Point-of-Use Rapid Detection of SARS-CoV-2: Nanotechnology-Enabled Solutions for the COVID-19 Pandemic

. 2020 Jul 20 ; 21 (14) : . [epub] 20200720

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid32698479

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused the COVID-19 pandemic that has been spreading around the world since December 2019. More than 10 million affected cases and more than half a million deaths have been reported so far, while no vaccine is yet available as a treatment. Considering the global healthcare urgency, several techniques, including whole genome sequencing and computed tomography imaging have been employed for diagnosing infected people. Considerable efforts are also directed at detecting and preventing different modes of community transmission. Among them is the rapid detection of virus presence on different surfaces with which people may come in contact. Detection based on non-contact optical techniques is very helpful in managing the spread of the virus, and to aid in the disinfection of surfaces. Nanomaterial-based methods are proven suitable for rapid detection. Given the immense need for science led innovative solutions, this manuscript critically reviews recent literature to specifically illustrate nano-engineered effective and rapid solutions. In addition, all the different techniques are critically analyzed, compared, and contrasted to identify the most promising methods. Moreover, promising research ideas for high accuracy of detection in trace concentrations, via color change and light-sensitive nanostructures, to assist fingerprint techniques (to identify the virus at the contact surface of the gas and solid phase) are also presented.

Zobrazit více v PubMed

Word Health Organization Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19) [(accessed on 15 June 2020)]; Available online: https://www.who.int/publications/i/item/report-of-the-who-china-joint-mission-on-coronavirus-disease-2019-(covid-19)

Baud D., Qi X., Nielsen-Saines K., Musso D., Pomar L., Favre G. Real estimates of mortality following COVID-19 infection. Lancet Infect. Dis. 2020;20:773. doi: 10.1016/S1473-3099(20)30195-X. PubMed DOI PMC

Farassati F. Signal-smart oncolytic viruses in treatment of human cancers. 16/198, 578. U.S. Patent. 2019 May 23;

Haller O., Weber F. Interferon: The 50th Anniversary. Springer; Berlin, Germany: 2007. Pathogenic viruses: Smart manipulators of the interferon system; pp. 315–334. PubMed PMC

García M., Cooper A., Shi W., Bornmann W., Carrion R., Kalman D., Nabel G.J. Productive replication of Ebola virus is regulated by the c-Abl1 tyrosine kinase. Sci. Transl. Med. 2012;4:123ra24. doi: 10.1126/scitranslmed.3003500. PubMed DOI PMC

Word Health Organization Coronavirus disease 2019 (COVID-19): Situation report, 59. [(accessed on 1 July 2020)];2020 Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports.

Shi H., Han X., Jiang N., Cao Y., Alwalid O., Gu J., Fan Y., Zheng C. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: A descriptive study. Lancet Infect. Dis. 2020;20:425–434. doi: 10.1016/S1473-3099(20)30086-4. PubMed DOI PMC

Ai T., Yang Z., Hou H., Zhan C., Chen C., Lv W., Tao Q., Sun Z., Xia L. Correlation of chest CT and RT-PCR testing in coronavirus disease 2019 (COVID-19) in China: A report of 1014 cases. Radiology. 2020:200642. doi: 10.1148/radiol.2020200642. PubMed DOI PMC

Lan L., Xu D., Ye G., Xia C., Wang S., Li Y., Xu H. Positive RT-PCR test results in patients recovered from COVID-19. Jama. 2020;323:1502–1503. doi: 10.1001/jama.2020.2783. PubMed DOI PMC

Bai Y., Yao L., Wei T., Tian F., Jin D.-Y., Chen L., Wang M. Presumed asymptomatic carrier transmission of COVID-19. Jama. 2020;323:1406–1407. doi: 10.1001/jama.2020.2565. PubMed DOI PMC

Zhou P., Yang X.-L., Wang X.-G., Hu B., Zhang L., Zhang W., Si H.-R., Zhu Y., Li B., Huang C.-L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579:270–273. doi: 10.1038/s41586-020-2012-7. PubMed DOI PMC

Zhang T., Wu Q., Zhang Z. Probable pangolin origin of SARS-CoV-2 associated with the COVID-19 outbreak. Curr. Biol. 2020 doi: 10.1016/j.cub.2020.03.022. PubMed DOI PMC

Remuzzi A., Remuzzi G. COVID-19 and Italy: What next? Lancet. 2020;395:1225–1228. doi: 10.1016/S0140-6736(20)30627-9. PubMed DOI PMC

Arabi Y.M., Murthy S., Webb S. COVID-19: A novel coronavirus and a novel challenge for critical care. Intensive Care Med. 2020;46:1–4. PubMed PMC

Casadevall A., Pirofski L.-a. The convalescent sera option for containing COVID-19. J. Clin. Investig. 2020;130:1545–1548. doi: 10.1172/JCI138003. PubMed DOI PMC

Bourouiba L. Turbulent Gas Clouds and Respiratory Pathogen Emissions: Potential Implications for Reducing Transmission of COVID-19. Jama. 2020;323:1837–1838. doi: 10.1001/jama.2020.4756. PubMed DOI

Tang X., Du R., Wang R., Cao T., Guan L., Yang C., Zhu Q., Hu M., Li X., Li Y. Comparison of Hospitalized Patients with Acute Respiratory Distress Syndrome Caused by COVID-19 and H1N1. Chest. 2020;158:195–205. doi: 10.1016/j.chest.2020.03.032. PubMed DOI PMC

Lipsitch M., Swerdlow D.L., Finelli L. Defining the epidemiology of Covid-19—Studies needed. New Engl. J. Med. 2020;382:1194–1196. doi: 10.1056/NEJMp2002125. PubMed DOI

Tebyetekerwa M., Xu Z., Yang S., Ramakrishna S. Electrospun Nanofibers-Based Face Masks. Adv. Fiber Mater. 2020 doi: 10.1007/s42765-020-00049-5. PubMed DOI PMC

Chagas A.M., Molloy J.C., Prieto-Godino L.L., Baden T. Leveraging Open Hardware to alleviate the burden of COVID-19 on global health systems. Plos Biol. 2020;18:3–6. PubMed PMC

