CaZnO-based nanoghosts for the detection of ssDNA, pCRISPR and recombinant SARS-CoV-2 spike antigen and targeted delivery of doxorubicin

. 2022 Nov ; 306 () : 135578. [epub] 20220704

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35798154

Overexpression of proteins/antigens and other gene-related sequences in the bodies could lead to significant mutations and refractory diseases. Detection and identification of assorted trace concentrations of such proteins/antigens and/or gene-related sequences remain challenging, affecting different pathogens and making viruses stronger. Correspondingly, coronavirus (SARS-CoV-2) mutations/alterations and spread could lead to overexpression of ssDNA and the related antigens in the population and brisk activity in gene-editing technologies in the treatment/detection may lead to the presence of pCRISPR in the blood. Therefore, the detection and evaluation of their trace concentrations are of critical importance. CaZnO-based nanoghosts (NGs) were synthesized with the assistance of a high-gravity technique at a 1,800 MHz field, capitalizing on the use of Rosmarinus officinalis leaf extract as the templating agent. A complete chemical, physical and biological investigation revealed that the synthesized NGs presented similar morphological features to the mesenchymal stem cells (MSCs), resulting in excellent biocompatibility, interaction with ssDNA- and/or pCRISPR-surface, through various chemical and physical mechanisms. This comprise the unprecedented synthesis of a fully inorganic nanostructure with behavior that is similar to MSCs. Furthermore, the endowed exceptional ability of inorganic NGs for detective sensing/folding of ssDNA and pCRISPR and recombinant SARS-CoV-2 spike antigen (RSCSA), along with in-situ hydrogen peroxide detection on the HEK-293 and HeLa cell lines, was discerned. On average, they displayed a high drug loading capacity of 55%, and the acceptable internalizations inside the HT-29 cell lines affirmed the anticipated MSCs-like behavior of these inorganic-NGs.

Biomaterial Group Department of Biomedical Engineering Amirkabir University of Technology Tehran Iran

Department of Chemistry Sharif University of Technology Tehran Iran

Department of Pharmaceutical Nanotechnology Faculty of Pharmacy Tehran University of Medical Sciences Tehran Iran; Nanotechnology Research Centre Faculty of Pharmacy Tehran University of Medical Sciences Tehran Iran

Department of Physics Sharif University of Technology P O Box 11155 9161 Tehran Iran

Department of Physics Sharif University of Technology P O Box 11155 9161 Tehran Iran; School of Engineering Macquarie University Sydney New South Wales 2109 Australia; Department of Materials Science and Engineering Pohang University of Science and Technology 77 Cheongam ro Nam gu Pohang Gyeongbuk 37673 South Korea

Department of Polymer Technology Faculty of Chemistry Gdánsk University of Technology G Narutowicza 11 12 80 233 Gdánsk Poland

Department of Tissue Engineering and Biomaterials School of Advanced Medical Sciences and Technologies Hamadan University of Medical Sciences 6517838736 Hamadan Iran

Faculty of Engineering and Natural Sciences Sabanci University Orta Mahalle Üniversite Caddesi No 27 Orhanlı Tuzla 34956 Istanbul Turkey

Institute of Chemistry Federal University of Rio Grande Do Sul Porto Alegre RS Brazil

Istituto Italiano di Tecnologia Centre for Materials Interfaces Viale Rinaldo Piaggio 34 56025 Pontedera Pisa Italy

Molecular Immunology Research Center Tehran University of Medical Sciences Tehran Iran; Department of Immunology School of Medicine Tehran University of Medical Sciences Tehran Iran

Regional Centre of Advanced Technologies and Materials Czech Advanced Technology and Research Institute Palacky University Šlechtitelů 27 783 71 Olomouc Czech Republic

