Quantum dots against SARS-CoV-2: diagnostic and therapeutic potentials

. 2022 Jul ; 97 (7) : 1640-1654. [epub] 20220204

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35463806

The application of quantum dots (QDs) for detecting and treating various types of coronaviruses is very promising, as their low toxicity and high surface performance make them superior among other nanomaterials; in conjugation with fluorescent probes they are promising semiconductor nanomaterials for the detection of various cellular processes and viral infections. In view of the successful results for inhibiting SARS-CoV-2, functional QDs could serve eminent role in the growth of safe nanotherapy for the cure of viral infections in the near future; their large surface areas help bind numerous molecules post-synthetically. Functionalized QDs with high functionality, targeted selectivity, stability and less cytotoxicity can be employed for highly sensitive co-delivery and imaging/diagnosis. Besides, due to the importance of safety and toxicity issues, QDs prepared from plant sources (e.g. curcumin) are much more attractive, as they provide good biocompatibility and low toxicity. In this review, the recent developments pertaining to the diagnostic and inhibitory potentials of QDs against SARS-CoV-2 are deliberated including important challenges and future outlooks. © 2022 Society of Chemical Industry (SCI).

Zobrazit více v PubMed

Majid S, Khan MS, Rashid S, Niyaz A, Farooq R, Bhat SA et al., COVID‐19: diagnostics, therapeutic advances, and vaccine development. Curr Clin Microbiol Rep 8:152–166 (2021). PubMed PMC

Attia YA, El‐Saadony MT, Swelum AA, Qattan SYA, Al‐qurashi AD, Asiry KA et al., COVID‐19: pathogenesis, advances in treatment and vaccine development and environmental impact – an updated review. Environ Sci Pollut Res 28:22241–22264 (2021). PubMed PMC

Rabiee N, Rabiee M, Bagherzadeh M and Rezaei N, COVID‐19 and picotechnology: potential opportunities. Med Hypotheses 144:109917 (2020). PubMed PMC

Iravani S and Varma RS, Important roles of oligo‐ and polysaccharides against SARS‐CoV‐2: recent advances. Appl Sci 11:3512 (2021).

Alizadeh F and Khodavandi A, Systematic review and meta‐analysis of the efficacy of nanoscale materials against coronaviruses: possible potential antiviral agents for SARS‐CoV‐2. IIEEE Trans Nanobiosci 19:485–497 (2020). PubMed

Singh KRB, Rathee S, Nagpure G, Singh J and Singh RP, Smart and emerging nanomaterials‐based biosensor for SARS‐CoV‐2 detection. Mater Lett 307:131092 (2022). PubMed PMC

Kevadiya BD, Machhi J, Herskovitz J, Oleynikov MD, Blomberg WR, Bajwa N et al., Diagnostics for SARS‐CoV‐2 infections. Nat Mater 20:593–605 (2021). PubMed PMC

Carvalho APA and Conte‐Junior CA, Recent advances on nanomaterials to COVID‐19 management: a systematic review on antiviral/virucidal agents and mechanisms of SARS‐CoV‐2 inhibition/inactivation. Global Challenges 5:2000115 (2021). PubMed PMC

Derakhshan MA, Amani A and Faridi‐Majidi R, State‐of‐the‐art of nanodiagnostics and nanotherapeutics against SARS‐CoV‐2. ACS Appl Mater Interfaces 13:14816–14843 (2021). PubMed

Jamalipour Soufi G, Hekmatnia A, Nasrollahzadeh M, Shafiei N, Sajjadi M, Iravani P et al., SARS‐CoV‐2 (COVID‐19): new discoveries and current challenges. Appl Sci 10:3641 (2020).

Jamalipour Soufi G and Iravani S, Potential inhibitors of SARS‐CoV‐2: recent advances. J Drug Target 29:349–364 (2020). PubMed

Saatçi E and Natarajan S, State‐of‐the‐art colloidal particles and unique interfaces‐based SARS‐CoV‐2 detection methods and COVID‐19 diagnosis. Curr Opin Colloid Interface Sci 55:101469 (2021). PubMed PMC

Sivasankarapillai VS, Madaswamy SL and Dhanusuraman R, Role of nanotechnology in facing SARS‐CoV‐2 pandemic: solving crux of the matter with a hopeful arrow in the quiver. Sens Int 2:100096 (2021). PubMed PMC

