History of Cyclodextrin Nanosponges
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
32423091
PubMed Central
PMC7285114
DOI
10.3390/polym12051122
PII: polym12051122
Knihovny.cz E-zdroje
- Klíčová slova
- crosslinked polymer, cyclodextrin nanosponge, history,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Nowadays, research in the field of nanotechnology and nanomedicine has become increasingly predominant, focusing on the manipulation and development of materials on a nanometer scale. Polysaccharides have often been used as they are safe, non-toxic, hydrophilic, biodegradable and are low cost. Among them, starch derivatives and, in particular, cyclodextrin-based nanosponges (CD NSs) have recently emerged due to the outstanding properties attributable to their peculiar structure. In fact, alongside the common polysaccharide features, such as the presence of tunable functional groups and their ability to interact with biological tissues, thus giving rise to bioadhesion, which is particularly useful in drug delivery, what makes CD NSs unique is their three-dimensional network made up of crosslinked cyclodextrin units. The name "nanosponge" appeared for the first time in the 1990s due to their nanoporous, sponge-like structure and responded to the need to overcome the limitations of native cyclodextrins (CDs), particularly their water solubility and inability to encapsulate charged and large molecules efficiently. Since CD NSs were introduced, efforts have been made over the years to understand their mechanism of action and their capability to host molecules with low or high molecular weight, charged, hydrophobic or hydrophilic by changing the type of cyclodextrin, crosslinker and degree of crosslinking used. They enabled great advances to be made in various fields such as agroscience, pharmaceutical, biomedical and biotechnological sectors, and NS research is far from reaching its conclusion. This review gives an overview of CD NS research, focusing on the origin and key points of the historical development in the last 50 years, progressing from relatively simple crosslinked networks in the 1960s to today's multifunctional polymers. The approach adopted in writing the present study consisted in exploring the historical evolution of NSs in order to understand their role today, and imagine their future.
Department of Chemistry University of Torino via P Giuria 7 10125 Torino Italy
Department of Drug Science and Technology University of Torino via P Giuria 9 10125 Torino Italy
Zobrazit více v PubMed
Torne S.J., Ansari K.A., Vavia P.R., Trotta F., Cavalli R. Enhanced oral paclitaxel bioavailability after administration of paclitaxel-loaded nanosponges. Drug Deliv. 2010;17:419–425. doi: 10.3109/10717541003777233. PubMed DOI
Cavalli R., Trotta F., Tumiatti W. Cyclodextrin-based nanosponges for drug delivery. J. Incl. Phenom. Macrocycl. Chem. 2006;56:209–213. doi: 10.1007/s10847-006-9085-2. DOI
Vyas A., Saraf S., Saraf S. Cyclodextrin based novel drug delivery systems. J. Incl. Phenom. Macrocycl. Chem. 2008;62:23–42. doi: 10.1007/s10847-008-9456-y. DOI
Trotta F. In: Cyclodextrin Nanosponges and Their Applications. Bilensoy E., editor. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2011.
