecular Assembly on a Stepped Surface. Phys. Rev. Lett. 2008, 100 (4), 04610310.1103/PhysRevLett.100.046103. PubMed DOI

Schnadt J.; Xu W.; Vang R. T.; Knudsen J.; Li Z.; Lægsgaard E.; Besenbacher F. Interplay of Adsorbate-Adsorbate and Adsorbate-Substrate Interactions in Self-Assembled Molecular Surface Nanostructures. Nano Res. 2010, 3, 459–471. 10.1007/s12274-010-0005-9. DOI

Pascual J. I.; Barth J. V.; Ceballos G.; Trimarchi G.; De Vita A.; Kern K.; Rust H. P. Mesoscopic Chiral Reshaping of the Ag(110) Surface Induced by the Organic Molecule PVBA. J. Chem. Phys. 2004, 120, 11367–11370. 10.1063/1.1763836. PubMed DOI

Kim J.-H.; Ribierre J.-C.; Yang Y. S.; Adachi C.; Kawai M.; Jung J.; Fukushima T.; Kim Y. Seamless Growth of a Supramolecular Carpet. Nat. Commun. 2016, 7, 1065310.1038/ncomms10653. PubMed DOI PMC

Kley C. S.; Čechal J.; Kumagai T.; Schramm F.; Ruben M.; Stepanow S.; Kern K. Highly Adaptable Two-Dimensional Metal-Organic Coordination Networks on Metal Surfaces. J. Am. Chem. Soc. 2012, 134, 6072–6075. 10.1021/ja211749b. PubMed DOI

Mete E.; Demiroğlu İ.; Fatih Danışman M.; Ellialtıoğlu Ş. Pentacene Multilayers on Ag(111) Surface. J. Phys. Chem. C 2010, 114, 2724–2729. 10.1021/jp910703n. DOI

Procházka P.; Čechal J. ProLEED Studio: Software for Modeling Low-Energy Electron Diffraction Patterns. J. Appl. Crystallogr. 2024, 57, 187–193. 10.1107/S1600576723010312. PubMed DOI PMC

Kresse G.; Hafner J. Ab Initio Molecular Dynamics for Liquid Metals. Phys. Rev. B 1993, 47, 558–561. 10.1103/PhysRevB.47.558. PubMed DOI

Kresse G.; Joubert D. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Phys. Rev. B 1999, 59, 1758–1775. 10.1103/PhysRevB.59.1758. DOI

Perdew J. P.; Burke K.; Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. 10.1103/PhysRevLett.77.3865. PubMed DOI

Grimme S.; Antony J.; Ehrlich S.; Krieg H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132, 15410410.1063/1.3382344. PubMed DOI

Klimeš J.; Bowler D. R.; Michaelides A. Van Der Waals Density Functionals Applied to Solids. Phys. Rev. B 2011, 83, 19513110.1103/PhysRevB.83.195131. DOI

Monkhorst H. J.; Pack J. D. Special Points for Brillouin-Zone Integrations. Phys. Rev. B 1976, 13, 5188–5192. 10.1103/PhysRevB.13.5188. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...