School of Chemistry Damghan University Damghan 36716 41167 Iran

Zobrazit více v PubMed

Ahmadi S., Jajarmi V., Ashrafizadeh M., Zarrabi A., Haponiuk J.T., Saeb M.R., Lima E.C., Rabiee M., Rabiee N. Mission impossible for cellular internalization: when porphyrin alliance with UiO-66-NH2 MOF gives the cell lines a ride. J. Hazard Mater. 2022:129259. PubMed

Ahmadi S., Rabiee N., Bagherzadeh M., Elmi F., Fatahi Y., Farjadian F., Baheiraei N., Nasseri B., Rabiee M., Dastjerd N.T. Stimulus-responsive sequential release systems for drug and gene delivery. Nano Today. 2020;34 PubMed PMC

Ahmadi S., Rabiee N., Fatahi Y., Hooshmand S.E., Bagherzadeh M., Rabiee M., Jajarmi V., Dinarvand R., Habibzadeh S., Saeb M.R. Green chemistry and coronavirus. Sustain. Chem. Pharm. 2021:100415. PubMed PMC

Akhavan O. Lasting antibacterial activities of Ag–TiO2/Ag/a-TiO2 nanocomposite thin-film photocatalysts under solar light irradiation. J. Colloid Interface Sci. 2009;336:117–124. PubMed

Akhavan O. Graphene nanomesh by ZnO nanorod photocatalysts. ACS Nano. 2010;4:4174–4180. PubMed

Akhavan O., Ghaderi E. Photocatalytic reduction of graphene oxide nanosheets on TiO2 thin film for photoinactivation of bacteria in solar light irradiation. J. Phys. Chem. C. 2009;113:20214–20220.

Akhavan O., Ghaderi E. Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano. 2010;4:5731–5736. PubMed

Akhavan O., Ghaderi E. Escherichia coli bacteria reduce graphene oxide to bactericidal graphene in a self-limiting manner. Carbon. 2012;50:1853–1860.

Akhavan O., Ghaderi E., Abouei E., Hatamie S., Ghasemi E. Accelerated differentiation of neural stem cells into neurons on ginseng-reduced graphene oxide sheets. Carbon. 2014;66:395–406.

Akhavan O., Ghaderi E., Akhavan A. Size-dependent genotoxicity of graphene nanoplatelets in human stem cells. Biomaterials. 2012;33:8017–8025. PubMed

Akhavan O., Ghaderi E., Emamy H., Akhavan F. Genotoxicity of graphene nanoribbons in human mesenchymal stem cells. Carbon. 2013;54:419–431.

Akhavan O., Ghaderi E., Esfandiar A. Wrapping bacteria by graphene nanosheets for isolation from the environment, reactivation by sonication, and inactivation by near-infrared irradiation. J. Phys. Chem. B. 2011;115:6279–6288. PubMed

Akhavan O., Ghaderi E., Hashemi E., Akbari E. Dose-dependent effects of nanoscale graphene oxide on reproduction capability of mammals. Carbon. 2015;95:309–317.

Akhavan O., Ghaderi E., Shahsavar M. Graphene nanogrids for selective and fast osteogenic differentiation of human mesenchymal stem cells. Carbon. 2013;59:200–211.

Akhavan O., Hashemi E., Zare H., Shamsara M., Taghavinia N., Heidari F. Influence of heavy nanocrystals on spermatozoa and fertility of mammals. Mater. Sci. Eng. C. 2016;69:52–59. PubMed

Akhavan O., Kalaee M., Alavi Z., Ghiasi S., Esfandiar A. Increasing the antioxidant activity of green tea polyphenols in the presence of iron for the reduction of graphene oxide. Carbon. 2012;50:3015–3025.

Akhavan O., Saadati M., Jannesari M. Graphene jet nanomotors in remote-controllable self-propulsion swimmers in pure water. Nano Lett. 2016;16:5619–5630. PubMed

Akça A., Karaman O., Karaman C. Mechanistic insights into the catalytic reduction of N2O by CO over Cu-embedded graphene: a density functional theory perspective. ECS J. Solid State Sci. Technol. 2021;10

Bagherzadeh M., Rabiee N., Fatahi Y., Dinarvand R. Zn-rich (GaN) 1− x (ZnO) x: a biomedical friend? New J. Chem. 2021;45:4077–4089.

