ProLEED Studio: software for modeling low-energy electron diffraction patterns
Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection
Document type Journal Article
PubMed
38322724
PubMed Central
PMC10840303
DOI
10.1107/s1600576723010312
PII: S1600576723010312
Knihovny.cz E-resources
- Keywords
- LEED, ProLEED Studio, computer programs, low-energy electron diffraction, reciprocal space,
- Publication type
- Journal Article MeSH
Low-energy electron diffraction patterns contain precise information about the structure of the surface studied. However, retrieving the real space lattice periodicity from complex diffraction patterns is challenging, especially when the modeled patterns originate from superlattices with large unit cells composed of several symmetry-equivalent domains without a simple relation to the substrate. This work presents ProLEED Studio software, built to provide simple, intuitive and precise modeling of low-energy electron diffraction patterns. The interactive graphical user interface allows real-time modeling of experimental diffraction patterns, change of depicted diffraction spot intensities, visualization of different diffraction domains, and manipulation of any lattice points or diffraction spots. The visualization of unit cells, lattice vectors, grids and scale bars as well as the possibility of exporting ready-to-publish models in bitmap and vector formats significantly simplifies the modeling process and publishing of results.
See more in PubMed
Altman, M. S. (2010). J. Phys. Condens. Matter, 22, 084017. PubMed
Bauer, E. (1994). Rep. Prog. Phys. 57, 895–938.
Bauer, E. (2020). J. Electron Spectrosc. Relat. Phenom. 241, 146806.
Bechstedt, F. (2003). Principles of Surface Physics. Berlin, Heidelberg: Springer–Verlag.
Davisson, C. & Germer, L. H. (1927a). Nature, 119, 558–560.
Davisson, C. & Germer, L. H. (1927b). Phys. Rev. 30, 705–740.
Fauster, T., Hammer, L., Heinz, K. & Schneider, M. A. (2020). Surface Physics: Fundamentals and Methods. Berlin: Walter de Gruyter GmbH.
Hermann, K. E. & Van Hove, M. A. (2014). LEEDpat. Version 4.2. FHI, Berlin, Germany, and HKBU, Hong Kong.
Jona, F., Strozier, J. A. & Yang, W. S. (1982). Rep. Prog. Phys. 45, 527–585.
Lüth, H. (2015). Solid Surfaces, Interfaces and Thin Films, 6th ed. Berlin, Heidelberg: Springer–Verlag.
Makoveev, A., Procházka, P., Shahsavar, A., Kormoš, L., Krajňák, T., Stará, V. & Čechal, J. (2022). Appl. Surf. Sci. 600, 154156.
Moritz, W., Landskron, J. & Deschauer, M. (2009). Surf. Sci. 603, 1306–1314.
Moritz, W. & Van Hove, M. A. (2022). Surface Structure Determination by LEED and X-rays. Cambridge University Press.
Procházka, P., Gosalvez, M. A., Kormoš, L., de la Torre, B., Gallardo, A., Alberdi-Rodriguez, J., Chutora, T., Makoveev, A., Shahsavar, A., Arnau, A., Jelínek, P. & Čechal, J. (2020). ACS Nano, 14, 7269–7279. PubMed
Procházka, P., Kormoš, L., Shahsavar, A., Stará, V., Makoveev, A., Skála, T., Blatnik, M. & Čechal, J. (2021). Appl. Surf. Sci. 547, 149115.
Tromp, R. M. (2000). IBM J. Res. Dev. 44, 503–516.
Van Hove, M. A., Weinberg, W. & Chan, C. M. (1986). Low-Energy Electron Diffraction: Experiment, Theory and Surface Structure Determination. Berlin, Heidelberg: Springer–Verlag.
Woodruff, D. P. (2016). Modern Techniques of Surface Science. Cambridge University Press.
Robust Dipolar Layers between Organic Semiconductors and Silver for Energy-Level Alignment