Nanosponges: An overlooked promising strategy to combat SARS-CoV-2

. 2022 Oct ; 27 (10) : 103330. [epub] 20220728

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, přehledy, Research Support, N.I.H., Extramural

Perzistentní odkaz   https://www.medvik.cz/link/pmid35908684

Grantová podpora
T32 EB009035 NIBIB NIH HHS - United States

Odkazy

PubMed 35908684
PubMed Central PMC9330373
DOI 10.1016/j.drudis.2022.07.015
PII: S1359-6446(22)00300-2
Knihovny.cz E-zdroje

Among explored nanomaterials, nanosponge-based systems have exhibited inhibitory effects for the biological neutralization of, and antiviral delivery against, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). More studies could pave the path for clarification of their biological neutralization mechanisms as well as the assessment of their long-term biocompatibility and biosafety issues before clinical translational studies. In this review, we discuss recent advances pertaining to antiviral delivery and inhibitory effects of nanosponges against SARS-CoV-2, focusing on important challenges and opportunities. Finally, as promising approaches for recapitulating the complex structure of different organs/tissues of the body, we discuss the use of 3D in vitro models to investigate the mechanism of SARS-CoV-2 infection and to find therapeutic targets to better manage and eradicate coronavirus 2019 (COVID-19).

Zobrazit více v PubMed

Wang C., Horby P.W., Hayden F.G., Gao G.F. A novel coronavirus outbreak of global health concern. Lancet. 2020;395:470–473. PubMed PMC

Iravani S., Varma R.S. Important roles of oligo- and polysaccharides against SARS-CoV-2: recent advances. App Sci. 2021;11:3512.

Li T., Huang T., Guo C., Wang A., Shi X., Mo X., et al. Genomic variation, origin tracing, and vaccine development of SARS-CoV-2: a systematic review. Innovation. 2021;2:100116. PubMed PMC

Jain V.P., Chaudhary S., Sharma D., Dabas N., Lalji R.S.K., Singh B.K., et al. Advanced functionalized nanographene oxide as a biomedical agent for drug delivery and anti-cancerous therapy: a review. Eur Polym J. 2021;142:110124.

Jamalipour Soufi G., Iravani P., Hekmatnia A., Mostafavi E., Khatami M., Iravani S. MXenes and MXene-based materials with cancer diagnostic applications: challenges and opportunities. Comments on Inorg Chem. 2021;42(3):174–207.

Jang S.C., Kim O.Y., Yoon C.M., Choi D.S., Roh T.Y., Park J., et al. Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors. ACS Nano. 2013;7:7698–7710. PubMed

Iravani S., Varma R.S. Nanosponges for water treatment: progress and challenges. Appl Sci. 2022;12:4182.

Mostafavi E., Zare H. Carbon-based nanomaterials in gene therapy. OpenNano. 2022 doi: 10.1016/j.onano.2022.100062. DOI

Mostafavi E., Soltantabar P., Webster T.J. In: Biomaterials in Translational Medicine. Yang L., Bhaduri S.B., Webster T.J., editors. Amsterdam; Elsevier; 2019. Nanotechnology and picotechnology: a new arena for translational medicine; pp. 191–212.

Saravanan M., Mostafavi E., Vincent S., Negash H., Andavar R., Perumal V., et al. Nanotechnology-based approaches for emerging and re-emerging viruses: special emphasis on COVID-19. Microb Pathog. 2021;156:104908. PubMed PMC

Iravani S. Nano- and biosensors for the detection of SARS-CoV-2: challenges and opportunities. Mater Adv. 2020;1:3092–3103.

Farrugia G., Plutowski R.W. Innovation lessons from the COVID-19 pandemic. Mayo Clin Proc. 2020;95:1574–1577. PubMed PMC

Peplow M. Nanotechnology offers alternative ways to fight COVID-19 pandemic with antivirals. Nat Biotechnol. 2021;39:1172–1174. PubMed

Peng Q., Peng R., Yuan B., Wang M., Zhao J., Fu L., et al. Structural basis of SARS-CoV-2 polymerase inhibition by favipiravir. Innovation. 2021;2:100080. PubMed PMC

Li Q., Wu J., Nie J., Zhang L., Hao H., Liu S., et al. The impact of mutations in SARS-CoV-2 spike on viral infectivity and antigenicity. Cell. 2020;182:1284–1294. PubMed PMC

Seddon A.M. Materials science in the time of coronavirus. J Mater Sci. 2020;55:9145–9147. PubMed PMC

