Beads-based electrochemical assay for the detection of influenza hemagglutinin labeled with CdTe quantum dots
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24352014
PubMed Central
PMC6270527
DOI
10.3390/molecules181215573
PII: molecules181215573
Knihovny.cz E-zdroje
- MeSH
- barvení a značení * MeSH
- biosenzitivní techniky * MeSH
- elektrochemické techniky * MeSH
- hemaglutininové glykoproteiny viru chřipky chemie MeSH
- kvantové tečky chemie MeSH
- lidé MeSH
- telur chemie MeSH
- vakcíny proti chřipce MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- hemaglutininové glykoproteiny viru chřipky MeSH
- telur MeSH
- vakcíny proti chřipce MeSH
In this study we describe a beads-based assay for rapid, sensitive and specific isolation and detection of influenza vaccine hemagglutinin (HA). Amplification of the hemagglutinin signal resulted from binding of an electrochemical label as quantum dots (QDs). For detection of the metal and protein part of the resulting HA-CdTe complex, two differential pulse voltammetric methods were used. The procedure includes automated robotic isolation and electrochemical analysis of the isolated product. The isolation procedure was based on the binding of paramagnetic particles (MPs) with glycan (Gly), where glycan was used as the specific receptor for linkage of the QD-labeled hemagglutinin.
Zobrazit více v PubMed
Shoji Y., Farrance C.E., Bautista J., Bi H., Musiychuk K., Horsey A., Park H., Jaje J., Green B.J., Shamloul M., et al. A plant-based system for rapid production of influenza vaccine antigens. Influenza Other Respir. Viruses. 2012;6:204–210. doi: 10.1111/j.1750-2659.2011.00295.x. PubMed DOI PMC
Ding X.F., Jiang L.F., Ke C.W., Yang Z., Lei C.L., Cao K.Y., Xu J., Xu L., Yang X.F., Zhang Y.H., et al. Amino acid sequence analysis and identification of mutations under positive selection in hemagglutinin of 2009 influenza A (H1N1) isolates. Virus Genes. 2010;41:329–340. doi: 10.1007/s11262-010-0526-z. PubMed DOI
Chen Q.J., Huang S.P., Chen J.J., Zhang S.Q., Chen Z. NA proteins of influenza A viruses H1N1/2009, H5N1, and H9N2 show differential effects on infection initiation, virus release, and cell-cell fusion. PLoS One. 2013;8:e54334. PubMed PMC
Samson M., Pizzorno A., Abed Y., Boivin G. Influenza virus resistance to neuraminidase inhibitors. Antivir. Res. 2013;98:174–185. doi: 10.1016/j.antiviral.2013.03.014. PubMed DOI
Rudrawar S., Pascolutti M., Bhatt B., Thomson R.J., von Itzstein M. An efficient synthesis of C3 C-alkylated Neu5Ac2en derivatives. Tetrahedron Lett. 2013;54:1198–1201. doi: 10.1016/j.tetlet.2012.12.064. DOI
Cho S., Lee B.R., Cho B.K., Kim J.H., Kim B.G. In vitro selection of sialic acid specific RNA aptamer and its application to the rapid sensing of sialic acid modified sugars. Biotechnol. Bioeng. 2013;110:905–913. doi: 10.1002/bit.24737. PubMed DOI
Feng Z.L., Towers S., Yang Y.D. Modeling the effects of vaccination and treatment on pandemic influenza. AAPS J. 2011;13:427–437. doi: 10.1208/s12248-011-9284-7. PubMed DOI PMC
Couch R.B. Seasonal inactivated influenza virus vaccines. Vaccine. 2008;26:D5–D9. PubMed PMC
Lanthier P.A., Huston G.E., Moquin A., Eaton S.M., Szaba F.M., Kummer L.W., Tighe M.P., Kohlmeier J.E., Blair P.J., Broderick M., et al. Live attenuated influenza vaccine (LAIV) impacts innate and adaptive immune responses. Vaccine. 2011;29:7849–7856. doi: 10.1016/j.vaccine.2011.07.093. PubMed DOI PMC
Thompson C.M., Petiot E., Lennaertz A., Henry O., Kamen A.A. Analytical technologies for influenza virus-like particle candidate vaccines: Challenges and emerging approaches. Virol. J. 2013;10:1–14. doi: 10.1186/1743-422X-10-1. PubMed DOI PMC
Adam V., Sileny A., Hubalek J., Beklova M., Zehnalek J., Havel L., Kizek R. Microsensors as a tool to detect heavy metals. Toxicol. Lett. 2008;180:S227–S228.
