Encorafenib Acts as a Dual-Activity Chemosensitizer through Its Inhibitory Effect on ABCC1 Transporter In Vitro and Ex Vivo
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20-20414Y
Czech Science Foundation
102121/C
Grant Agency of Charles University
SVV 260 549
Charles University
PubMed
36559089
PubMed Central
PMC9785850
DOI
10.3390/pharmaceutics14122595
PII: pharmaceutics14122595
Knihovny.cz E-zdroje
- Klíčová slova
- ABC transporter, cytochrome P450, encorafenib, multidrug resistance, non-small cell lung cancer,
- Publikační typ
- časopisecké články MeSH
Encorafenib (LGX818, trade name Braftovi), a novel BRAF inhibitor, has been approved for the treatment of melanoma and colorectal cancer. In the present work, we evaluated encorafenib's possible antagonistic effects on the pharmacokinetic mechanisms of multidrug resistance (MDR), as well as its perpetrator role in drug interactions. Firstly, encorafenib potently inhibited the efflux function of the ABCC1 transporter in drug accumulation assays, while moderate and null interaction levels were recorded for ABCB1 and ABCG2, respectively. In contrast, the mRNA expression levels of all the tested transporters were not altered by encorafenib. In the drug combination studies, we found that daunorubicin and topotecan resistances were synergistically attenuated by the encorafenib-mediated interaction in A431-ABCC1 cells. Notably, further experiments in ex vivo patient-derived explants confirmed the MDR-modulating ability of encorafenib. Advantageously, the overexpression of tested drug efflux transporters failed to hinder the antiproliferative activity of encorafenib. In addition, no significant modulation of the CYP3A4 enzyme's activity by encorafenib was observed. In conclusion, our work indicated that encorafenib can act as an effective chemosensitizer targeting the ABCC1-induced MDR. Our in vitro and ex vivo data might provide valuable information for designing the novel effective scheme applicable in the clinical pharmacotherapy of BRAF-mutated/ABCC1-expressing tumors.
Zobrazit více v PubMed
Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021;71:209–249. doi: 10.3322/caac.21660. PubMed DOI
Bukowski K., Kciuk M., Kontek R. Mechanisms of Multidrug Resistance in Cancer Chemotherapy. Int. J. Mol. Sci. 2020;21:3233. doi: 10.3390/ijms21093233. PubMed DOI PMC
Robey R.W., Pluchino K.M., Hall M.D., Fojo A.T., Bates S.E., Gottesman M.M. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat. Rev. Cancer. 2018;18:452–464. doi: 10.1038/s41568-018-0005-8. PubMed DOI PMC
Kaur G., Gupta S.K., Singh P., Ali V., Kumar V., Verma M. Drug-metabolizing enzymes: Role in drug resistance in cancer. Clin. Transl. Oncol. 2020;22:1667–1680. doi: 10.1007/s12094-020-02325-7. PubMed DOI
Juan-Carlos P.M., Perla-Lidia P.P., Stephanie-Talia M.M., Monica-Griselda A.M., Luz-Maria T.E. ABC transporter superfamily. An updated overview, relevance in cancer multidrug resistance and perspectives with personalized medicine. Mol. Biol. Rep. 2021;48:1883–1901. doi: 10.1007/s11033-021-06155-w. PubMed DOI
Amawi H., Sim H.M., Tiwari A.K., Ambudkar S.V., Shukla S. ABC Transporter-Mediated Multidrug-Resistant Cancer. Adv. Exp. Med. Biol. 2019;1141:549–580. doi: 10.1007/978-981-13-7647-4_12. PubMed DOI