Tang Z., Zhang X., Shu Y., Guo M., Zhang H., Tao W. Insights from nanotechnology in COVID-19 treatment. Nanotoday. 2021;36:101019. PubMed PMC

Zeng C., Hou X., Bohmer M., Dong Y. Advances of nanomaterials-based strategies for fighting against COVID-19. View. 2021;2:20200180. PubMed PMC

Desai D., Shende P. Nanoconjugates-based stem cell therapy for the management of COVID-19. Stem Cell Rev Rep. 2021;17:231–240. PubMed PMC

Rabiee N., Ahmadi S., Soufi G.J., Hekmatnia A., Khatami M., Fatahi Y., et al. Quantum dots against SARS-CoV-2: diagnostic and therapeutic potentials. J Chem Technol Biotechnol. 2022;97:1640–1654. PubMed PMC

Soufi G.J., Hekmatnia A., Nasrollahzadeh M., Shafiei N., Sajjadi M., Iravani P., et al. SARS-CoV-2 (COVID-19): new discoveries and current challenges. App Sci. 2020;10:3641.

Jamalipour Soufi G., Iravani S. Potential inhibitors of SARS-CoV-2: recent advances. J Drug Target. 2020;29:349–364. PubMed

Carvalho A.P.A., Conte-Junior C.A. Recent advances on nanomaterials to COVID-19 management: a systematic review on antiviral/virucidal agents and mechanisms of SARS-CoV-2 inhibition/inactivation. Global Challenges. 2021;5:2000115. PubMed PMC

Li X.F., Cui Z., Fan H., Chen Q., Cao L., Qiu H.Y., et al. A highly immunogenic live-attenuated vaccine candidate prevents SARS-CoV-2 infection and transmission in hamsters. Innovation. 2022;3:100221. PubMed PMC

Kisby T., Yilmazer A., Kostarelos K. Reasons for success and lessons learnt from nanoscale vaccines against COVID-19. Nat Nanotechnol. 2021;16:843–850. PubMed

Lembo D., Trotta F., Cavalli R. Cyclodextrin-based nanosponges as vehicles for antiviral drugs: challenges and perspectives. Nanomedicine. 2018;13:477–480. PubMed

Chen W., Xie P., Pei M., Li G., Wang Z., Liu P. Facile construction of fluorescent traceable prodrug nanosponges for tumor intracellular pH/hypoxia dual-triggered drug delivery. Colloid Interface Sci Commun. 2022;46:100576.

Desai D., Shende P. Drug-free cyclodextrin-based nanosponges for antimicrobial activity. J Pharm Innovation. 2021;16:258–268.

Allahyari S., Zahednezhad F., Khatami M., Hashemzadeh N., Zakeri-Milani P., Trotta F. Cyclodextrin nanosponges as potential anticancer drug delivery systems to be introduced into the market, compared with liposomes. J Drug Delivery Sci Technol. 2022;67:102931.

Deng J., Chen Q.J., Li W., Zuberi Z., Feng J.X., Lin Q.L., et al. Toward improvements for carrying capacity of the cyclodextrin–based nanosponges: recent progress from a material and drug delivery. J Mater Sci. 2021;56:5995–6015.

Sherje A.P., Dravyakar B.R., Kadam D., Jadhav M. Cyclodextrin-based nanosponges: a critical review. Carbohydr Polym. 2017;173:37–49. PubMed

Khazaei Monfared Y., Mahmoudian M., Cecone C., Caldera F., Zakeri-Milani P., Matencio A., et al. Stabilization and anticancer enhancing activity of the peptide nisin by cyclodextrin-based nanosponges against colon and breast cancer cells. Polymers. 2022;14:594. PubMed PMC

Pawar S., Shende P. A comprehensive patent review on β-cyclodextrin cross-linked nanosponges for multiple applications. Recent Pat Nanotechnol. 2020;14:75–89. PubMed

Allahyari S., Zahednezhad F., Khatami M., Hashemzadeh N., Zakeri-Milani P., Trotta F. Cyclodextrin nanosponges as potential anticancer drug delivery systems to be introduced into the market, compared with liposomes. J Drug Delivery Sci Technol. 2021;67:102931.

Khalid Q., Ahmad M., Minhas M.U., Batool F., Malik N.S., Rehman M. Novel β-cyclodextrin nanosponges by chain growth condensation for solubility enhancement of dexibuprofen: characterization and acute oral toxicity studies. J Drug Delivery Sci Technol. 2021;61:102089.