Huang S, Gu J, Ye J, Fang B, Wan S, Wang C et al., Benzoxazine monomer derived carbon dots as a broad‐spectrum agent to block viral infectivity. J Colloid Interface Sci 542:198–206 (2019). PubMed

Tamargo J, Treatment of coronavirus disease 2019: shooting in the dark. Eur Cardiol 15:e59–e59 (2020). PubMed PMC

Shirani K, Sheikhbahaei E, Torkpour Z, Ghadiri Nejad M, Kamyab Moghadas B, Ghasemi M et al., A narrative review of COVID‐19: the new pandemic disease. Iran J Med Sci 45:233–249 (2020). PubMed PMC

Hajebi S, Rabiee N, Bagherzadeh M, Ahmadi S, Rabiee M, Roghani‐Mamaqani H et al., Stimulus‐responsive polymeric nanogels as smart drug delivery systems. Acta Biomater 92:1–18 (2019). PubMed PMC

Nik AB, Zare H, Razavi S, Mohammadi H, Ahmadi PT, Yazdani N et al., Smart drug delivery: capping strategies for mesoporous silica nanoparticles. Microporous Mesoporous Mater 299:110115 (2020).

Rabiee N, Khatami M, Jamalipour Soufi G, Fatahi Y, Iravani S and Varma RS, Diatoms with invaluable applications in nanotechnology, biotechnology, and biomedicine: recent advances. ACS Biomater Sci Eng 7:3053–3068 (2021). PubMed

Rabiee N, Bagherzadeh M, Ghadiri AM, Kiani M, Fatahi Y, Tavakolizadeh M et al., Multifunctional 3D hierarchical bioactive green carbon‐based nanocomposites. ACS Sustain Chem Eng 9:8706–8720 (2021).

Rabiee N, Bagherzadeh M, Jouyandeh M, Zarrintaj P, Saeb MR, Mozafari M et al., Natural polymers decorated MOF‐MXene nanocarriers for co‐delivery of doxorubicin/pCRISPR. ACS Appl Bio Mater 4:5106–5121 (2021). PubMed

Rabiee N, Bagherzadeh M, Ghadiri AM, Fatahi Y, Aldhaher A, Makvandi P et al., Turning toxic nanomaterials into a safe and bioactive nanocarrier for co‐delivery of DOX/pCRISPR. ACS Appl Bio Mater 4:5336–5351 (2021). PubMed

Rabiee N, Bagherzadeh M, Ghadiri AM, Fatahi Y, Baheiraei N, Safarkhani M et al., Bio‐multifunctional noncovalent porphyrin functionalized carbon‐based nanocomposite. Sci Rep 11:6604 (2021). PubMed PMC

Bagherzadeh M, Rabiee N, Fatahi Y and Dinarvand R, Zn‐rich (GaN)1−x(ZnO)x: a biomedical friend? New J Chem 45:4077–4089 (2021).

Fang M, Peng C‐W, Pang D‐W and Li Y, Quantum dots for cancer research: current status, remaining issues, and future perspectives. Cancer Biol Med 9:151–163 (2012). PubMed PMC

Garg P, Sangam S, Kochhar D, Pahari S, Kar C and Mukherjee M, Exploring the role of triazole functionalized heteroatom co‐doped carbon quantum dots against human coronaviruses. Nano Today 35:101001 (2020). PubMed PMC

Manivannan S and Ponnuchamy K, Quantum dots as a promising agent to combat COVID‐19. Appl Organomet Chem 34:e5887 (2020). PubMed PMC

Sanchez de Araujo H and Ferreira F, Quantum dots and photodynamic therapy in COVID‐19 treatment. Quantum Eng 3:e78 (2021).

Zare M, Thomas V and Ramakrishna S, Nanoscience and quantum science‐led biocidal and antiviral strategies. J Mater Chem B 9:7328–7346 (2021). PubMed

Kotta S, Aldawsari HM, Badr‐Eldin SM, Alhakamy NA, Md S, Nair AB et al., Exploring the potential of carbon dots to combat COVID‐19. Front Mol Biosci 7:616575 (2020). PubMed PMC

Hu Z, Song B, Xu L, Zhong Y, Peng F, Ji X et al., Aqueous synthesized quantum dots interfere with the NF‐κB pathway and confer anti‐tumor, anti‐viral and anti‐inflammatory effects. Biomaterials 108:187–196 (2016). PubMed