Subramanian S., Singireddy A., Krishnamoorthy K., Rajappan M. Nanosponges: A novel class of drug delivery system—Review. J. Pharm. Pharm. Sci. 2012;15:103–111. doi: 10.18433/j3k308. PubMed DOI
Shringirishi M., Prajapati S.K., Mahor A., Alok S., Yadav P., Verma A. Nanosponges: A potential nanocarrier for novel drug delivery-a review. Asian Pac. J. Trop. Dis. 2014;4:S519–S526. doi: 10.1016/S2222-1808(14)60667-8. DOI
Chilajwar S.V., Pednekar P.P., Jadhav K.R., Gupta G.J., Kadam V.J. Cyclodextrin-based nanosponges: A propitious platform for enhancing drug delivery. Expert Opin. Drug Deliv. 2014;11:111–120. doi: 10.1517/17425247.2014.865013. PubMed DOI
Trotta F., Dianzani C., Caldera F., Mognetti B., Cavalli R. The application of nanosponges to cancer drug delivery. Expert Opin. Drug Deliv. 2014;11:931–941. doi: 10.1517/17425247.2014.911729. PubMed DOI
Trotta F., Zanetti M., Cavalli R. Cyclodextrin-based nanosponges as drug carriers. Beilstein J. Org. Chem. 2012;8:2091–2099. doi: 10.3762/bjoc.8.235. PubMed DOI PMC
Liu Z., Jiao Y., Wang Y., Zhou C., Zhang Z. Polysaccharides-based nanoparticles as drug delivery systems. Adv. Drug Deliv. Rev. 2008;60:1650–1662. doi: 10.1016/j.addr.2008.09.001. PubMed DOI
Caldera F., Tannous M., Cavalli R., Zanetti M., Trotta F. Evolution of Cyclodextrin Nanosponges. Int. J. Pharm. 2017;531:470–479. doi: 10.1016/j.ijpharm.2017.06.072. PubMed DOI
Kutova O.M., Guryev E.L., Sokolova E.A., Alzeibak R., Balalaeva I.V. Targeted delivery to tumors: Multidirectional strategies to improve treatment efficiency. Cancers. 2019;11:68. doi: 10.3390/cancers11010068. PubMed DOI PMC
Trotta F., Rubin Pedrazzo A. Processo Per La Preparazione Di Una Nanospugna. P021499IT-01. IT Patent. 2019 Nov 15;
Pushpalatha R., Selvamuthukumar S., Kilimozhi D. Hierarchy analysis of different cross-linkers used for the preparation of cross-linked cyclodextrin as drug nanocarriers. Chem. Eng. Commun. 2018;205:759–771. doi: 10.1080/00986445.2017.1416354. DOI
Pushpalatha R., Selvamuthukumar S., Kilimozhi D. Cyclodextrin nanosponge based hydrogel for the transdermal co-delivery of curcumin and resveratrol: Development, optimization, in vitro and ex vivo evaluation. J. Drug Deliv. Sci. Technol. 2019;52:55–64. doi: 10.1016/j.jddst.2019.04.025. DOI
Rao M.R.P., Raut S.P., Shirsath C.T., Jadhav M.B., Chandanshive P.A. Self-nanoemulsifying Drug Delivery System of Mebendazole for Treatment of Lymphatic Filariasis. Indian J. Pharm. Sci. 2018;80:1057–1068. doi: 10.4172/pharmaceutical-sciences.1000456. DOI
Kamble M., Zaheer Z., Mokale S., Zainuddin R. Formulation Optimization and Biopharmaceutical Evaluation of Imatinib Mesylate Loaded β-Cyclodextrin Nanosponges. Pharm. Nanotechnol. 2019;7:343–361. doi: 10.2174/2211738507666190919121445. PubMed DOI
Solms J., Egli R.H. Harze mit Einschlusshohlräumen von Cyclodextrin-Struktur. Helv. Chim. Acta. 1965;48:1225–1228. doi: 10.1002/hlca.19650480603. DOI
Hoffman J.L. Chromatography of nucleic acids on cross-linked cyciodextrin gels having inclusion-forming capacity. J. Macromol. Sci. Part A—Chem. 1973;7:1147–1157. doi: 10.1080/10601327308060488. DOI
Harada A., Furue M., Nozakura S.-I. Optical resolution of mandelic acid derivatives by column chromatography on crosslinked cyclodextrin gels. J. Polym. Sci. Polym. Chem. Ed. 1978;16:189–196. doi: 10.1002/pol.1978.170160119. DOI
Mizobuchi Y., Tanaka M., Shono T. Preparation and sorption behaviour of cyclodextrin polyurethane resins. J. Chromatogr. A. 1980;194:153–161. doi: 10.1016/S0021-9673(00)87291-X. DOI
Sugiura I., Komiyama M., Toshima N., Hirai H. Immobilized β-Cyclodextrins. Preparation with Various Crosslinking Reagents and the Guest Binding Properties. Bull. Chem. Soc. Jpn. 1989;62:1643–1651. doi: 10.1246/bcsj.62.1643. DOI
Shaw P.E., Buslig B.S. Selective removal of bitter compounds from grapefruit juice and from aqueous solution with cyclodextrin polymers and with Amberlite XAD-4. J. Agric. Food Chem. 1986;34:837–840. doi: 10.1021/jf00071a018. DOI
Su C.-S., Yang C.-P. Partial removal of various food components from aqueous solution using crosslinked polymers of cyclodextrins with epichlorohydrin. J. Sci. Food Agric. 1991;54:635–643. doi: 10.1002/jsfa.2740540414. DOI
Shao Y., Martel B., Morcellet M., Weltrowski M., Crini G. Sorption of textile dyes on β-Cyclodextrin-epichlorhydrin gels. J. Incl. Phenom. Mol. Recognit. Chem. 1996;25:209–212. doi: 10.1007/BF01041570. DOI
Crini G., Bertini S., Torri G., Naggi A., Sforzini D., Vecchi C., Janus L., Lekchiri Y., Morcellet M. Sorption of aromatic compounds in water using insoluble cyclodextrin polymers. J. Appl. Polym. Sci. 1998;68:1973–1978. doi: 10.1002/(SICI)1097-4628(19980620)68:12<1973::AID-APP11>3.0.CO;2-T. DOI
Li D.Q., Ma M. Nanosponges: From inclusion chemistry to water purifying technology. Chemtech. 1999;29:31–37.