Jernigan D.B. Update: Public health response to the coronavirus disease 2019 outbreak—United States, February 24, 2020. Mmwr. Morb. Mortal. Wkly. Rep. 2020;69:216–219. doi: 10.15585/mmwr.mm6908e1. PubMed DOI PMC

Yu L., Wu S., Hao X., Li X., Liu X., Ye S., Han H., Dong X., Li X., Li J. Rapid colorimetric detection of COVID-19 coronavirus using a reverse tran-scriptional loop-mediated isothermal amplification (RT-LAMP) diagnostic plat-form: ILACO. medRxiv. 2020 doi: 10.1101/2020.02.20.20025874. PubMed DOI PMC

Mao K., Zhang H., Yang Z. Can a Paper-Based Device Trace COVID-19 Sources with Wastewater-Based Epidemiology? Environ. Sci. Technol. 2020;54:3733–3735. doi: 10.1021/acs.est.0c01174. PubMed DOI

Nundy S., Patel K.K. Self-Service Diagnosis of COVID-19—Ready for Prime Time?; Proceedings of the JAMA Health Forum; Plymouth, PA, USA. 2 March 2020; Chicago, IL, USA: American Medial Association; 2020. p. e200333. PubMed

Walls A.C., Park Y.-J., Tortorici M.A., Wall A., McGuire A.T., Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020;181:281–292. doi: 10.1016/j.cell.2020.02.058. PubMed DOI PMC

Zhou Y., Hou Y., Shen J., Huang Y., Martin W., Cheng F. Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discov. 2020;6:1–18. doi: 10.1038/s41421-020-0153-3. PubMed DOI PMC

Hofmann H., Pöhlmann S. Cellular entry of the SARS coronavirus. Trends Microbiol. 2004;12:466–472. doi: 10.1016/j.tim.2004.08.008. PubMed DOI PMC

Khan S., Siddique R., Shereen M.A., Ali A., Liu J., Bai Q., Bashir N., Xue M. The emergence of a novel coronavirus (SARS-CoV-2), their biology and therapeutic options. J. Clin. Microbiol. 2020;58:187–200. doi: 10.1128/JCM.00187-20. PubMed DOI PMC

Huynh K. Reduced hospital admissions for ACS—more collateral damage from COVID-19. Nat. Rev. Cardiol. 2020;17:453. doi: 10.1038/s41569-020-0409-5. PubMed DOI PMC

Eastman R.T., Roth J.S., Brimacombe K.R., Simeonov A., Shen M., Patnaik S., Hall M.D. Remdesivir: A Review of Its Discovery and Development Leading to Emergency Use Authorization for Treatment of COVID-19. Acs Cent. Sci. 2020 doi: 10.1021/acscentsci.0c00489. PubMed DOI PMC

Lai H., Li G., Xu F., Zhang Z. Metal–organic frameworks: Opportunities and challenges for surface-enhanced Raman scattering–a review. J. Mater. Chem. C. 2020;8:2952–2963. doi: 10.1039/D0TC00040J. DOI

Aguilera-Sigalat J., Bradshaw D. Synthesis and applications of metal-organic framework–quantum dot (QD@ MOF) composites. Coord. Chem. Rev. 2016;307:267–291. doi: 10.1016/j.ccr.2015.08.004. DOI

Zhan G., Zeng H.C. Integrated nanocatalysts with mesoporous silica/silicate and microporous MOF materials. Coord. Chem. Rev. 2016;320:181–192. doi: 10.1016/j.ccr.2016.03.003. DOI

Falcaro P., Ricco R., Yazdi A., Imaz I., Furukawa S., Maspoch D., Ameloot R., Evans J.D., Doonan C.J. Application of metal and metal oxide nanoparticles@ MOFs. Coord. Chem. Rev. 2016;307:237–254. doi: 10.1016/j.ccr.2015.08.002. DOI

Zhu N., Zhang D., Wang W., Li X., Yang B., Song J., Zhao X., Huang B., Shi W., Lu R. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 2020 doi: 10.1056/NEJMoa2001017. PubMed DOI PMC

Wu A., Peng Y., Huang B., Ding X., Wang X., Niu P., Meng J., Zhu Z., Zhang Z., Wang J. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host Microbe. 2020 doi: 10.1016/j.chom.2020.02.001. PubMed DOI PMC

Sexton N.R., Smith E.C., Blanc H., Vignuzzi M., Peersen O.B., Denison M.R. Homology-based identification of a mutation in the coronavirus RNA-dependent RNA polymerase that confers resistance to multiple mutagens. J. Virol. 2016;90:7415–7428. doi: 10.1128/JVI.00080-16. PubMed DOI PMC

Tang X., Wu C., Li X., Song Y., Yao X., Wu X., Duan Y., Zhang H., Wang Y., Qian Z. On the origin and continuing evolution of SARS-CoV-2. Natl. Sci. Rev. 2020 doi: 10.1093/nsr/nwaa036. PubMed DOI PMC

Udugama B., Kadhiresan P., Kozlowski H.N., Malekjahani A., Osborne M., Li V.Y., Chen H., Mubareka S., Gubbay J.B., Chan W.C. Diagnosing COVID-19: The disease and tools for detection. Acs Nano. 2020;14:3822–3835. doi: 10.1021/acsnano.0c02624. PubMed DOI

Guobao F., Lu L., Wanzhao C., Wang F. Electron Beam Irradiation on Novel Coronavirus (COVID-19): Via a Monte-Carlo Simulation. Chin. Phys. B. 2020 doi: 10.1088/1674-1056/ab7dac. PubMed DOI PMC

Monajjemi M., Mollaamin F., Shojaei S. An overview on Coronaviruses family from past to Covid-19: Introduce some inhibitors as antiviruses from Gillan’s plants. Biointerface Res. Appl. Chem. 2020;10:5575–5585. doi: 10.33263/BRIAC103.575585. DOI

Yan R., Zhang Y., Li Y., Xia L., Guo Y., Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science. 2020;367:1444–1448. doi: 10.1126/science.abb2762. PubMed DOI PMC

Qiu Y., Zhao Y.-B., Wang Q., Li J.-Y., Zhou Z.-J., Liao C.-H., Ge X.-Y. Predicting the angiotensin converting enzyme 2 (ACE2) utilizing capability as the receptor of SARS-CoV-2. Microbes Infect. 2020 doi: 10.1016/j.micinf.2020.03.003. PubMed DOI PMC