Brown S. Cancer gets spooked. Nat. Nanotechnol. 2013 1-1.

Deng C., Seidi F., Yong Q., Jin X., Li C., Zhang X., Han J., Liu Y., Huang Y., Wang Y. Antiviral/antibacterial biodegradable cellulose nonwovens as environmentally friendly and bioprotective materials with the potential to minimize microplastic pollution. J. Hazard Mater. 2022;424 PubMed PMC

Du J.-Z., Du X.-J., Mao C.-Q., Wang J. Tailor-made dual pH-sensitive polymer–doxorubicin nanoparticles for efficient anticancer drug delivery. J. Am. Chem. Soc. 2011;133:17560–17563. PubMed

Farjadian F., Moghoofei M., Mirkiani S., Ghasemi A., Rabiee N., Hadifar S., Beyzavi A., Karimi M., Hamblin M.R. Bacterial components as naturally inspired nano-carriers for drug/gene delivery and immunization: set the bugs to work? Biotechnol. Adv. 2018;36:968–985. PubMed PMC

Gerner C., Haudek V., Schandl U., Bayer E., Gundacker N., Hutter H.P., Mosgoeller W. Increased protein synthesis by cells exposed to a 1,800-MHz radio-frequency mobile phone electromagnetic field, detected by proteome profiling. Int. Arch. Occup. Environ. Health. 2010;83:691–702. PubMed PMC

Ghadiri A.M., Rabiee N., Bagherzadeh M., Kiani M., Fatahi Y., Di Bartolomeo A., Dinarvand R., Webster T.J. Green synthesis of CuO-and Cu2O-NPs in assistance with high-gravity: the flowering of Nanobiotechnology. Nanotechnology. 2020;31 PubMed

Huang Y., Huang X., Ma M., Hu C., Seidi F., Yin S., Xiao H. Recent advances in the bacterial cellulose-derived carbon aerogels. J. Mater. Chem. C. 2021;9:818–828.

Hui Y., Yi X., Hou F., Wibowo D., Zhang F., Zhao D., Gao H., Zhao C.-X. Role of nanoparticle mechanical properties in cancer drug delivery. ACS Nano. 2019;13:7410–7424. PubMed

Hwang J., Zheng M., Wiraja C., Cui M., Yang L., Xu C. Reprogramming of macrophages with macrophage cell membrane-derived nanoghosts. Nanoscale Adv. 2020;2:5254–5262. PubMed PMC

Jannesari M., Akhavan O., Madaah Hosseini H.R., Bakhshi B. Graphene/CuO2 nanoshuttles with controllable release of oxygen nanobubbles promoting interruption of bacterial respiration. ACS Appl. Mater. Interfaces. 2020;12:35813–35825. PubMed

Kaneti L., Bronshtein T., Malkah Dayan N., Kovregina I., Letko Khait N., Lupu-Haber Y., Fliman M., Schoen B.W., Kaneti G., Machluf M. Nanoghosts as a novel natural nonviral gene delivery platform safely targeting multiple cancers. Nano Lett. 2016;16:1574–1582. PubMed

Karaman C. Orange peel derived‐nitrogen and sulfur Co‐doped carbon dots: a nano‐booster for enhancing ORR electrocatalytic performance of 3D graphene networks. Electroanalysis. 2021;33:1356–1369.

Karaman O. Three-dimensional graphene network supported nickel-cobalt bimetallic alloy nanocatalyst for hydrogen production by hydrolysis of sodium borohydride and developing of an artificial neural network modeling to forecast hydrogen production rate. Chem. Eng. Res. Des. 2022;181:321–330.