Li D.Q., Ma M. Nanoporous polymers: New nanosponge absorbent media. Filtr. Sep. 1999;36:26–28. doi: 10.1016/S0015-1882(00)80050-6. DOI
Orprecio R., Evans C.H. Polymer-immobilized cyclodextrin trapping of model organic pollutants in flowing water streams. J. Appl. Polym. Sci. 2003;90:2103–2110. doi: 10.1002/app.12818. DOI
Mamba B.B., Krause R.W., Malefetse T.J., Nxumalo E.N. Monofunctionalized cyclodextrin polymers for the removal of organic pollutants from water. Environ. Chem. Lett. 2007;5:79–84. doi: 10.1007/s10311-006-0082-x. DOI
Li D., Ma M. Nanosponges for water purification. Clean Prod. Process. 2000;2:112–116. doi: 10.1007/s100980000061. DOI
Trotta F., Tumiatti W. Cross-Linked Polymers Based on Cyclodextrins for Removing Polluting Agents. US20050154198A1. U.S. Patent. 2005 Jul 14;
Mhlanga S.D., Mamba B.B., Krause R.W., Malefetse T.J. Removal of organic contaminants from water using nanosponge cyclodextrin polyurethanes. J. Chem. Technol. Biotechnol. 2007;82:382–388. doi: 10.1002/jctb.1681. DOI
Mhlongo S.H., Mamba B.B., Krause R.W. Monitoring the prevalence of nitrosamines in South African waters and their removal using cyclodextrin polyurethanes. Phys. Chem. Earth. 2009;34:819–824. doi: 10.1016/j.pce.2009.07.008. DOI
Berto S., Bruzzoniti M.C., Cavalli R., Perrachon D., Prenesti E., Sarzanini C., Trotta F., Tumiatti W. Synthesis of new ionic β-cyclodextrin polymers and characterization of their heavy metals retention. J. Incl. Phenom. Macrocycl. Chem. 2007;57:631–636. doi: 10.1007/s10847-006-9273-0. DOI
Berto S., Bruzzoniti M.C., Cavalli R., Perrachon D., Prenesti E., Sarzanini C., Trotta F., Tumiatti W. Highly crosslinked ionic β-cyclodextrin polymers and their interaction with heavy metals. J. Incl. Phenom. Macrocycl. Chem. 2007;57:637–643. doi: 10.1007/s10847-006-9270-3. DOI
Trotta F., Cavalli R. Characterization and applications of new hyper-cross-linked cyclodextrins. Compos. Interfaces. 2009;16:39–48. doi: 10.1163/156855408X379388. DOI
Swaminathan S., Vavia P.R., Trotta F., Torne S. Formulation of betacyclodextrin based nanosponges of itraconazole. J. Incl. Phenom. Macrocycl. Chem. 2007;57:89–94. doi: 10.1007/s10847-006-9216-9. DOI
Di Nardo G., Roggero C., Campolongo S., Valetti F., Trotta F., Gilardi G. Catalytic properties of catechol 1,2-dioxygenase from Acinetobacter radioresistens S13 immobilized on nanosponges. Dalt. Trans. 2009:6507–6512. doi: 10.1039/b903105g. PubMed DOI
Trotta F., Cavalli R., Martina K., Biasizzo M., Vitillo J., Bordiga S., Vavia P., Ansari K. Cyclodextrin nanosponges as effective gas carriers. J. Incl. Phenom. Macrocycl. Chem. 2011;71:189–194. doi: 10.1007/s10847-011-9926-5. DOI
Cavalli R., Akhter A.K., Bisazza A., Giustetto P., Trotta F., Vavia P. Nanosponge formulations as oxygen delivery systems. Int. J. Pharm. 2010;402:254–257. doi: 10.1016/j.ijpharm.2010.09.025. PubMed DOI