Utzeri G., Matias P.M., Murtinho D., Valente A.J. Cyclodextrin-based nanosponges: overview and opportunities. Front Chem. 2022;10:859406. PubMed PMC

Tiwari K., Bhattacharya S. The ascension of nanosponges as a drug delivery carrier: preparation, characterization, and applications. J Mater Sci: Mater Med. 2022;33(3):1–21. PubMed PMC

Girigoswami A., Girigoswami K. Versatile applications of nanosponges in biomedical field: a glimpse on SARS-CoV-2 management. Bionanosci. 2022 doi: 10.1007/s12668-022-01000-1. Published online June 20. PubMed DOI PMC

Jani R.K., Patel N., Patel Z., Dave P., Upadhyay V. Nanosponges as a biocatalyst carrier—an innovative drug delivery technology for enzymes, proteins, vaccines, and antibodies. Biocatal Agric Biotechnol. 2022:102329.

Rizvi S.S.B., Akhtar N., Minhas M.U., Mahmood A., Khan K.U. Synthesis and characterization of carboxymethyl chitosan nanosponges with cyclodextrin blends for drug solubility improvement. Gels. 2022;8:55. PubMed PMC

Krabicová I., Appleton S.L., Tannous M., Hoti G., Caldera F., Rubin Pedrazzo A., et al. History of cyclodextrin nanosponges. Polymers. 2020;12:1122. PubMed PMC

Caldera F., Tannous M., Cavalli R., Zanetti M., Trotta F. Evolution of cyclodextrin nanosponges. Int J Pharm. 2017;531:470–479. PubMed

Allahyari S., Esmailnezhad N., Valizadeh H., Ghorbani M., Jelvehgari M., Ghazi F., et al. In-vitro characterization and cytotoxicity study of flutamide loaded cyclodextrin nanosponges. J Drug Delivery Sci Technol. 2021;61:102275.

Palminteri M., Dhakar N.K., Ferraresi A., Caldera F., Vidoni C., Trotta F., et al. Cyclodextrin nanosponge for the GSH-mediated delivery of resveratrol in human cancer cells. Nanotheranostics. 2021;5:197–212. PubMed PMC

Gardouh A.R., Elhusseiny S., Gad S. Mixed avanafil and dapoxetin hydrochloride cyclodextrin nano-sponges: preparation, in-vitro characterization, and bioavailability determination. J Drug Delivery Sci Technol. 2022;68:103100.

Wang J., Yu S., Wu Q., Gong X., He S., Shang J., et al. A self-catabolic multifunctional DNAzyme nanosponge for programmable drug delivery and efficient gene silencing. Angew Chem. 2021;133:10861–10869. PubMed

Jin Y., Liang L., Sun X., Yu G., Chen S., Shi S., et al. Deoxyribozyme-nanosponges for improved photothermal therapy by overcoming thermoresistance. NPG Asia Mater. 2018;10:373–384.

Varahachalam S.P., Lahooti B., Chamaneh M., Bagchi S., Chhibber T., et al. Nanomedicine for the SARS-CoV-2: state-of-the-art and future prospects. Int J Nanomed. 2021;16:539–560. PubMed PMC

Nasrollahzadeh M., Sajjadi M., Jamalipour Soufi G., Iravani S., Varma R.S. Nanomaterials and nanotechnology-associated innovations against viral infections with a focus on coronaviruses. Nanomaterials. 2020;10:1072. PubMed PMC

Duan Y., Wang S., Zhang Q., Gao W., Zhang L. Nanoparticle approaches against SARS-CoV–2 infection. Curr Opin Solid State Mater Sci. 2021;25:100964.-. PubMed PMC

Chilajwar S.V., Pednekar P.P., Jadhav K.R., Gupta G.J.C., Kadam V.J. Cyclodextrin-based nanosponges: a propitious platform for enhancing drug delivery. Expert Opin Drug Delivery. 2014;11:111–120. PubMed

Lembo D., Swaminathan S., Donalisio M., Civra A., Pastero L., Aquilano D., et al. Encapsulation of acyclovir in new carboxylated cyclodextrin-based nanosponges improves the agent's antiviral efficacy. Int J Pharm. 2013;443:262–272. PubMed

Kumar S., Pooja, Trotta F., Rao R. Encapsulation of Babchi oil in cyclodextrin-based nanosponges: physicochemical characterization, photodegradation, and in vitro cytotoxicity studies. Pharmaceutics. 2018;10:169. PubMed PMC