Hoffmann M., Kleine-Weber H., Schroeder S., Krüger N., Herrler T., Erichsen S., Schiergens T.S., Herrler G., Wu N.-H., Nitsche A. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020 doi: 10.1016/j.cell.2020.02.052. PubMed DOI PMC

Gurwitz D. Angiotensin receptor blockers as tentative SARS-CoV-2 therapeutics. Drug Dev. Res. 2020 doi: 10.1002/ddr.21656. PubMed DOI PMC

To K.K.-W., Tsang O.T.-Y., Yip C.C.-Y., Chan K.-H., Wu T.-C., Chan J.M.-C., Leung W.-S., Chik T.S.-H., Choi C.Y.-C., Kandamby D.H., et al. Consistent Detection of 2019 Novel Coronavirus in Saliva. Clin. Infect. Dis. 2020 doi: 10.1093/cid/ciaa149. PubMed DOI PMC

Li Y., Yao L., Li J., Chen L., Song Y., Cai Z., Yang C. Stability issues of RT-PCR testing of SARS-CoV-2 for hospitalized patients clinically diagnosed with COVID-19. J. Med Virol. 2020;92:903–908. doi: 10.1002/jmv.25786. PubMed DOI PMC

Tang Y.-W., Schmitz J.E., Persing D.H., Stratton C.W. Laboratory Diagnosis of COVID-19: Current Issues and Challenges. J. Clin. Microbiol. 2020;58:58. doi: 10.1128/JCM.00512-20. PubMed DOI PMC

Fang Y., Zhang H., Xie J., Lin M., Ying L., Pang P., Ji W. Sensitivity of Chest CT for COVID-19: Comparison to RT-PCR. Radiol. 2020:200432. doi: 10.1148/radiol.2020200432. PubMed DOI PMC

Caruso D., Zerunian M., Polici M., Pucciarelli F., Polidori T., Rucci C., Guido G., Bracci B., De Dominicis C., Laghi A. Chest CT Features of COVID-19 in Rome, Italy. Radiol. 2020:201237. doi: 10.1148/radiol.2020201237. PubMed DOI PMC

Li Y., Xia L. Coronavirus disease 2019 (COVID-19): Role of chest CT in diagnosis and management. Am. J. Roentgenol. 2020;214:1280–1286. doi: 10.2214/AJR.20.22954. PubMed DOI

Yang W., Cao Q., Qin L., Wang X., Cheng Z., Pan A., Dai J., Sun Q., Zhao F., Qu J. Clinical characteristics and imaging manifestations of the 2019 novel coronavirus disease (COVID-19): A multi-center study in Wenzhou city, Zhejiang, China. J. Infect. 2020;80:388–393. doi: 10.1016/j.jinf.2020.02.016. PubMed DOI PMC

Xia J., Bacon J.W., Jasti R. Gram-scale synthesis and crystal structures of [8]-and [10] CPP, and the solid-state structure of C 60@[10] CPP. Chem. Sci. 2012;3:3018–3021. doi: 10.1039/c2sc20719b. DOI

Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Zhang M., Fan G., Xu J., Gu X., et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506. doi: 10.1016/S0140-6736(20)30183-5. PubMed DOI PMC

Corman V.M., Landt O., Kaiser M., Molenkamp R., Meijer A., Chu D.K., Bleicker T., Brünink S., Schneider J., Schmidt M.L., et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance. 2020;25:2000045. doi: 10.2807/1560-7917.ES.2020.25.3.2000045. PubMed DOI PMC

Sahoo P.R., Sethy K., Mohapatra S., Panda D. Loop mediated isothermal amplification: An innovative gene amplification technique for animal diseases. Vet. World. 2016;9:465–469. doi: 10.14202/vetworld.2016.465-469. PubMed DOI PMC

Chander Y., Koelbl J., Puckett J., Moser M.J., Klingele A.J., Liles M.R., Carrias A., Mead D.A., Schoenfeld T.W. A novel thermostable polymerase for RNA and DNA loop-mediated isothermal amplification (LAMP) Front. Microbiol. 2014;5 doi: 10.3389/fmicb.2014.00395. PubMed DOI PMC

Huang P., Wang H., Cao Z., Jin H., Chi H., Zhao J., Yu B., Yan F., Hu X., Wu F., et al. A Rapid and Specific Assay for the Detection of MERS-CoV. Front. Microbiol. 2018;9 doi: 10.3389/fmicb.2018.01101. PubMed DOI PMC

Kim J.H., Kang M., Park E., Chung D.R., Kim J., Hwang E.S. A Simple and Multiplex Loop-Mediated Isothermal Amplification (LAMP) Assay for Rapid Detection of SARS-CoV. Biochip J. 2019;13:341–351. doi: 10.1007/s13206-019-3404-3. PubMed DOI PMC

Chi Y., Ge Y., Zhao K., Zou B., Liu B., Qi X., Bian Q., Shi Z., Zhu F., Zhou M., et al. Multiplex Reverse-Transcription Loop-Mediated Isothermal Amplification Coupled with Cascade Invasive Reaction and Nanoparticle Hybridization for Subtyping of Influenza A Virus. Sci. Rep. 2017;7:44924. doi: 10.1038/srep44924. PubMed DOI PMC

Zhang Y., Odiwuor N., Xiong J., Sun L., Nyaruaba R.O., Wei H., Tanner N.A. Rapid Molecular Detection of SARS-CoV-2 (COVID-19) Virus RNA Using Colorimetric LAMP. medRxiv. 2020 doi: 10.1101/2020.02.26.20028373. DOI

Park G.-S., Ku K., Baek S.-H., Kim S.-J., Kim S.I., Kim B.-T., Maeng J.-S. Development of Reverse Transcription Loop-mediated Isothermal Amplification (RT-LAMP) Assays Targeting SARS-CoV-2. J. Mol. Diagn. 2020 doi: 10.1016/j.jmoldx.2020.03.006. PubMed DOI PMC