Seglie L., Martina K., Devecchi M., Roggero C., Trotta F., Scariot V. The effects of 1-MCP in cyclodextrin-based nanosponges to improve the vase life of Dianthus caryophyllus cut flowers. Postharvest Biol. Technol. 2011;59:200–205. doi: 10.1016/j.postharvbio.2010.08.012. DOI
Seglie L., Spadaro D., Trotta F., Devecchi M., Gullino M.L., Scariot V. Use of 1-methylcylopropene in cyclodextrin-based nanosponges to control grey mould caused by Botrytis cinerea on Dianthus caryophyllus cut flowers. Postharvest Biol. Technol. 2012;64:55–57. doi: 10.1016/j.postharvbio.2011.09.014. DOI
Ansari K.A., Torne S.J., Vavia P.R., Trotta F., Cavalli R. Paclitaxel Loaded Nanosponges: In-Vitro Characterization and Cytotoxicity Study on MCF-7 Cell Line Culture. Curr. Drug Deliv. 2011;8:194–202. doi: 10.2174/156720111794479934. PubMed DOI
Mognetti B., Barberis A., Marino S., Berta G., De Francia S., Trotta F., Cavalli R. In vitro enhancement of anticancer activity of paclitaxel by a Cremophor free cyclodextrin-based nanosponge formulation. J. Incl. Phenom. Macrocycl. Chem. 2012;74:201–210. doi: 10.1007/s10847-011-0101-9. DOI
Minelli R., Cavalli R., Ellis L., Pettazzoni P., Trotta F., Ciamporcero E., Barrera G., Fantozzi R., Dianzani C., Pili R. Nanosponge-encapsulated camptothecin exerts anti-tumor activity in human prostate cancer cells. Eur. J. Pharm. Sci. 2012;47:686–694. doi: 10.1016/j.ejps.2012.08.003. PubMed DOI
Torne S., Darandale S., Vavia P., Trotta F., Cavalli R. Cyclodextrin-based nanosponges: Effective nanocarrier for Tamoxifen delivery. Pharm. Dev. Technol. 2013;18:619–625. doi: 10.3109/10837450.2011.649855. PubMed DOI
Shende P., Deshmukh K., Trotta F., Caldera F. Novel cyclodextrin nanosponges for delivery of calcium in hyperphosphatemia. Int. J. Pharm. 2013;456:95–100. doi: 10.1016/j.ijpharm.2013.08.012. PubMed DOI
Darandale S.S., Vavia P.R. Cyclodextrin-based nanosponges of curcumin: Formulation and physicochemical characterization. J. Incl. Phenom. Macrocycl. Chem. 2013;75:315–322. doi: 10.1007/s10847-012-0186-9. DOI
Cavallaro V., Trotta F., Gennari M., Di Silvestro I., Pellegrino A., Barbera A.C. Effects of the complex nanosponges-naphthaleneacetic acid and β cyclodextrins on in vitro rhizogenesis of globe artichoke. Acta Hortic. 2013;983:369–372. doi: 10.17660/ActaHortic.2013.983.52. DOI
Lembo D., Swaminathan S., Donalisio M., Civra A., Pastero L., Aquilano D., Vavia P., Trotta F., Cavalli R. Encapsulation of Acyclovir in new carboxylated cyclodextrin-based nanosponges improves the agent’s antiviral efficacy. Int. J. Pharm. 2013;443:262–272. doi: 10.1016/j.ijpharm.2012.12.031. PubMed DOI