Kholafazad-Kordasht H., Hasanzadeh M., Seidi F. Smartphone-based immuno-sensors as next-generation healthcare tools: technical and analytical overview towards the improvement of personalized medicine. TrAC, Trends Anal. Chem. 2021;145

Kiani M., Rabiee N., Bagherzadeh M., Ghadiri A.M., Fatahi Y., Dinarvand R., Webster T.J. High-gravity-assisted green synthesis of palladium nanoparticles: the flowering of nanomedicine. Nanomed. Nanotechnol. Biol. Med. 2020;30 PubMed

Kiani M., Rabiee N., Bagherzadeh M., Ghadiri A.M., Fatahi Y., Dinarvand R., Webster T.J. Improved green biosynthesis of chitosan decorated Ag-and Co3O4-nanoparticles: a relationship between surface morphology, photocatalytic and biomedical applications. Nanomed. Nanotechnol. Biol. Med. 2020;32 PubMed

Kordasht H.K., Hasanzadeh M., Seidi F., Alizadeh P.M. Poly (amino acids) towards sensing: recent progress and challenges. TrAC, Trends Anal. Chem. 2021;140

Krishnamurthy S., Gnanasammandhan M., Xie C., Huang K., Cui M., Chan J. Monocyte cell membrane-derived nanoghosts for targeted cancer therapy. Nanoscale. 2016;8:6981–6985. PubMed

Liu Y., Li R., Liang F., Deng C., Seidi F., Xiao H. Fluorescent paper-based analytical devices for ultra-sensitive dual-type RNA detections and accurate gastric cancer screening. Biosens. Bioelectron. 2022;197 PubMed

Lupu‐Haber Y., Bronshtein T., Shalom‐Luxenburg H., D'Atri D., Oieni J., Kaneti L., Shagan A., Hamias S., Amram L., Kaneti G. Pretreating mesenchymal stem cells with cancer conditioned‐media or proinflammatory cytokines changes the tumor and immune targeting by nanoghosts derived from these cells. Advanced healthc. mater. 2019;8 PubMed

Manzano M., Vallet‐Regí M. Mesoporous silica nanoparticles for drug delivery. Adv. Funct. Mater. 2020;30

Mitra S., Sasmal H.S., Kundu T., Kandambeth S., Illath K., Diaz Diaz D., Banerjee R. Targeted drug delivery in covalent organic nanosheets (CONs) via sequential post-synthetic modification. J. Am. Chem. Soc. 2017;139:4513–4520. PubMed

Mobed A., Hasanzadeh M., Seidi F. Antibacterial activity of gold nanocomposites as a new nanomaterial weapon to combat photogenic agents: recent advances and challenges. RSC Adv. 2021;11:34688–34698. PubMed PMC

Nikfarjam N., Ghomi M., Agarwal T., Hassanpour M., Sharifi E., Khorsandi D., Ali Khan M., Rossi F., Rossetti A., Nazarzadeh Zare E. Antimicrobial ionic liquid‐based materials for biomedical applications. Adv. Funct. Mater. 2021:2104148.

Nosrati H., Seidi F., Hosseinmirzaei A., Mousazadeh N., Mohammadi A., Ghaffarlou M., Danafar H., Conde J., Sharafi A. Prodrug polymeric nanoconjugates encapsulating gold nanoparticles for enhanced X‐Ray radiation therapy in breast cancer. Advanced Healthc. Mater. 2022;11 PubMed

Rabiee N., Bagherzadeh M., Ghadiri A.M., Kiani M., Ahmadi S., Aldhaher A., Varma R.S., Webster T.J. High-gravity-assisted green synthesis of NiO-NPs anchored on the surface of biodegradable nanobeads with potential biomedical applications. J. Biomed. Nanotechnol. 2020;16:520–530. PubMed