Huska D., Zitka O., Adam V., Beklova M., Krizkova S., Zeman L., Horna A., Havel L., Zehnalek J., Kizek R. A sensor for investigating the interaction between biologically important heavy metals and glutathione. Czech J. Anim. Sci. 2007;52:37–43.
Liu G.D., Lin Y.H. Nanomaterial labels in electrochemical immunosensors and immunoassays. Talanta. 2007;74:308–317. doi: 10.1016/j.talanta.2007.10.014. PubMed DOI PMC
Majzlik P., Prasek J., Trnkova L., Zehnalek J., Adam V., Havel L., Hubalek J., Kizek R. Biosensors for detection of heavy metals. Listy Cukrov. Reparske. 2010;126:413–414.
Amano Y., Cheng Q. Detection of influenza virus: Traditional approaches and development of biosensors. Anal. Bioanal. Chem. 2005;381:156–164. doi: 10.1007/s00216-004-2927-0. PubMed DOI
Hubalek J., Adam V., Kizek R. New Approach in Rapid Viruses Detection and Its Implementation on a Chip; Proceedings of the 2009 International Conference on eHealthTelemedicineand Social Medicine; Los Alamitos, CA, USA. 1–7 February 2009; Washington, DC, USA: IEEE Computer Society; 2009. pp. 108–112.
Miller S.A., Hiatt L.A., Keil R.G., Wright D.W., Cliffel D.E. Multifunctional nanoparticles as simulants for a gravimetric immunoassay. Anal. Bioanal. Chem. 2011;399:1021–1029. doi: 10.1007/s00216-010-4419-8. PubMed DOI PMC
Zhao W., Zhang W.P., Zhang Z.L., He R.L., Lin Y., Xie M., Wang H.Z., Pang D.W. Robust and highly sensitive fluorescence approach for Point-of-Care virus detection based on immunomagnetic separation. Anal. Chem. 2012;84:2358–2365. PubMed
Chandrasekaran A., Srinivasan A., Raman R., Viswanathan K., Raguram S., Tumpey T.M., Sasisekharan V., Sasisekharan R. Glycan topology determines human adaptation of avian H5N1 virus hemagglutinin. Nat. Biotechnol. 2008;26:107–113. PubMed
Stevens J., Blixt O., Paulson J.C., Wilson I.A. Glycan microarray technologies: Tools to survey host specificity of influenza viruses. Nat. Rev. Microbiol. 2006;4:857–864. doi: 10.1038/nrmicro1530. PubMed DOI PMC
Stevens J., Corper A.L., Basler C.F., Taubenberger J.K., Palese P., Wilson I.A. Structure of the uncleaved human H1 hemagglutinin from the extinct 1918 influenza virus. Science. 2004;303:1866–1870. doi: 10.1126/science.1093373. PubMed DOI
Stevens J., Blixt O., Tumpey T.M., Taubenberger J.K., Paulson J.C., Wilson I.A. Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus. Science. 2006;312:404–410. doi: 10.1126/science.1124513. PubMed DOI
Takahashi Y., Hirano Y., Yasukawa T., Shiku H., Yamada H., Matsue T. Topographic, electrochemical, and optical images captured using standing approach mode scanning electrochemical/optical microscopy. Langmuir. 2006;22:10299–10306. doi: 10.1021/la0611763. PubMed DOI
Bewley C.A. Illuminating the switch in influenza viruses. Nat. Biotechnol. 2008;26:60–62. doi: 10.1038/nbt0108-60. PubMed DOI
Suenaga E., Mizuno H., Penmetcha K.K.R. Monitoring influenza hemagglutinin and glycan interactions using surface plasmon resonance. Biosens. Bioelectron. 2012;32:195–201. doi: 10.1016/j.bios.2011.12.003. PubMed DOI
Krejcova L., Dospivova D., Ryvolova M., Kopel P., Hynek D., Krizkova S., Hubalek J., Adam V., kizek R. Paramagnetic particles coupled with an automated flow injection analysis as a tool for influenza viral protein detection. Electrophoresis. 2012;33:3195–3204. doi: 10.1002/elps.201200304. PubMed DOI
Garcia-Canas V., Lorbetskie B., Cyr T.D., Hefford M.A., Smith S., Girard M. Approach to the profiling and characterization of influenza vaccine constituents by the combined use of size-exclusion chromatography, gel electrophoresis and mass spectrometry. Biologicals. 2010;38:294–302. doi: 10.1016/j.biologicals.2009.12.005. PubMed DOI
Epand R.M., Epand R.F. Thermal denaturation of influenza virus and its relationship to membrane fusion. Biochem. J. 2002;365:841–848. PubMed PMC
Schwarzer J., Rapp E., Hennig R., Genzel Y., Jordan I., Sandig V., Reichl U. Glycan analysis in cell culture-based influenza vaccine production: Influence of host cell line and virus strain on the glycosylation pattern of viral hemagglutinin. Vaccine. 2009;27:4325–4336. PubMed
Chou T.C., Hsu W., Wang C.H., Chen Y.J., Fang J.M. Rapid and specific influenza virus detection by functionalized magnetic nanoparticles and mass spectrometry. J. Nanobiotechnol. 2011;9:1–13. doi: 10.1186/1477-3155-9-1. PubMed DOI PMC
Hoffman L.R., Kuntz I.D., White J.M. Structure-based identification of an inducer of the low-pH conformational change in the influenza virus hemagglutinin: Irreversible inhibition of infectivity. J. Virol. 1997;71:8808–8820. PubMed PMC
Doneley B. Avian Medicine and Surgery in Practice: Companion and Aviary Birds. Manson Publishing Ltd.; London, UK: 2010. p. 330.