Swaminathan S., Vavia P.R., Trotta F., Cavalli R. Nanosponges encapsulating dexamethasone for ocular delivery: Formulation design, physicochemical characterization, safety and corneal permeability assessment. J. Biomed. Nanotechnol. 2013;9:998–1007. doi: 10.1166/jbn.2013.1594. PubMed DOI
Bastiancich C., Scutera S., Alotto D., Cambieri I., Fumagalli M., Casarin S., Rossi S., Trotta F., Stella M., Cavalli R., et al. Cyclodextrin-Based Nanosponges as a Nanotechnology Strategy for Imiquimod Delivery in Pathological Scarring Prevention and Treatment. J. Nanopharm. Drug Deliv. 2015;2:311–324. doi: 10.1166/jnd.2014.1071. DOI
Conte C., Caldera F., Catanzano O., D’Angelo I., Ungaro F., Miro A., Pellosi D.S., Trotta F., Quaglia F. β-cyclodextrin nanosponges as multifunctional ingredient in water-containing semisolid formulations for skin delivery. J. Pharm. Sci. 2014;103:3941–3949. doi: 10.1002/jps.24203. PubMed DOI
Shende P.K., Gaud R.S., Bakal R., Patil D. Effect of inclusion complexation of meloxicam with β-cyclodextrin- and β-cyclodextrin-based nanosponges on solubility, in vitro release and stability studies. Colloids Surf. B Biointerfaces. 2015;136:105–110. doi: 10.1016/j.colsurfb.2015.09.002. PubMed DOI
Ferro M., Castiglione F., Punta C., Melone L., Panzeri W., Rossi B., Trotta F., Mele A. Anomalous diffusion of ibuprofen in cyclodextrin nanosponge hydrogels: An HRMAS NMR study. Beilstein J. Org. Chem. 2014;10:2715–2723. doi: 10.3762/bjoc.10.286. PubMed DOI PMC
Ramírez-Ambrosi M., Caldera F., Trotta F., Berrueta L., Gallo B. Encapsulation of apple polyphenols in β-CD nanosponges. J. Incl. Phenom. Macrocycl. Chem. 2014;80:85–92. doi: 10.1007/s10847-014-0393-7. DOI
Ansari K.A., Vavia P.R., Trotta F., Cavalli R. Cyclodextrin-based nanosponges for delivery of resveratrol: In vitro characterisation, stability, cytotoxicity and permeation study. AAPS PharmSciTech. 2011;12:279–286. doi: 10.1208/s12249-011-9584-3. PubMed DOI PMC
Anandam S., Selvamuthukumar S. Fabrication of cyclodextrin nanosponges for quercetin delivery: Physicochemical characterization, photostability, and antioxidant effects. J. Mater. Sci. 2014;49:8140–8153. doi: 10.1007/s10853-014-8523-6. DOI
Sapino S., Carlotti M.E., Cavalli R., Ugazio E., Berlier G., Gastaldi L., Morel S. Photochemical and antioxidant properties of gamma-oryzanol in beta-cyclodextrin-based nanosponges. J. Incl. Phenom. Macrocycl. Chem. 2013;75:69–76. doi: 10.1007/s10847-012-0147-3. DOI
Roggero C.M., Di Carlo S., Tumiatti V., Tumiatti M., Vecchi M., Scariot V., Kapila S. Use of Functionalised Nanosponges for the Growth, Conservation, Protection and Disinfection of Vegetable Organisms. 2013046165, A1. WO Patent. 2013 Apr 4;
Vercelli M., Gaino W., Contartese V., Gallo L., Di Carlo S., Tumiatti V., Larcher F., Scariot V. Preliminary studies on the effect of Fe-nanosponge complex in horticulture. Acta Sci. Pol. Hortorum Cultus. 2015;14:51–58.