Rabiee N., Bagherzadeh M., Ghadiri A.M., Kiani M., Aldhaher A., Ramakrishna S., Tahriri M., Tayebi L., Webster T.J. Green synthesis of ZnO NPs via Salvia hispanica: evaluation of potential antioxidant, antibacterial, mammalian cell viability, H1N1 influenza virus inhibition, and photocatalytic activities. J. Biomed. Nanotechnol. 2020;16:456–466. PubMed

Rabiee N., Bagherzadeh M., Ghadiri A.M., Kiani M., Fatahi Y., Tavakolizadeh M., Pourjavadi A., Jouyandeh M., Saeb M.R., Mozafari M. Multifunctional 3D hierarchical bioactive green carbon-based nanocomposites. ACS Sustain. Chem. Eng. 2021;9:8706–8720.

Rabiee N., Bagherzadeh M., Ghasemi A., Zare H., Ahmadi S., Fatahi Y., Dinarvand R., Rabiee M., Ramakrishna S., Shokouhimehr M. Point-of-use rapid detection of sars-cov-2: nanotechnology-enabled solutions for the COVID-19 pandemic. Int. J. Mol. Sci. 2020;21:5126. PubMed PMC

Rabiee N., Bagherzadeh M., Heidarian Haris M., Ghadiri A.M., Matloubi Moghaddam F., Fatahi Y., Dinarvand R., Jarahiyan A., Ahmadi S., Shokouhimehr M. Polymer-coated NH2-UiO-66 for the codelivery of DOX/pCRISPR. ACS Appl. Mater. Interfaces. 2021;13:10796–10811. PubMed

Rabiee N., Bagherzadeh M., Jouyandeh M., Zarrintaj P., Saeb M.R., Mozafari M., Shokouhimehr M., Varma R.S. Natural polymers decorated MOF-MXene nanocarriers for Co-delivery of doxorubicin/pCRISPR. ACS Appl. Bio Mater. 2021;4:5106–5121. PubMed

Rabiee N., Bagherzadeh M., Kiani M., Ghadiri A.M. Rosmarinus officinalis directed palladium nanoparticle synthesis: investigation of potential antibacterial, anti-fungal, and Mizoroki-Heck catalytic activities. Adv. Powder Technol. 2020;31:1402–1411.

Rabiee N., Bagherzadeh M., Kiani M., Ghadiri A.M., Etessamifar F., Jaberizadeh A.H., Shakeri A. Biosynthesis of copper oxide nanoparticles with potential biomedical applications. Int. J. Nanomed. 2020;15:3983. PubMed PMC

Rabiee N., Bagherzadeh M., Kiani M., Ghadiri A.M., Zhang K., Jin Z., Ramakrishna S., Shokouhimehr M. High gravity-assisted green synthesis of ZnO nanoparticles via Allium ursinum: conjoining nanochemistry to neuroscience. Nano Express. 2020;1

Rabiee N., Fatahi Y., Ahmadi S., Abbariki N., Ojaghi A., Rabiee M., Radmanesh F., Dinarvand R., Bagherzadeh M., Mostafavi E. Bioactive hybrid metal-organic framework (MOF)-based nanosensors for optical detection of recombinant SARS-CoV-2 spike antigen. Sci. Total Environ. 2022;825:153902. PubMed PMC

Rabiee N., Fatahi Y., Asadnia M., Daneshgar H., Kiani M., Ghadiri A.M., Atarod M., Mashhadzadeh A.H., Akhavan O., Bagherzadeh M. Green porous benzamide-like nanomembranes for hazardous cations detection, separation, and concentration adjustment. J. Hazard Mater. 2021:127130. PubMed

Rabiee N., Khatami M., Jamalipour Soufi G., Fatahi Y., Iravani S., Varma R.S. Diatoms with invaluable applications in nanotechnology, biotechnology, and biomedicine: recent advances. ACS Biomater. Sci. Eng. 2021 PubMed

Rabiee N., Rabiee M., Bagherzadeh M., Rezaei N. COVID-19 and picotechnology: potential opportunities. Med. Hypotheses. 2020;144 PubMed PMC