Amanat F., Nguyen T., Chromikova V., Strohmeier S., Stadlbauer D., Javier A., Jiang K., Asthagiri-Arunkumar G., Polanco J., Bermudez-Gonzalez M., et al. A serological assay to detect SARS-CoV-2 seroconversion in humans. medRxiv. 2020 doi: 10.1038/s41591-020-0913-5. PubMed DOI PMC

Wang K., Yee C.-C., Au-Yeung H.Y. Facile syntheses of [3]-,[4]-and [6] catenanes templated by orthogonal supramolecular interactions. Chem. Sci. 2016;7:2787–2792. doi: 10.1039/C5SC04774A. PubMed DOI PMC

Fernando I.R., Frasconi M., Wu Y., Liu W.G., Wasielewski M.R., Goddard W.A., 3rd, Stoddart J.F. Sliding-Ring Catenanes. J. Am. Chem. Soc. 2016;138:10214–10225. doi: 10.1021/jacs.6b04982. PubMed DOI

Zhao J., Yuan Q., Wang H., Liu W., Liao X., Su Y., Wang X., Yuan J., Li T., Li J., et al. Antibody responses to SARS-CoV-2 in patients of novel coronavirus disease 2019. medRxiv. 2020 doi: 10.1101/2020.03.02.20030189. PubMed DOI PMC

Soon W.W., Hariharan M., Snyder M.P. High-throughput sequencing for biology and medicine. Mol. Syst. Biol. 2013;9:61. doi: 10.1038/msb.2012.61. PubMed DOI PMC

Wang D., Hu B., Hu C., Zhu F., Liu X., Zhang J., Wang B., Xiang H., Cheng Z., Xiong Y., et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus–Infected Pneumonia in Wuhan, China. JAMA. 2020;323:1061–1069. doi: 10.1001/jama.2020.1585. PubMed DOI PMC

Sakamoto S., Putalun W., Vimolmangkang S., Phoolcharoen W., Shoyama Y., Tanaka H., Morimoto S. Enzyme-linked immunosorbent assay for the quantitative/qualitative analysis of plant secondary metabolites. J. Nat. Med. 2018;72:32–42. doi: 10.1007/s11418-017-1144-z. PubMed DOI PMC

Hardinge P., Murray J.A.H. Reduced False Positives and Improved Reporting of Loop-Mediated Isothermal Amplification using Quenched Fluorescent Primers. Sci. Rep. 2019;9:7400. doi: 10.1038/s41598-019-43817-z. PubMed DOI PMC

Notomi T., Okayama H., Masubuchi H., Yonekawa T., Watanabe K., Amino N., Hase T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000;28:e63. doi: 10.1093/nar/28.12.e63. PubMed DOI PMC

Nagamine K., Hase T., Notomi T. Accelerated reaction by loop-mediated isothermal amplification using loop primers. Mol. Cell. Probes. 2002;16:223–229. doi: 10.1006/mcpr.2002.0415. PubMed DOI

Poon L.L., Leung C.S., Tashiro M., Chan K.H., Wong B.W., Yuen K.Y., Guan Y., Peiris J.S. Rapid detection of the severe acute respiratory syndrome (SARS) coronavirus by a loop-mediated isothermal amplification assay. Clin. Chem. 2004;50:1050–1052. doi: 10.1373/clinchem.2004.032011. PubMed DOI PMC

Notomi T., Taguchi F., Kanda H., Minekawa H., Itamura S., Odagiri T., Tashiro M. RT-LAMP method provides a simple, rapid and specific detection system for SARS-CoV RNA; Proceedings of the International Conference on SARS-one year after the (first) outbreak; Lübeck, Germany. 11 May 2004; Düsseldorf, Germany: German Medical Science; 2004.

Mori Y., Nagamine K., Tomita N., Notomi T. Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation. Biochem. Biophys. Res. Commun. 2001;289:150–154. doi: 10.1006/bbrc.2001.5921. PubMed DOI

Lee S.H., Baek Y.H., Kim Y.-H., Choi Y.-K., Song M.-S., Ahn J.-Y. One-pot reverse transcriptional loop-mediated isothermal amplification (RT-LAMP) for detecting MERS-CoV. Front. Microbiol. 2017;7:2166. doi: 10.3389/fmicb.2016.02166. PubMed DOI PMC

Wang H., Cong F., Zeng F., Lian Y., Liu X., Luo M., Guo P., Ma J. Development of a real time reverse transcription loop-mediated isothermal amplification method (RT-LAMP) for detection of a novel swine acute diarrhea syndrome coronavirus (SADS-CoV) J. Virol. Methods. 2018;260:45–48. doi: 10.1016/j.jviromet.2018.06.010. PubMed DOI PMC

Thai H.T.C., Le M.Q., Vuong C.D., Parida M., Minekawa H., Notomi T., Hasebe F., Morita K. Development and evaluation of a novel loop-mediated isothermal amplification method for rapid detection of severe acute respiratory syndrome coronavirus. J. Clin. Microbiol. 2004;42:1956–1961. doi: 10.1128/JCM.42.5.1956-1961.2004. PubMed DOI PMC

Shen M., Zhou Y., Ye J., AL-maskri A.A.A., Kang Y., Zeng S., Cai S. Recent advances and perspectives of nucleic acid detection for coronavirus. J. Pharm. Anal. 2020;10:97–101. doi: 10.1016/j.jpha.2020.02.010. PubMed DOI PMC

Shirato K., Semba S., El-Kafrawy S.A., Hassan A.M., Tolah A.M., Takayama I., Kageyama T., Notomi T., Kamitani W., Matsuyama S. Development of fluorescent reverse transcription loop-mediated isothermal amplification (RT-LAMP) using quenching probes for the detection of the Middle East respiratory syndrome coronavirus. J. Virol. Methods. 2018;258:41–48. doi: 10.1016/j.jviromet.2018.05.006. PubMed DOI PMC

Jiang Y.S., Bhadra S., Li B., Wu Y.R., Milligan J.N., Ellington A.D. Robust strand exchange reactions for the sequence-specific, real-time detection of nucleic acid amplicons. Anal. Chem. 2015;87:3314–3320. doi: 10.1021/ac504387c. PubMed DOI