Appell M., Jackson M.A. Sorption of ochratoxin A from aqueous solutions using β-cyclodextrin-polyurethane polymer. Toxins. 2012;4:98–109. doi: 10.3390/toxins4020098. PubMed DOI PMC
Alongi J., Pošsković M., Frache A., Trotta F. Novel flame retardants containing cyclodextrin nanosponges and phosphorus compounds to enhance EVA combustion properties. Polym. Degrad. Stab. 2010;95:2093–2100. doi: 10.1016/j.polymdegradstab.2010.06.030. DOI
Alongi J., Poskovic M., Visakh P.M., Frache A., Malucelli G. Cyclodextrin nanosponges as novel green flame retardants for PP, LLDPE and PA6. Carbohydr. Polym. 2012;88:1387–1394. doi: 10.1016/j.carbpol.2012.02.038. DOI
Lai X., Zeng X., Li H., Yin C., Zhang H., Liao F. Synergistic effect of phosphorus-containing nanosponges on intumescent flame-retardant polypropylene. J. Appl. Polym. Sci. 2012;125:1758–1765. doi: 10.1002/app.35646. DOI
Fulekar M.H., Pathak B. Environmental Nanotechnology. Volume 1. CRC Press; Boca Raton, FL, USA: 2017.
Swaminathan S., Cavalli R., Trotta F. Cyclodextrin-based nanosponges: A versatile platform for cancer nanotherapeutics development. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2016;8:579–601. doi: 10.1002/wnan.1384. PubMed DOI
Shende P., Kulkarni Y.A., Gaud R.S., Deshmukh K., Cavalli R., Trotta F., Caldera F. Acute and Repeated Dose Toxicity Studies of Different β-Cyclodextrin-Based Nanosponge Formulations. J. Pharm. Sci. 2015;104:1856–1863. doi: 10.1002/jps.24416. PubMed DOI
Swaminathan S., Pastero L., Serpe L., Trotta F., Vavia P., Aquilano D., Trotta M., Zara G.P., Cavalli R. Cyclodextrin-based nanosponges encapsulating camptothecin: Physicochemical characterization, stability and cytotoxicity. Eur. J. Pharm. Biopharm. 2010;74:193–201. doi: 10.1016/j.ejpb.2009.11.003. PubMed DOI
Rao M.R.P., Bhingole R.C. Nanosponge-based pediatric-controlled release dry suspension of Gabapentin for reconstitution. Drug Dev. Ind. Pharm. 2015;41:2029–2036. doi: 10.3109/03639045.2015.1044903. PubMed DOI
Shende P., Chaphalkar R., Deshmukh K., Gaud R.S. Physicochemical Investigation of Engineered Nanosuspensions Containing Model Drug, Lansoprazole. J. Dispers. Sci. Technol. 2016;37:504–511. doi: 10.1080/01932691.2015.1046553. DOI
Singireddy A., Subramanian S. Cyclodextrin nanosponges to enhance the dissolution profile of quercetin by inclusion complex formation. Part. Sci. Technol. 2016;34:341–346. doi: 10.1080/02726351.2015.1081658. DOI
Dora C.P., Trotta F., Kushwah V., Devasari N., Singh C., Suresh S., Jain S. Potential of erlotinib cyclodextrin nanosponge complex to enhance solubility, dissolution rate, in vitro cytotoxicity and oral bioavailability. Carbohydr. Polym. 2016;137:339–349. doi: 10.1016/j.carbpol.2015.10.080. PubMed DOI
Daga M., Ulllio C., Argenziano M., Dianzani C., Cavalli R., Trotta F., Ferretti C., Zara G.P., Gigliotti C.L., Ciamporcero E.S., et al. GSH-targeted nanosponges increase doxorubicin-induced toxicity “in vitro” and “in vivo” in cancer cells with high antioxidant defenses. Free Radic. Biol. Med. 2016;97:24–37. doi: 10.1016/j.freeradbiomed.2016.05.009. PubMed DOI