Rabiee N., Yaraki M.T., Garakani S.M., Garakani S.M., Ahmadi S., Lajevardi A., Bagherzadeh M., Rabiee M., Tayebi L., Tahriri M. Recent advances in porphyrin-based nanocomposites for effective targeted imaging and therapy. Biomaterials. 2020;232 PubMed PMC

Saadati A., Hasanzadeh M., Seidi F. Biomedical application of hyperbranched polymers: recent Advances and challenges. TrAC, Trends Anal. Chem. 2021;142

Saeb M.R., Rabiee N., Mozafari M., Mostafavi E. Metal-organic frameworks-based nanomaterials for drug delivery. Materials. 2021;14:3652. PubMed PMC

Sardaremelli S., Hasanzadeh M., Seidi F. Enzymatic recognition of hydrogen peroxide (H2O2) in human plasma samples using HRP immobilized on the surface of poly (arginine‐toluidine blue)‐Fe3O4 nanoparticles modified polydopamine; a novel biosensor. J. Mol. Recogn. 2021;34:e2928. PubMed

Schuderer J., Samaras T., Oesch W., Spat D., Kuster N. High peak SAR exposure unit with tight exposure and environmental control for in vitro experiments at 1800 MHz. IEEE Trans. Microw. Theor. Tech. 2004;52:2057–2066.

Seidi F., Deng C., Zhong Y., Liu Y., Huang Y., Li C., Xiao H. Functionalized masks: powerful materials against COVID‐19 and future pandemics. Small. 2021;17 PubMed PMC

Shokri Z., Seidi F., Saeb M.R., Jin Y., Li C., Xiao H. Elucidating the impact of enzymatic modifications on the structure, properties, and applications of cellulose, chitosan, starch, and their derivatives: a review. Mater. Today Chem. 2022;24

Teplensky M.H., Fantham M., Li P., Wang T.C., Mehta J.P., Young L.J., Moghadam P.Z., Hupp J.T., Farha O.K., Kaminski C.F. Temperature treatment of highly porous zirconium-containing metal-organic frameworks extends drug delivery release. J. Am. Chem. Soc. 2017;139:7522–7532. PubMed

Toledano Furman N.E., Lupu-Haber Y., Bronshtein T., Kaneti L., Letko N., Weinstein E., Baruch L., Machluf M. Reconstructed stem cell nanoghosts: a natural tumor-targeting platform. Nano Lett. 2013;13:3248–3255. PubMed

Truong L.B., Medina-Cruz D., Mostafavi E., Rabiee N. Selenium nanomaterials to combat antimicrobial resistance. Molecules. 2021;26:3611. PubMed PMC

Velásquez-Hernández M.d.J., Linares-Moreau M., Astria E., Carraro F., Alyami M.Z., Khashab N.M., Sumby C.J., Doonan C.J., Falcaro P. Towards applications of bioentities@ MOFs in biomedicine. Coord. Chem. Rev. 2021;429

Vivero-Escoto J.L., Slowing I.I., Wu C.-W., Lin V.S.-Y. Photoinduced intracellular controlled release drug delivery in human cells by gold-capped mesoporous silica nanosphere. J. Am. Chem. Soc. 2009;131:3462–3463. PubMed

Wu J., Zhang Z., Qiao C., Yi C., Xu Z., Chen T., Dai X. Synthesis of monodisperse ZIF-67@ CuSe@ PVP nanoparticles for pH-responsive drug release and photothermal therapy. ACS Biomater. Sci. Eng. 2021;8:284–292. PubMed

Yu K., Wei T., Li Z., Li J., Wang Z., Dai Z. Construction of molecular sensing and logic systems based on site-occupying effect-modulated MOF–DNA interaction. J. Am. Chem. Soc. 2020 PubMed

Yu W., Liu R., Zhou Y., Gao H. Size-tunable strategies for a tumor-targeted drug delivery system. ACS Cent. Sci. 2020;6:100–116. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...