Lin C‐J, Chang L, Chu H‐W, Lin H‐J, Chang P‐C, Wang RYL et al., High amplification of the antiviral activity of curcumin through transformation into carbon quantum dots. Small 15:1902641 (2019). PubMed

Iannazzo D, Pistone A, Ferro S, de Luca L, Monforte AM, Romeo R et al., Graphene quantum dots based systems as HIV inhibitors. Bioconjug Chem 29:3084–3093 (2018). PubMed

Huang H‐T, Lin H‐J, Huang H‐J, Huang C‐C, Lin JH‐Y and Chen L‐L, Synthesis and evaluation of polyamine carbon quantum dots (CQDs) in Litopenaeus vannamei as a therapeutic agent against WSSV. Sci Rep 10:7343 (2020). PubMed PMC

Łoczechin A, Séron K, Barras A, Giovanelli E, Belouzard S, Chen YT et al., Functional carbon quantum dots as medical countermeasures to human coronavirus. ACS Appl Mater Interfaces 11:42964–42974 (2019). PubMed PMC

Nasrollahzadeh M, Sajjadi M, Jamalipour Soufi G, Iravani S and Varma RS, Nanomaterials and nanotechnology‐associated innovations against viral infections with a focus on coronaviruses. Nanomaterials (Basel) 10:1072 (2020). PubMed PMC

Roh C and Kee Jo S, Quantitative and sensitive detection of SARS coronavirus nucleocapsid protein using quantum dots‐conjugated RNA aptamer on chip. J Chem Technol Biotechnol 86:1475–1479 (2011). PubMed PMC

Iravani S and Varma RS, Green synthesis, biomedical and biotechnological applications of carbon and graphene quantum dots. A review. Environ Chem Lett 18:703–727 (2020). PubMed PMC

Yang Y‐B, Tang Y‐D, Hu Y, Yu F, Xiong J‐Y, Sun M‐X et al., Single virus tracking with quantum dots packaged into enveloped viruses using CRISPR. Nano Lett 20:1417–1427 (2020). PubMed

Ahmed SR, Nagy E and Neethirajan S, Self‐assembled star‐shaped chiroplasmonic gold nanoparticles for ultrasensitive chiro‐immunosensor of viruses. RSC Adv 7:40849–40857 (2017).

Ahmed SR, Kang SW, Oh S, Lee J and Neethirajan S, Chiral zirconium quantum dots: a new class of nanocrystals for optical detection of coronavirus. Heliyon 4:e00766 (2018). PubMed PMC

Dyadyusha L, Yin H, Jaiswal S, Brown T, Baumberg JJ, Booy FP et al., Quenching of CdSe quantum dot emission, a new approach for biosensing. Chem Commun:3201–3203 (2005). PubMed

Kim Y‐P, Oh Y‐H, Oh E, Ko S, Han M‐K and Kim H‐S, Energy transfer‐based multiplexed assay of proteases by using gold nanoparticle and quantum dot conjugates on a surface. Anal Chem 80:4634–4641 (2008). PubMed

Gorshkov K, Susumu K, Chen J, Xu M, Pradhan M, Zhu W et al., Quantum dot‐conjugated SARS‐CoV‐2 spike pseudo‐virions enable tracking of angiotensin converting enzyme 2 binding and endocytosis. ACS Nano 14:12234–12247 (2020). PubMed PMC

Bardajee GR, Zamani M and Sharifi M, Efficient and versatile application of fluorescence DNA‐conjugated CdTe quantum dots nanoprobe for detection of a specific target DNA of SARS Cov‐2 virus. Langmuir 37:10223–10232 (2021). PubMed

Yan S‐R, Foroughi MM, Safaei M, Jahani S, Ebrahimpour N, Borhani F et al., A review: recent advances in ultrasensitive and highly specific recognition aptasensors with various detection strategies. Int J Biol Macromol 155:184–207 (2020). PubMed

Jayasena SD, Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin Chem 45:1628–1650 (1999). PubMed

Tabrizi MA, Nazari L and Acedo P, A photo‐electrochemical aptasensor for the determination of severe acute respiratory syndrome coronavirus 2 receptor‐binding domain by using graphitic carbon nitride‐cadmium sulfide quantum dots nanocomposite. Sens Actuators B 345:130377 (2021). PubMed PMC