Wang J.Q., Wu Z.X., Yang Y., Teng Q.X., Li Y.D., Lei Z.N., Jani K.A., Kaushal N., Chen Z.S. ATP-binding cassette (ABC) transporters in cancer: A review of recent updates. J. Evid. Based. Med. 2021;14:232–256. doi: 10.1111/jebm.12434. PubMed DOI
Zanger U.M., Schwab M. Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol. Ther. 2013;138:103–141. doi: 10.1016/j.pharmthera.2012.12.007. PubMed DOI
Hofman J., Vagiannis D., Chen S., Guo L. Roles of CYP3A4, CYP3A5 and CYP2C8 drug-metabolizing enzymes in cellular cytostatic resistance. Chem. Biol. Interact. 2021;340:109448. doi: 10.1016/j.cbi.2021.109448. PubMed DOI
van Eijk M., Boosman R.J., Schinkel A.H., Huitema A.D.R., Beijnen J.H. Cytochrome P450 3A4, 3A5, and 2C8 expression in breast, prostate, lung, endometrial, and ovarian tumors: Relevance for resistance to taxanes. Cancer Chemother. Pharmacol. 2019;84:487–499. doi: 10.1007/s00280-019-03905-3. PubMed DOI PMC
Choi Y.H., Yu A.M. ABC transporters in multidrug resistance and pharmacokinetics, and strategies for drug development. Curr. Pharm. Des. 2014;20:793–807. doi: 10.2174/138161282005140214165212. PubMed DOI PMC
Beretta G.L., Cassinelli G., Pennati M., Zuco V., Gatti L. Overcoming ABC transporter-mediated multidrug resistance: The dual role of tyrosine kinase inhibitors as multitargeting agents. Eur. J. Med. Chem. 2017;142:271–289. doi: 10.1016/j.ejmech.2017.07.062. PubMed DOI
Santarpia L., Lippman S.M., El-Naggar A.K. Targeting the MAPK-RAS-RAF signaling pathway in cancer therapy. Expert. Opin. Ther. Targets. 2012;16:103–119. doi: 10.1517/14728222.2011.645805. PubMed DOI PMC
Martinez-Limon A., Joaquin M., Caballero M., Posas F., de Nadal E. The p38 Pathway: From Biology to Cancer Therapy. Int. J. Mol. Sci. 2020;21:1913. doi: 10.3390/ijms21061913. PubMed DOI PMC
Shirley M. Encorafenib and Binimetinib: First Global Approvals. Drugs. 2018;78:1277–1284. doi: 10.1007/s40265-018-0963-x. PubMed DOI
Boileve A., Samalin E. New drug approval: Encorafenib-metastatic colorectal cancers with BRAF V600E mutation after systemic chemotherapy. Bull Cancer. 2020;107:1086–1088. doi: 10.1016/j.bulcan.2020.08.012. PubMed DOI
Odogwu L., Mathieu L., Blumenthal G., Larkins E., Goldberg K.B., Griffin N., Bijwaard K., Lee E.Y., Philip R., Jiang X., et al. FDA Approval Summary: Dabrafenib and Trametinib for the Treatment of Metastatic Non-Small Cell Lung Cancers Harboring BRAF V600E Mutations. Oncologist. 2018;23:740–745. doi: 10.1634/theoncologist.2017-0642. PubMed DOI PMC
Wu R. Growth of human lung tumor cells in culture. In: Freshney R.P.a.R.I., editor. Culture of Human Tumor Cells. Wiley-Liss, Inc.; Hoboken, NJ, USA: 2004. pp. 1–21.
Vagiannis D., Budagaga Y., Morell A., Zhang Y., Novotna E., Skarka A., Kammerer S., Kupper J.H., Hanke I., Rozkos T., et al. Tepotinib Inhibits Several Drug Efflux Transporters and Biotransformation Enzymes: The Role in Drug-Drug Interactions and Targeting Cytostatic Resistance In Vitro and Ex Vivo. Int. J. Mol. Sci. 2021;22:11936. doi: 10.3390/ijms222111936. PubMed DOI PMC
Zhang Y., Vagiannis D., Budagaga Y., Sabet Z., Hanke I., Rozkos T., Hofman J. Sonidegib potentiates the cancer cells’ sensitivity to cytostatic agents by functional inhibition of ABCB1 and ABCG2 in vitro and ex vivo. Biochem. Pharmacol. 2022;199:115009. doi: 10.1016/j.bcp.2022.115009. PubMed DOI