Zhang Q., Honko A., Zhou J., Gong H., Downs S.N., Vasquez J.H., et al. Cellular nanosponges inhibit SARS-CoV-2 infectivity. Nano Lett. 2020;20:5570–5574. PubMed PMC

Ai X., Wang D., Honko A., Duan Y., Gavrish I., Fang R.H., et al. Surface glycan modification of cellular nanosponges to promote SARS-CoV-2 inhibition. J Am Chem Soc. 2021;143:17615–17621. PubMed PMC

Rao L., Xia S., Xu W., Tian R., Yu G., Gu C., et al. Decoy nanoparticles protect against COVID-19 by concurrently adsorbing viruses and inflammatory cytokines. Proc Natl Acad Sci USA. 2020;117(44):27141–27147. PubMed PMC

Yang Y., Wang K., Pan Y., Rao L., Luo G. Engineered cell membrane-derived nanoparticles in immune modulation. Adv Sci. 2021;21:2102330. PubMed PMC

Zhao Y., Li A., Jiang L., Gu Y., Liu J. Hybrid membrane-coated biomimetic nanoparticles (HM@BNPs): a multifunctional nanomaterial for biomedical applications. Biomacromolecules. 2021;22:3149–3167. PubMed

Wang C., Wang S., Chen Y., Zhao J., Han S., Zhao G., et al. Membrane nanoparticles derived from ACE2-rich cells block SARS-CoV-2 infection. ACS Nano. 2021;15:6340–6351. PubMed

Tan Q., He L., Meng X., Wang W., Pan H., Yin W., et al. Macrophage biomimetic nanocarriers for anti-inflammation and targeted antiviral treatment in COVID-19. J Nanobiotechnol. 2021;19:173. PubMed PMC

Xie F., Su P., Pan T., Zhou X., Li H., Huang H., et al. Engineering extracellular vesicles enriched with palmitoylated ACE2 as COVID-19 therapy. Adv Mater. 2021;33:2103471. PubMed PMC

Esmaeli-Azad B., Federico I., Rojas F., Zapf J. ViruClear: molecularly designed biomimetic nanosponges for prevention and treatment of SARS-CoV-2 infections in COVID-19 patients. FASEB J. 2021;35

Wang S., Wang D., Duan Y., Zhou Z., Gao W., Zhang L. Cellular nanosponges for biological neutralization. Adv Mater. 2022;34:2107719. PubMed

Mostafavi E., Dubey A.K., Teodori L., Ramakrishna S., Kaushik A. SARS-CoV-2 Omicron variant: aA next phase of the COVID-19 pandemic and a call to arms for system sciences and precision medicine. MedComm. 2022;3(1):e119. PubMed PMC

Tiwari S., Juneja S., Ghosal A., Bandara N., Khan R., Wallen S.L., et al. Antibacterial and antiviral high-performance nano-systems to mitigate new SARS-CoV-2 variants of concerns. Curr Opin Biomed Eng. 2021;21:100363. PubMed PMC

Li Z., Wang Z., Dinh P.C., Zhu D., Popowski K.D., Lutz H., et al. Cell-mimicking nanodecoys neutralize SARS-CoV-2 and mitigate lung injury in a non-human primate model of COVID-19. Nat Nanotechnol. 2021;16:942–951. PubMed PMC

Rao L., Tian R., Chen X. Cell-membrane-mimicking nanodecoys against infectious diseases. ACS Nano. 2020;14:2569–2574. PubMed PMC

Yang K.-C., Lin J.-C., Tsai H.-H., Hsu C.-Y., Shih V., Hu C.-M.-J. Nanotechnology advances in pathogen- and host–targeted antiviral delivery: multipronged therapeutic intervention for pandemic control. Drug Delivery Transl Res. 2021;11:1420–1437. PubMed PMC

Chen M., Rosenberg J., Cai X., Lee A.C.H., Shi J., Nguyen M., et al. Nanotraps for the containment and clearance of SARS-CoV-2. Matter. 2021;4:2059–2082. PubMed PMC

Kumar R., Mehta P., Shankar K.R., Rajora M.A.K., Mishra Y.K., Mostafavi E., et al. Nanotechnology-assisted metered-dose inhalers (MDIs) for high-performance pulmonary drug delivery applications. Pharm Res. 2022 doi: 10.1007/s11095-022-03286-y. Published online May 12. PubMed DOI PMC