Chen R, Kan L, Duan F, He L, Wang M, Cui J et al., Surface plasmon resonance aptasensor based on niobium carbide MXene quantum dots for nucleocapsid of SARS‐CoV‐2 detection. Mikrochim Acta 188:1–10 (2021). PubMed PMC

Ahmadi S, Rabiee N, Fatahi Y, Hooshmand SE, Bagherzadeh M, Rabiee M et al., Green chemistry and coronavirus. Sustain Chem Pharm 21:100415 (2021). PubMed PMC

Rabiee N, Bagherzadeh M, Ghasemi A, Zare H, Ahmadi S, Fatahi Y et al., Point‐of‐use rapid detection of SARS‐CoV‐2: nanotechnology‐enabled solutions for the COVID‐19 pandemic. Int J Mol Sci 21:1–24 (2020). PubMed PMC

Zhang Y, Malekjahani A, Udugama BN, Kadhiresan P, Chen H, Osborne M et al., Surveilling and tracking COVID‐19 patients using a portable quantum dot smartphone device. Nano Lett 21:5209–5216 (2021). PubMed

Sajid M, Kawde A‐N and Daud M, Designs, formats and applications of lateral flow assay: a literature review. J Saudi Chem Soc 19:689–705 (2015).

Nguyen VT, Song S, Park S and Joo C, Recent advances in high‐sensitivity detection methods for paper‐based lateral‐flow assay. Biosens Bioelectron 152:112015 (2020). PubMed

Hu J, Zhang Z‐L, Wen C‐Y, Tang M, Wu L‐L, Liu C et al., Sensitive and quantitative detection of C‐reaction protein based on immunofluorescent nanospheres coupled with lateral flow test strip. Anal Chem 88:6577–6584 (2016). PubMed

Wang C, Yang X, Gu B, Liu H, Zhou Z, Shi L et al., Sensitive and simultaneous detection of SARS‐CoV‐2‐specific IgM/IgG using lateral flow immunoassay based on dual‐mode quantum dot nanobeads. Anal Chem 92:15542–15549 (2020). PubMed

Shao Y, Duan H, Guo L, Leng Y, Lai W and Xiong Y, Quantum dot nanobead‐based multiplexed immunochromatographic assay for simultaneous detection of aflatoxin B(1) and zearalenone. Anal Chim Acta 1025:163–171 (2018). PubMed

Guo J, Wang Y, Niu S, Li H, Tian Y, Yu S et al., Highly sensitive fluorescence‐linked immunosorbent assay for the determination of human IgG in serum using quantum dot nanobeads and magnetic Fe3O4 nanospheres. ACS Omega 5:23229–23236 (2020). PubMed PMC

Li C, Zou Z, Liu H, Jin Y, Li G, Yuan C et al., Synthesis of polystyrene‐based fluorescent quantum dots nanolabel and its performance in H5N1 virus and SARS‐CoV‐2 antibody sensing. Talanta 225:122064 (2021). PubMed PMC

Kim K, Kashefi‐Kheyrabadi L, Joung Y, Kim K, Dang H, Chavan SG et al., Recent advances in sensitive surface‐enhanced Raman scattering‐based lateral flow assay platforms for point‐of‐care diagnostics of infectious diseases. Sens Actuators B 329:129214 (2021). PubMed PMC

Zhou Y, Chen Y, Liu Y, Fang H, Huang X, Leng Y et al., Controlled copper in situ growth‐amplified lateral flow sensors for sensitive, reliable, and field‐deployable infectious disease diagnostics. Biosens Bioelectron 171:112753 (2021). PubMed PMC

Wang C, Yang X, Zheng S, Cheng X, Xiao R, Li Q et al., Development of an ultrasensitive fluorescent immunochromatographic assay based on multilayer quantum dot nanobead for simultaneous detection of SARS‐CoV‐2 antigen and influenza A virus. Sens Actuators B 345:130372 (2021). PubMed PMC

Li Y, Ma P, Tao Q, Krause H‐J, Yang S, Ding G et al., Magnetic graphene quantum dots facilitate closed‐tube one‐step detection of SARS‐CoV‐2 with ultra‐low field NMR relaxometry. Sens Actuators B 337:129786 (2021). PubMed PMC

Zhou Y, Chen Y, Liu W, Fang H, Li X, Hou L et al., Development of a rapid and sensitive quantum dot nanobead‐based double‐antigen sandwich lateral flow immunoassay and its clinical performance for the detection of SARS‐CoV‐2 total antibodies. Sens Actuators B 343:130139 (2021). PubMed PMC

Ramezani Z, Dayer MR, Noorizadeh S and Thompson M, Deactivation of SARS‐CoV‐2 via shielding of spike glycoprotein using carbon quantum dots: bioinformatic perspective. COVID 1:120–129 (2021).