Vagiannis D., Yu Z., Novotna E., Morell A., Hofman J. Entrectinib reverses cytostatic resistance through the inhibition of ABCB1 efflux transporter, but not the CYP3A4 drug-metabolizing enzyme. Biochem. Pharmacol. 2020;178:114061. doi: 10.1016/j.bcp.2020.114061. PubMed DOI
Vagiannis D., Zhang Y., Budagaga Y., Novotna E., Skarka A., Kammerer S., Kupper J.H., Hofman J. Alisertib shows negligible potential for perpetrating pharmacokinetic drug-drug interactions on ABCB1, ABCG2 and cytochromes P450, but acts as dual-activity resistance modulator through the inhibition of ABCC1 transporter. Toxicol. Appl. Pharmacol. 2022;434:115823. doi: 10.1016/j.taap.2021.115823. PubMed DOI
Chou T.C. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol. Rev. 2006;58:621–681. doi: 10.1124/pr.58.3.10. PubMed DOI
Delord J.P., Robert C., Nyakas M., McArthur G.A., Kudchakar R., Mahipal A., Yamada Y., Sullivan R., Arance A., Kefford R.F., et al. Phase I Dose-Escalation and -Expansion Study of the BRAF Inhibitor Encorafenib (LGX818) in Metastatic BRAF-Mutant Melanoma. Clin. Cancer Res. 2017;23:5339–5348. doi: 10.1158/1078-0432.CCR-16-2923. PubMed DOI
Agency E.M. Guideline on the investigation of drug interactions. CPMP/EWP/560/95/Rev. 1 Corr. 2**. 2012. [(accessed on 21 June 2022)]. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-investigation-drug-interactions_en.pdf.
Subbiah V., Baik C., Kirkwood J.M. Clinical Development of BRAF plus MEK Inhibitor Combinations. Trends Cancer. 2020;6:797–810. doi: 10.1016/j.trecan.2020.05.009. PubMed DOI
Cole S.P. Targeting multidrug resistance protein 1 (MRP1, ABCC1): Past, present, and future. Annu. Rev. Pharmacol. Toxicol. 2014;54:95–117. doi: 10.1146/annurev-pharmtox-011613-135959. PubMed DOI
Liu X.D., Pan G.Y. Drug Transporters in Drug Disposition, Effects and Toxicity Preface. Drug Transp. Drug Dispos. Eff. Toxic. 2019;1141:V. doi: 10.1007/978-981-13-7647-4. DOI
Trojaniello C., Festino L., Vanella V., Ascierto P.A. Encorafenib in combination with binimetinib for unresectable or metastatic melanoma with BRAF mutations. Expert. Rev. Clin. Pharmacol. 2019;12:259–266. doi: 10.1080/17512433.2019.1570847. PubMed DOI
Trullas A., Delgado J., Koenig J., Fuerstenau U., Dedorath J., Hausmann S., Stock T., Enzmann H., Pignatti F. The EMA assessment of encorafenib in combination with cetuximab for the treatment of adult patients with metastatic colorectal carcinoma harbouring the BRAFV600E mutation who have received prior therapy. ESMO Open. 2021;6:100031. doi: 10.1016/j.esmoop.2020.100031. PubMed DOI PMC
Ross K.C., Chin K.F., Kim D., Marion C.D., Yen T.J., Bhattacharjee V. Methotrexate sensitizes drug-resistant metastatic melanoma cells to BRAF V600E inhibitors dabrafenib and encorafenib. Oncotarget. 2018;9:13324–13336. doi: 10.18632/oncotarget.24341. PubMed DOI PMC
van der Deen M., de Vries E.G., Timens W., Scheper R.J., Timmer-Bosscha H., Postma D.S. ATP-binding cassette (ABC) transporters in normal and pathological lung. Respir. Res. 2005;6:59. doi: 10.1186/1465-9921-6-59. PubMed DOI PMC
Hlavata I., Mohelnikova-Duchonova B., Vaclavikova R., Liska V., Pitule P., Novak P., Bruha J., Vycital O., Holubec L., Treska V., et al. The role of ABC transporters in progression and clinical outcome of colorectal cancer. Mutagenesis. 2012;27:187–196. doi: 10.1093/mutage/ger075. PubMed DOI