Korte T., Ludwig K., Booy F.P., Blumenthal R., Herrmann A. Conformational intermediates and fusion activity of influenza virus hemagglutinin. J. Virol. 1999;73:4567–4574. PubMed PMC
Ruigrok R.W.H., Martin S.R., Wharton S.A., Skehel J.J., Bayley P.M., Wiley D.C. Conformational-changes in the hemagglutinin of influenza-virus which accompany heat-induced fusion of virus with liposomes. Virology. 1986;155:484–497. doi: 10.1016/0042-6822(86)90210-2. PubMed DOI
Kamikawa T.L., Mikolajczyk M.G., Kennedy M., Zhang P., Wang W., Scott D.E., Alocilja E.C. Nanoparticle-based biosensor for the detection of emerging pandemic influenza strains. Biosens. Bioelectron. 2010;26:1346–1352. doi: 10.1016/j.bios.2010.07.047. PubMed DOI
Egashira N., Morita S., Hifumi E., Mitoma Y., Uda T. Attomole detection of hemagglutinin molecule of influenza virus by combining an electrochemiluminescence sensor with an immunoliposome that encapsulates a Ru complex. Anal. Chem. 2008;80:4020–4025. doi: 10.1021/ac702625d. PubMed DOI
Wagner R., Matrosovich M., Klenk H.D. Functional balance between haemagglutinin and neuraminidase in influenza virus infections. Rev. Med. Virol. 2002;12:159–166. doi: 10.1002/rmv.352. PubMed DOI
Legastelois I., Chevalier M., Bernard M.C., de Montfort A., Fouque M., Pilloud A., Serraille C., Devard N., Engel O., Sodoyer R., et al. Avian glycan-specific IgM monoclonal antibodies for the detection and quantitation of type A and B haemagglutinins in egg-derived influenza vaccines. J. Virol. Methods. 2011;178:129–136. doi: 10.1016/j.jviromet.2011.08.027. PubMed DOI
Bousse T., Shore D.A., Goldsmith C.S., Hossain M.J., Jang Y., Davis C.T., Donis R.O., Stevens J. Quantitation of influenza virus using field flow fractionation and multi-angle light scattering for quantifying influenza A particles. J. Virol. Methods. 2013;193:589–596. doi: 10.1016/j.jviromet.2013.07.026. PubMed DOI PMC
Duan J.L., Song L.X., Zhan J.H. One-pot synthesis of highly luminescent CdTe quantum dots by microwave irradiation reduction and their Hg2+-sensitive properties. Nano Res. 2009;2:61–68. doi: 10.1007/s12274-009-9004-0. DOI
Wong C., Sridhara S., Bardwell J.C.A., Jakob U. Heating greatly speeds Coomassie blue staining and destaining. Biotechniques. 2000;28:426–428. PubMed
Skalickova S., Zitka O., Nejdl L., Krizkova S., Sochor J., Janu L., Ryvolova M., Hynek D., Zidkova J., Zidek V., et al. Study of interaction between metallothionein and CdTe quantum dots. Chromatographia. 2013;76:345–353. doi: 10.1007/s10337-013-2418-6. DOI
Long G.L., Winefordner J.D. Limit of detection. Anal. Chem. 1983;55:A712–A724.
Biosensors as Nano-Analytical Tools for COVID-19 Detection