Ting D, Dong N, Fang L, Lu J, Bi J, Xiao S et al., Multisite inhibitors for enteric coronavirus: antiviral cationic carbon dots based on curcumin. ACS Appl Nano Mater 1:5451–5459 (2018). PubMed

Emam HE and Ahmed HB, Antitumor/antiviral carbon quantum dots based on carrageenan and pullulan. Int J Biol Macromol 170:688–700 (2021). PubMed

Ding H, Cheng L‐W, Ma Y‐Y, Kong J‐L and Xiong H‐M, Luminescent carbon quantum dots and their application in cell imaging. New J Chem 37:2515–2520 (2013).

Dong X, Moyer MM, Yang F, Sun YP and Yang L, Carbon dots' antiviral functions against noroviruses. Sci Rep 7:519 (2017). PubMed PMC

Khanal M, Vausselin T, Barras A, Bande O, Turcheniuk K, Benazza M et al., Phenylboronic‐acid‐modified nanoparticles: potential antiviral therapeutics. ACS Appl Mater Interfaces 5:12488–12498 (2013). PubMed

Mehta M, Prasher P, Sharma M, Shastri MD, Khurana N, Vyas M et al., Advanced drug delivery systems can assist in targeting coronavirus disease (COVID‐19): a hypothesis. Med Hypotheses 144:110254 (2020). PubMed PMC

Ahmadi S, Rabiee N, Bagherzadeh M, Elmi F, Fatahi Y, Farjadian F et al., Stimulus‐responsive sequential release systems for drug and gene delivery. Nano Today 34:100914 (2020). PubMed PMC

Li J, Xue S and Mao Z‐W, Nanoparticle delivery systems for siRNA‐based therapeutics. J Mater Chem B 4:6620–6639 (2016). PubMed

Kamaly N, Yameen B, Wu J and Farokhzad OC, Degradable controlled‐release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem Rev 116:2602–2663 (2016). PubMed PMC

Alexis F, Pridgen E, Molnar LK and Farokhzad OC, Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 5:505–515 (2008). PubMed PMC

Hu C‐MJ, Chang W‐S, Fang Z‐S, Chen Y‐T, Wang W‐L, Tsai H‐H et al., Nanoparticulate vacuolar ATPase blocker exhibits potent host‐targeted antiviral activity against feline coronavirus. Sci Rep 7:13043 (2017). PubMed PMC

Ishihara T, Kaneko K, Ishihara T and Mizushima T, Development of biodegradable nanoparticles for liver‐specific ribavirin delivery. J Pharm Sci 103:4005–4011 (2014). PubMed

Badıllı U, Mollarasouli F, Bakirhan NK, Ozkan Y and Ozkan SA, Role of quantum dots in pharmaceutical and biomedical analysis, and its application in drug delivery. TrAC Trends Anal Chem 131:116013 (2020).

McHugh KJ, Jing L, Severt SY, Cruz M, Sarmadi M, Jayawardena HSN et al., Biocompatible near‐infrared quantum dots delivered to the skin by microneedle patches record vaccination. Sci Transl Med 11:eaay7162 (2019). PubMed PMC

Mahajan SD, Law WC, Aalinkeel R, Reynolds J, Nair BB, Yong KT et al., Nanoparticle‐mediated targeted delivery of antiretrovirals to the brain. Methods Enzymol 509:41–60 (2012). PubMed

Vora LK, Moffatt K, Tekko IA, Paredes AJ, Volpe‐Zanutto F, Mishra D et al., Microneedle array systems for long‐acting drug delivery. Eur J Pharm Biopharm 159:44–76 (2021). PubMed

Edens C, Dybdahl‐Sissoko NC, Weldon WC, Oberste MS and Prausnitz MR, Inactivated polio vaccination using a microneedle patch is immunogenic in the rhesus macaque. Vaccine 33:4683–4690 (2015). PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Nanosponges: An overlooked promising strategy to combat SARS-CoV-2

. 2022 Oct ; 27 (10) : 103330. [epub] 20220728

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...