Bhadra S., Jiang Y.S., Kumar M.R., Johnson R.F., Hensley L.E., Ellington A.D. Real-time sequence-validated loop-mediated isothermal amplification assays for detection of Middle East respiratory syndrome coronavirus (MERS-CoV) PLoS ONE. 2015;10:123126. doi: 10.1371/journal.pone.0123126. PubMed DOI PMC

Ali M.M., Li F., Zhang Z., Zhang K., Kang D.-K., Ankrum J.A., Le X.C., Zhao W. Rolling circle amplification: A versatile tool for chemical biology, materials science and medicine. Chem. Soc. Rev. 2014;43:3324–3341. doi: 10.1039/c3cs60439j. PubMed DOI

Wang B., Potter S.J., Lin Y., Cunningham A.L., Dwyer D.E., Su Y., Ma X., Hou Y., Saksena N.K. Rapid and sensitive detection of severe acute respiratory syndrome coronavirus by rolling circle amplification. J. Clin. Microbiol. 2005;43:2339–2344. doi: 10.1128/JCM.43.5.2339-2344.2005. PubMed DOI PMC

Ciftci S., Neumann F., Abdurahman S., Appelberg K.S., Mirazimi A., Nilsson M., Madaboosi N. Digital Rolling Circle Amplification–Based Detection of Ebola and Other Tropical Viruses. J. Mol. Diagn. 2020;22:272–283. doi: 10.1016/j.jmoldx.2019.10.014. PubMed DOI

Khan S., Nakajima R., Jain A., De Assis R.R., Jasinskas A., Obiero J.M., Adenaiye O., Tai S., Hong F., Milton D.K. Analysis of Serologic Cross-Reactivity Between Common Human Coronaviruses and SARS-CoV-2 Using Coronavirus Antigen Microarray. [(accessed on 25 March 2020)];BioRxiv. 2020 doi: 10.1101/2020.03.24.006544. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7239054/pdf/nihpp-2020.03.24.006544.pdf. DOI

Wang D., Urisman A., Liu Y.-T., Springer M., Ksiazek T.G., Erdman D.D., Mardis E.R., Hickenbotham M., Magrini V., Eldred J. Viral discovery and sequence recovery using DNA microarrays. Plos Biol. 2003;1:e2. doi: 10.1371/journal.pbio.0000002. PubMed DOI PMC

de Souza Luna L.K., Heiser V., Regamey N., Panning M., Drexler J.F., Mulangu S., Poon L., Baumgarte S., Haijema B.J., Kaiser L. Generic detection of coronaviruses and differentiation at the prototype strain level by reverse transcription-PCR and nonfluorescent low-density microarray. J. Clin. Microbiol. 2007;45:1049–1052. doi: 10.1128/JCM.02426-06. PubMed DOI PMC

Guo X., Geng P., Wang Q., Cao B., Liu B. Development of a Single Nucleotide Polymorphism DNA Microarray for the Detection and Genotyping of the SARS Coronavirus. J. Microbiol. Biotechnol. 2014;24:1445–1454. doi: 10.4014/jmb.1404.04024. PubMed DOI

Juang J.-L., Chen T.-C., Jiang S.S., Hsiung C.A., Chen W.-C., Chen G.-W., Lin S.-M., Lin J.-H., Chiu S.-C., Lai Y.-K. Coupling multiplex RT-PCR to a gene chip assay for sensitive and semiquantitative detection of severe acute respiratory syndrome-coronavirus. Lab. Investig. 2004;84:1085–1091. doi: 10.1038/labinvest.3700136. PubMed DOI PMC

Chertow D.S. Next-generation diagnostics with CRISPR. Science. 2018;360:381–382. doi: 10.1126/science.aat4982. PubMed DOI

Freije C.A., Myhrvold C., Boehm C.K., Lin A.E., Welch N.L., Carter A., Metsky H.C., Luo C.Y., Abudayyeh O.O., Gootenberg J.S. Programmable inhibition and detection of RNA viruses using Cas13. Mol. Cell. 2019;76:826–837.e811. doi: 10.1016/j.molcel.2019.09.013. PubMed DOI PMC

Gootenberg J.S., Abudayyeh O.O., Kellner M.J., Joung J., Collins J.J., Zhang F. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science. 2018;360:439–444. doi: 10.1126/science.aaq0179. PubMed DOI PMC

Broughton J.P., Deng W., Fasching C.L., Singh J., Chiu C.Y., Chen J.S. A protocol for rapid detection of the 2019 novel coronavirus SARS-CoV-2 using CRISPR diagnostics: SARS-CoV-2 DETECTR. [(accessed on 23 April 2020)]; Available online: https://mammoth.bio/wp-content/uploads/2020/04/200423-A-protocol-for-rapid-detection-of-SARS-CoV-2-using-CRISPR-diagnostics_3.pdf.

Broughton J.P., Deng X., Yu G., Fasching C.L., Singh J., Streithorst J., Granados A., Sotomayor-Gonzalez A., Zorn K., Gopez A. Rapid Detection of 2019 Novel Coronavirus SARS-CoV-2 Using a CRISPR-based DETECTR Lateral Flow Assay. medRxiv. 2020 doi: 10.1101/2020.03.06.20032334. DOI

Ding X., Yin K., Li Z., Liu C. All-in-One Dual CRISPR-Cas12a (AIOD-CRISPR) Assay: A Case for Rapid, Ultrasensitive and Visual Detection of Novel Coronavirus SARS-CoV-2 and HIV virus. bioRxiv. 2020 doi: 10.1101/2020.03.19.998724. PubMed DOI PMC

Abbott T.R., Dhamdhere G., Liu Y., Lin X., Goudy L.E., Zeng L., Chemparathy A., Chmura S., Heaton N., Debs R. Development of CRISPR as a prophylactic strategy to combat novel coronavirus and influenza. bioRxiv. 2020 doi: 10.1101/2020.03.13.991307. PubMed DOI PMC

Lucia C., Federico P.-B., Alejandra G.C. An ultrasensitive, rapid, and portable coronavirus SARS-CoV-2 sequence detection method based on CRISPR-Cas12. bioRxiv. 2020 doi: 10.1101/2020.02.29.971127. DOI