Monteil V., Kwon H., Prado P., Hagelkrüys A., Wimmer R.A., Stahl M., et al. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell. 2020;181(4):905–913. PubMed PMC

Chen J., Wang B., Caserto J.S., Shariati K., Cao P., Pan Y., et al. Sustained delivery of SARS-CoV-2 RBD subunit vaccine using a high affinity injectable hydrogel scaffold. Adv Healthcare Mater. 2022;11(2):2101714. PubMed PMC

Ramezankhani R., Solhi R., Chai Y.C., Vosough M., Verfaillie C. Organoid and microfluidics-based platforms for drug screening in COVID-19. Drug Discovery Today. 2022;27:1062–1076. PubMed PMC

Wang Y., Liu S., Liu H., Li W., Lin F., Jiang L., et al. SARS-CoV-2 infection of the liver directly contributes to hepatic impairment in patients with COVID-19. J Hepatol. 2020;73:807–816. PubMed PMC

Zhang B.Z., Chu H., Han S., Shuai H., Deng J., Hu Y.F., et al. SARS-CoV-2 infects human neural progenitor cells and brain organoids. Cell Res. 2020;30:928–931. PubMed PMC

Omer D., Pleniceanu O., Gnatek Y., Namestnikov M., Cohen-Zontag O., Goldberg S., et al. Human kidney spheroids and monolayers provide insights into SARS-CoV-2 renal interactions. J Am Soc Nephrol. 2021;32:2242–2254. PubMed PMC

Hsiao W.-K., Lorber B., Paudel A. Can 3D printing of oral drugs help fight the current COVID-19 pandemic (and similar crisis in the future)? Expert Opin Drug Delivery. 2020;17(7):899–902. PubMed

Akter F., Araf Y., Naser I.B., Promon S.K. Prospect of 3D bioprinting over cardiac cell therapy and conventional tissue engineering in the treatment of COVID-19 patients with myocardial injury. Regener Ther. 2021;18:447–456. PubMed PMC

Mohamad S.A., Zahran E.M., Fadeel M.R.A., Albohy A., Safwat M.A. New acaciin-loaded self-assembled nanofibers as MPro inhibitors against BCV as a surrogate model for SARS-CoV-2. Int J Nanomed. 2021;16:1789. PubMed PMC

Damiani S., Fiorentino M., De Palma A., Foschini M.P., Lazzarotto T., Gabrielli L., et al. Pathological post-mortem findings in lungs infected with SARS-CoV-2. J Pathol. 2021;253:31–40. PubMed

Chen L., Li X., Chen M., Feng Y., Xiong C. The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS-CoV-2. Cardiovasc Res. 2020;116(6):1097–1100. PubMed PMC

Li J.W., Han T.W., Woodward M., Anderson C.S., Zhou H., Chen Y.D., et al. The impact of 2019 novel coronavirus on heart injury: a systematic review and meta-analysis. Prog Cardiovasc Dis. 2020;63(4):518–524. PubMed PMC

Zubair A.S., McAlpine L.S., Gardin T., Farhadian S., Kuruvilla D.E., Spudich S. Neuropathogenesis and neurologic manifestations of the coronaviruses in the age of coronavirus disease 2019: a review. JAMA Neurol. 2020;77(8):1018–1027. PubMed PMC

Kujawska M., Mostafavi E., Kaushik A. SARS-CoV-2 getting into the brain; neurological phenotype of COVID-19, and management by nano-biotechnology. Neural Regener Res. 2023;2022(18):1. PubMed PMC

Xiao F., Tang M., Zheng X., Liu Y., Li X., Shan H. Evidence for gastrointestinal infection of SARS-CoV-2. Gastroenterology. 2020;158(6):1831–1833. PubMed PMC

Holtmann N., Edimiris P., Andree M., Doehmen C., Baston-Buest D., Adams O., et al. Assessment of SARS-CoV-2 in human semen—a cohort study. Fertil Steril. 2020;114(2):233–238. PubMed PMC

Lins M.P., Smaniotto S. Potential impact of SARS-CoV-2 infection on the thymus. Can J Microbiol. 2021;67(1):23–28. PubMed

Steinbuck M.P., Seenappa L.M., Jakubowski A., McNeil L.K., Haqq C.M., DeMuth P.C. A lymph node-targeted amphiphile vaccine induces potent cellular and humoral immunity to SARS-CoV-2. Sci Adv. 2021;7(6):eabe5819. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...