Hofman J., Sorf A., Vagiannis D., Sucha S., Kammerer S., Kupper J.H., Chen S., Guo L., Ceckova M., Staud F. Brivanib Exhibits Potential for Pharmacokinetic Drug-Drug Interactions and the Modulation of Multidrug Resistance through the Inhibition of Human ABCG2 Drug Efflux Transporter and CYP450 Biotransformation Enzymes. Mol. Pharm. 2019;16:4436–4450. doi: 10.1021/acs.molpharmaceut.9b00361. PubMed DOI
Cihalova D., Ceckova M., Kucera R., Klimes J., Staud F. Dinaciclib, a cyclin-dependent kinase inhibitor, is a substrate of human ABCB1 and ABCG2 and an inhibitor of human ABCC1 in vitro. Biochem. Pharmacol. 2015;98:465–472. doi: 10.1016/j.bcp.2015.08.099. PubMed DOI
Peterson B.G., Tan K.W., Osa-Andrews B., Iram S.H. High-content screening of clinically tested anticancer drugs identifies novel inhibitors of human MRP1 (ABCC1) Pharmacol. Res. 2017;119:313–326. doi: 10.1016/j.phrs.2017.02.024. PubMed DOI
Zhang H., Patel A., Ma S.L., Li X.J., Zhang Y.K., Yang P.Q., Kathawala R.J., Wang Y.J., Anreddy N., Fu L.W., et al. In vitro, in vivo and ex vivo characterization of ibrutinib: A potent inhibitor of the efflux function of the transporter MRP1. Br. J. Pharmacol. 2014;171:5845–5857. doi: 10.1111/bph.12889. PubMed DOI PMC
Ma S.L., Hu Y.P., Wang F., Huang Z.C., Chen Y.F., Wang X.K., Fu L.W. Lapatinib antagonizes multidrug resistance-associated protein 1-mediated multidrug resistance by inhibiting its transport function. Mol. Med. 2014;20:390–399. doi: 10.2119/molmed.2014.00059. PubMed DOI PMC
Zheng L.S., Wang F., Li Y.H., Zhang X., Chen L.M., Liang Y.J., Dai C.L., Yan Y.Y., Tao L.Y., Mi Y.J., et al. Vandetanib (Zactima, ZD6474) antagonizes ABCC1- and ABCG2-mediated multidrug resistance by inhibition of their transport function. PLoS ONE. 2009;4:e5172. doi: 10.1371/journal.pone.0005172. PubMed DOI PMC
Wang J., Gan C., Sparidans R.W., Wagenaar E., van Hoppe S., Beijnen J.H., Schinkel A.H. P-glycoprotein (MDR1/ABCB1) and Breast Cancer Resistance Protein (BCRP/ABCG2) affect brain accumulation and intestinal disposition of encorafenib in mice. Pharmacol. Res. 2018;129:414–423. doi: 10.1016/j.phrs.2017.11.006. PubMed DOI
Liu X., Testa B., Fahr A. Lipophilicity and its relationship with passive drug permeation. Pharm. Res. 2011;28:962–977. doi: 10.1007/s11095-010-0303-7. PubMed DOI
Al-Salama Z.T. Encorafenib: A Review in Metastatic Colorectal Cancer with a BRAF V600E Mutation. Drugs. 2021;81:849–856. doi: 10.1007/s40265-021-01501-5. PubMed DOI
Crawford R.R., Potukuchi P.K., Schuetz E.G., Schuetz J.D. Beyond Competitive Inhibition: Regulation of ABC Transporters by Kinases and Protein-Protein Interactions as Potential Mechanisms of Drug-Drug Interactions. Drug. Metab. Dispos. 2018;46:567–580. doi: 10.1124/dmd.118.080663. PubMed DOI PMC
Vagiannis D., Novotna E., Skarka A., Kammerer S., Kupper J.H., Chen S., Guo L., Staud F., Hofman J. Ensartinib (X-396) Effectively Modulates Pharmacokinetic Resistance Mediated by ABCB1 and ABCG2 Drug Efflux Transporters and CYP3A4 Biotransformation Enzyme. Cancers. 2020;12:813. doi: 10.3390/cancers12040813. PubMed DOI PMC
Attwa M.W., Darwish H.W., Al-Shakliah N.S., Kadi A.A. A Validated LC-MS/MS Assay for the Simultaneous Quantification of the FDA-Approved Anticancer Mixture (Encorafenib and Binimetinib): Metabolic Stability Estimation. Molecules. 2021;26:2717. doi: 10.3390/molecules26092717. PubMed DOI PMC