Hou T., Zeng W., Yang M., Chen W., Ren L., Ai J., Wu J., Liao Y., Gou X., Li Y. Development and Evaluation of A CRISPR-based Diagnostic For 2019-novel Coronavirus. medRxiv. 2020 doi: 10.1101/2020.02.22.20025460. PubMed DOI PMC

Guan W.-J., Ni Z.-Y., Hu Y., Liang W.-H., Ou C.-Q., He J.-X., Liu L., Shan H., Lei C.-L., Hui D.S., et al. Clinical Characteristics of Coronavirus Disease 2019 in China. New Engl. J. Med. 2020;382:1708–1720. doi: 10.1056/NEJMoa2002032. PubMed DOI PMC

Hu J., Wang L., Li F., Han Y.L., Lin M., Lu T.J., Xu F. Oligonucleotide-linked gold nanoparticle aggregates for enhanced sensitivity in lateral flow assays. Lab A Chip. 2013;13:4352–4357. doi: 10.1039/c3lc50672j. PubMed DOI

Dalirirad S., Steckl A.J. Lateral flow assay using aptamer-based sensing for on-site detection of dopamine in urine. Anal. Biochem. 2020;596:113637. doi: 10.1016/j.ab.2020.113637. PubMed DOI

Lee J.-H., Seo H.S., Kwon J.-H., Kim H.-T., Kwon K.C., Sim S.J., Cha Y.J., Lee J. Multiplex diagnosis of viral infectious diseases (AIDS, hepatitis C, and hepatitis A) based on point of care lateral flow assay using engineered proteinticles. Biosens. Bioelectron. 2015;69:213–225. doi: 10.1016/j.bios.2015.02.033. PubMed DOI

Hwang S.G., Ha K., Guk K., Lee D.K., Eom G., Song S., Kang T., Park H., Jung J., Lim E.-K. Rapid and simple detection of Tamiflu-resistant influenza virus: Development of oseltamivir derivative-based lateral flow biosensor for point-of-care (POC) diagnostics. Sci. Rep. 2018;8:1–11. doi: 10.1038/s41598-018-31311-x. PubMed DOI PMC

Cai X., Chen J., Hu J., Long Q., Deng H., Fan K., Liao P., Liu B., Wu G., Chen Y. A Peptide-based Magnetic Chemiluminescence Enzyme Immunoassay for Serological Diagnosis of Corona Virus Disease 2019 (COVID-19) medRxiv. 2020 doi: 10.1101/2020.02.22.20026617. PubMed DOI PMC

Sugikawa K., Nagata S., Furukawa Y., Kokado K., Sada K. Stable and functional gold nanorod composites with a metal–organic framework crystalline shell. Chem. Mater. 2013;25:2565–2570. doi: 10.1021/cm302735b. DOI

Sharma B., Frontiera R.A.I., Henry E., Ringe R.P., Van Duyne R.P. SERS: Materials, applications, and the future. Mater. Today. 2012;15:16–25. doi: 10.1016/S1369-7021(12)70017-2. DOI

Schierhorn M., Lee S.J., Boettcher S.W., Stucky G.D., Moskovits M. Metal–Silica Hybrid Nanostructures for Surface-Enhanced Raman Spectroscopy. Adv. Mater. 2006;18:2829–2832. doi: 10.1002/adma.200601254. DOI

Sawai Y., Takimoto B., Nabika H., Ajito K., Murakoshi K. Observation of a small number of molecules at a metal nanogap arrayed on a solid surface using surface-enhanced Raman scattering. J. Am. Chem. Soc. 2007;129:1658–1662. doi: 10.1021/ja067034c. PubMed DOI

Zhan W.-w., Kuang Q., Zhou J.-z., Kong X.-j., Xie Z.-x., Zheng L.-s. Semiconductor@ metal–organic framework core–shell heterostructures: A case of ZnO@ ZIF-8 nanorods with selective photoelectrochemical response. J. Am. Chem. Soc. 2013;135:1926–1933. doi: 10.1021/ja311085e. PubMed DOI

Chan W.C. Nano Research for COVID-19. Acs Nano. 2020;14:3719–3720. doi: 10.1021/acsnano.0c02540. PubMed DOI

Huang S., He Y., Yang X., Yuan R., Chai Y. Porous SiO2@ Ni@ C and Au nanocages as surface-enhanced Raman spectroscopy platform with use of DNA structure switching for sensitive detection of uracil DNA glycolase. Sens. Actuators B: Chem. 2020;304:127273. doi: 10.1016/j.snb.2019.127273. DOI

Shi P., Liu Z., Dong K., Ju E., Ren J., Du Y., Li Z., Qu X. A Smart “Sense-Act-Treat” System: Combining a Ratiometric pH Sensor with a Near Infrared Therapeutic Gold Nanocage. Adv. Mater. 2014;26:6635–6641. doi: 10.1002/adma.201402522. PubMed DOI

Wang L.-J., Chang Y.-C., Sun R., Li L. A multichannel smartphone optical biosensor for high-throughput point-of-care diagnostics. Biosens. Bioelectron. 2017;87:686–692. doi: 10.1016/j.bios.2016.09.021. PubMed DOI

Soler M., Huertas C.S., Lechuga L.M. Label-free plasmonic biosensors for point-of-care diagnostics: A review. Expert Rev. Mol. Diagn. 2019;19:71–81. doi: 10.1080/14737159.2019.1554435. PubMed DOI

Wang Z., Zong S., Wu L., Zhu D., Cui Y. SERS-Activated Platforms for Immunoassay: Probes, Encoding Methods, and Applications. Chem. Rev. 2017;117:7910–7963. doi: 10.1021/acs.chemrev.7b00027. PubMed DOI

Resch-Genger U., Grabolle M., Cavaliere-Jaricot S., Nitschke R., Nann T. Quantum dots versus organic dyes as fluorescent labels. Nat. Methods. 2008;5:763–775. doi: 10.1038/nmeth.1248. PubMed DOI

Laing S., Gracie K., Faulds K. Multiplex in vitro detection using SERS. Chem. Soc. Rev. 2016;45:1901–1918. doi: 10.1039/C5CS00644A. PubMed DOI

Emonds-Alt G., Mignolet B., Malherbe C., Monbaliu J.-C.M., Remacle F., Eppe G. Understanding chemical interaction between phosphonate-derivative molecules and a silver surface cluster in SERS: A combined experimental and computational approach. Phys. Chem. Chem. Phys. 2019;21:22180–22187. doi: 10.1039/C9CP01615E. PubMed DOI

Chen L., Yan H., Xue X., Jiang D., Cai Y., Liang D., Jung Y.M., Han X.X., Zhao B. Surface-Enhanced Raman Scattering (SERS) Active Gold Nanoparticles Decorated on a Porous Polymer Filter. Appl. Spectrosc. 2017;71:1543–1550. doi: 10.1177/0003702817703293. PubMed DOI

Al-Shalalfeh M.M., Saleh T.A., Al-Saadi A.A. Silver colloid and film substrates in surface-enhanced Raman scattering for 2-thiouracil detection. Rsc Adv. 2016;6:75282–75292. doi: 10.1039/C6RA14832H. DOI

Boginskaya I., Sedova M., Baburin A., Afanas’ev K., Zverev A., Echeistov V., Ryzhkov V., Rodionov I., Tonanaiskii B., Ryzhikov I., et al. SERS-Active Substrates Nanoengineering Based on e-Beam Evaporated Self-Assembled Silver Films. Appl. Sci. 2019;9:3988. doi: 10.3390/app9193988. DOI

Yeh Y.-T., Gulino K., Zhang Y., Sabestien A., Chou T.-W., Zhou B., Lin Z., Albert I., Lu H., Swaminathan V. A rapid and label-free platform for virus capture and identification from clinical samples. Proc. Natl. Acad. Sci. USA. 2020;117:895–901. doi: 10.1073/pnas.1910113117. PubMed DOI PMC

Zhuang J., Yin J., Lv S., Wang B., Mu Y. Advanced “lab-on-a-chip” to detect viruses–Current challenges and future perspectives. Biosens. Bioelectron. 2020:112291. doi: 10.1016/j.bios.2020.112291. PubMed DOI PMC

Zhao Z., Cui H., Song W., Ru X., Zhou W., Yu X. A simple magnetic nanoparticles-based viral RNA extraction method for efficient detection of SARS-CoV-2. bioRxiv. 2020 doi: 10.1101/2020.02.22.961268. PubMed DOI PMC

Mosier-Boss A.P. Review of SERS Substrates for Chemical Sensing. Nanomaterials. 2017;7:142. doi: 10.3390/nano7060142. PubMed DOI PMC

Li J.F., Huang Y.F., Ding Y., Yang Z.L., Li S.B., Zhou X.S., Fan F.R., Zhang W., Zhou Z.Y., Wu D.Y., et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature. 2010;464:392–395. doi: 10.1038/nature08907. PubMed DOI

Lin X.-D., Uzayisenga V., Li J.-F., Fang P.-P., Wu D.-Y., Ren B., Tian Z.-Q. Synthesis of ultrathin and compact Au@MnO2 nanoparticles for shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) J. Raman Spectrosc. 2012;43:40–45. doi: 10.1002/jrs.3007. DOI

Liu X., Wang J., Wu Y., Fan T., Xu Y., Tang L., Ying Y. Compact Shielding of Graphene Monolayer Leads to Extraordinary SERS-Active Substrate with Large-Area Uniformity and Long-Term Stability. Sci. Rep. 2015;5:17167. doi: 10.1038/srep17167. PubMed DOI PMC

Mirsadeghi S., Dinarvand R., Ghahremani M.H., Hormozi-Nezhad M.R., Mahmoudi Z., Hajipour M.J., Atyabi F., Ghavami M., Mahmoudi M. Protein corona composition of gold nanoparticles/nanorods affects amyloid beta fibrillation process. Nanoscale. 2015;7:5004–5013. doi: 10.1039/C4NR06009A. PubMed DOI

Ghasemi F., Hormozi-Nezhad M.R., Mahmoudi M. A colorimetric sensor array for detection and discrimination of biothiols based on aggregation of gold nanoparticles. Anal. Chim. Acta. 2015;882:58–67. doi: 10.1016/j.aca.2015.04.011. PubMed DOI

Nejad M.A.F., Bigdeli A., Hormozi-Nezhad M.R. Wide color-varying visualization of sulfide with a dual emissive ratiometric fluorescence assay using carbon dots and gold nanoclusters. Microchem. J. 2020:104960. doi: 10.1016/j.microc.2020.104960. DOI

Moslehipour A., Bigdeli A., Ghasemi F., Hormozi-Nezhad M.R. Design of a ratiometric fluorescence nanoprobe to detect plasma levels of levodopa. Microchem. J. 2019;148:591–596. doi: 10.1016/j.microc.2019.05.041. DOI

Mokhtarzadeh A., Eivazzadeh-Keihan R., Pashazadeh P., Hejazi M., Gharaatifar N., Hasanzadeh M., Baradaran B., de la Guardia M. Nanomaterial-based biosensors for detection of pathogenic virus. Trac Trends Anal. Chem. 2017;97:445–457. doi: 10.1016/j.trac.2017.10.005. PubMed DOI PMC

Draz M.S., Shafiee H. Applications of gold nanoparticles in virus detection. Theranostics. 2018;8:1985. doi: 10.7150/thno.23856. PubMed DOI PMC

Lee T., Kim G.H., Kim S.M., Hong K., Kim Y., Park C., Sohn H., Min J. Label-free localized surface plasmon resonance biosensor composed of multi-functional DNA 3 way junction on hollow Au spike-like nanoparticles (HAuSN) for avian influenza virus detection. Colloids Surf. B Biointerfaces. 2019;182:110341. doi: 10.1016/j.colsurfb.2019.06.070. PubMed DOI PMC

Wang Y.F., Pang D.W., Zhang Z.L., Zheng H.Z., Cao J.P., Shen J.T. Visual gene diagnosis of HBV and HCV based on nanoparticle probe amplification and silver staining enhancement. J. Med Virol. 2003;70:205–211. doi: 10.1002/jmv.10379. PubMed DOI

Wang Y.-F., Shen J.-T., Liu H.-H. Analytical performance of and real sample analysis with an HBV gene visual detection chip. J. Virol. Methods. 2004;121:79–84. doi: 10.1016/j.jviromet.2004.06.004. PubMed DOI

Lu X., Dong X., Zhang K., Han X., Fang X., Zhang Y. A gold nanorods-based fluorescent biosensor for the detection of hepatitis B virus DNA based on fluorescence resonance energy transfer. Analyst. 2013;138:642–650. doi: 10.1039/C2AN36099C. PubMed DOI

Adegoke O., Morita M., Kato T., Ito M., Suzuki T., Park E.Y. Localized surface plasmon resonance-mediated fluorescence signals in plasmonic nanoparticle-quantum dot hybrids for ultrasensitive Zika virus RNA detection via hairpin hybridization assays. Biosens. Bioelectron. 2017;94:513–522. doi: 10.1016/j.bios.2017.03.046. PubMed DOI

Li M., Cushing S.K., Liang H., Suri S., Ma D., Wu N. Plasmonic nanorice antenna on triangle nanoarray for surface-enhanced Raman scattering detection of hepatitis B virus DNA. Anal. Chem. 2013;85:2072–2078. doi: 10.1021/ac303387a. PubMed DOI

Jin F., Li H., Xu D. Enzyme-free fluorescence microarray for determination of hepatitis B virus DNA based on silver nanoparticle aggregates-assisted signal amplification. Anal. Chim. Acta. 2019;1077:297–304. doi: 10.1016/j.aca.2019.05.066. PubMed DOI

Hung L.-Y., Chang J.-C., Tsai Y.-C., Huang C.-C., Chang C.-P., Yeh C.-S., Lee G.-B. Magnetic nanoparticle-based immunoassay for rapid detection of influenza infections by using an integrated microfluidic system. Nanomed. Nanotechnol. Biol. Med. 2014;10:819–829. doi: 10.1016/j.nano.2013.11.009. PubMed DOI PMC

de la Escosura-Muñiz A., Maltez-da Costa M., Sánchez-Espinel C., Díaz-Freitas B., Fernández-Suarez J., González-Fernández Á., Merkoçi A. Gold nanoparticle-based electrochemical magnetoimmunosensor for rapid detection of anti-hepatitis B virus antibodies in human serum. Biosens. Bioelectron. 2010;26:1710–1714. doi: 10.1016/j.bios.2010.07.069. PubMed DOI

Wu K., Liu J., Saha R., Su D., Krishna V.D., Cheeran M.C., Wang J.-P. Detection of Influenza A Virus Nucleoprotein Through the Self-Assembly of Nanoparticles in Magnetic Particle Spectroscopy-Based Bioassays: A Method for Rapid, Sensitive, and Wash-free Magnetic Immunoassays. arXiv. 20191907.06000

Zhang Q., Wang C.-F., Lv Y.-K. Luminescent switch sensors for the detection of biomolecules based on metal–organic frameworks. Analyst. 2018;143:4221–4229. doi: 10.1039/C8AN00816G. PubMed DOI

Ploetz E., Engelke H., Lächelt U., Wuttke S. The Chemistry of Reticular Framework Nanoparticles: MOF, ZIF, and COF Materials. Adv. Funct. Mater. 2020:1909062. doi: 10.1002/adfm.201909062. DOI

Xie B.-P., Qiu G.-H., Hu P.-P., Liang Z., Liang Y.-M., Sun B., Bai L.-P., Jiang Z.-H., Chen J.-X. Simultaneous detection of Dengue and Zika virus RNA sequences with a three-dimensional Cu-based zwitterionic metal–organic framework, comparison of single and synchronous fluorescence analysis. Sens. Actuators B Chem. 2018;254:1133–1140. doi: 10.1016/j.snb.2017.06.085. DOI

Wei X., Zheng L., Luo F., Lin Z., Guo L., Qiu B., Chen G. Fluorescence biosensor for the H 5 N 1 antibody based on a metal–organic framework platform. J. Mater. Chem. B. 2013;1:1812–1817. doi: 10.1039/c3tb00501a. PubMed DOI

Yang S.-P., Chen S.-R., Liu S.-W., Tang X.-Y., Qin L., Qiu G.-H., Chen J.-X., Chen W.-H. Platforms formed from a three-dimensional Cu-based zwitterionic metal–organic framework and probe ss-DNA: Selective fluorescent biosensors for human immunodeficiency virus 1 ds-DNA and Sudan virus RNA sequences. Anal. Chem. 2015;87:12206–12214. doi: 10.1021/acs.analchem.5b03084. PubMed DOI

Jia Z., Ma Y., Yang L., Guo C., Zhou N., Wang M., He L., Zhang Z. NiCo2O4 spinel embedded with carbon nanotubes derived from bimetallic NiCo metal-organic framework for the ultrasensitive detection of human immune deficiency virus-1 gene. Biosens. Bioelectron. 2019;133:55–63. doi: 10.1016/j.bios.2019.03.030. PubMed DOI

Guo J.F., Fang R.M., Huang C.Z., Li Y.F. Dual amplifying fluorescence anisotropy for detection of respiratory syncytial virus DNA fragments with size-control synthesized metal–organic framework MIL-101. Rsc Adv. 2015;5:46301–46306. doi: 10.1039/C5RA06654A. DOI

Nasrollahzadeh M., Baran T., Baran N.Y., Sajjadi M., Tahsili M.R., Shokouhimehr M. Pd nanocatalyst stabilized on amine-modified zeolite: Antibacterial and catalytic activities for environmental pollution remediation in aqueous medium. Sep. Purif. Technol. 2020;239:116542. doi: 10.1016/j.seppur.2020.116542. DOI

Le Q.V., Yang G., Wu Y., Jang H.W., Shokouhimehr M., Oh Y.K. Nanomaterials for modulating innate immune cells in cancer immunotherapy. Asian J. Pharm. Sci. 2019;14:16–29. doi: 10.1016/j.ajps.2018.07.003. PubMed DOI PMC

Beitollahi H., Tajik S., Dourandish Z., Zhang K., Le Q.V., Jang H.W., Kim S.Y., Shokouhimehr M. Recent Advances in the Aptamer-Based Electrochemical Biosensors for Detecting Aflatoxin B1 and Its Pertinent Metabolite Aflatoxin M1. Sensors. 2020;20:3256. doi: 10.3390/s20113256. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...