Ferro M., Castiglione F., Pastori N., Punta C., Melone L., Panzeri W., Rossi B., Trotta F., Mele A. Dynamics and interactions of ibuprofen in cyclodextrin nanosponges by solid-state NMR spectroscopy. Beilstein J. Org. Chem. 2017;13:182–194. doi: 10.3762/bjoc.13.21. PubMed DOI PMC
Coviello V., Sartini S., Quattrini L., Baraldi C., Gamberini M.C., La Motta C. Cyclodextrin-based nanosponges for the targeted delivery of the anti-restenotic agent DB103: A novel opportunity for the local therapy of vessels wall subjected to percutaneous intervention. Eur. J. Pharm. Biopharm. 2017;117:276–285. doi: 10.1016/j.ejpb.2017.04.028. PubMed DOI
Sundararajan M., Thomas P.A., Venkadeswaran K., Jeganathan K., Geraldine P. Synthesis and characterization of chrysin-loaded β-cyclodextrin-based nanosponges to enhance in-vitro solubility, photostability, drug release, antioxidant effects and antitumorous efficacy. J. Nanosci. Nanotechnol. 2017;17:8742–8751. doi: 10.1166/jnn.2017.13911. DOI
Shringirishi M., Mahor A., Gupta R., Prajapati S.K., Bansal K., Kesharwani P. Fabrication and characterization of nifedipine loaded β-cyclodextrin nanosponges: An in vitro and in vivo evaluation. J. Drug Deliv. Sci. Technol. 2017;41:344–350. doi: 10.1016/j.jddst.2017.08.005. DOI
Gigliotti C.L., Minelli R., Cavalli R., Occhipinti S., Barrera G., Pizzimenti S., Cappellano G., Boggio E., Conti L., Fantozzi R., et al. In vitro and in vivo therapeutic evaluation of camptothecin-encapsulated β-cyclodextrin nanosponges in prostate cancer. J. Biomed. Nanotechnol. 2016;12:114–127. doi: 10.1166/jbn.2016.2144. PubMed DOI
Gigliotti C.L., Ferrara B., Occhipinti S., Boggio E., Barrera G., Pizzimenti S., Giovarelli M., Fantozzi R., Chiocchetti A., Argenziano M., et al. Enhanced cytotoxic effect of camptothecin nanosponges in anaplastic thyroid cancer cells in vitro and in vivo on orthotopic xenograft tumors. Drug Deliv. 2017;24:670–680. doi: 10.1080/10717544.2017.1303856. PubMed DOI PMC
Dubey P., Sharma H.K., Shah S., Tyagi C.K., Chandekar A.R., Jadon R.S. Formulations and evaluation of Cyclodextrin complexed Ceadroxil loaded nanosponges. Int. J. Drug Deliv. 2017;9:84. doi: 10.5138/09750215.2180. DOI
Rao M.R.P., Shirsath C. Enhancement of Bioavailability of Non-nucleoside Reverse Transciptase Inhibitor Using Nanosponges. AAPS PharmSciTech. 2017;18:1728–1738. doi: 10.1208/s12249-016-0636-6. PubMed DOI
Rana Z., Zahid Z., Jaiprakash N. Sangshetti Mufassir, M. Enhancement of oral bioavailability of anti-HIV drug rilpivirine HCl through nanosponge formulation. Drug Dev. Ind. Pharm. 2017;43:2076–2084. PubMed
Momin M.M., Zaheer Z., Zainuddin R., Jaiprakash N. Extended release delivery of erlotinib glutathione nanosponge for targeting lung cancer. Artif. Cells Nanomed. Biotechnol. 2017;46:1064–1075. doi: 10.1080/21691401.2017.1360324. PubMed DOI
Mady F.M., Ragab S., Ibrahim M. Cyclodextrin-based nanosponge for improvement of solubility and oral bioavailability of Ellagic acid. Pak. J. Pharm. Sci. 2018;31:2069–2076. PubMed
Deshmukh K., Shende P. Toluene diisocyanate cross-linked β-cyclodextrin nanosponges as a pH-sensitive carrier for naproxen. Mater. Res. Express. 2018;5 doi: 10.1088/2053-1591/aac93d. DOI
Cecone C., Caldera F., Trotta F., Bracco P., Zanetti M. Controlled Release of DEET Loaded on Fibrous Mats from Electrospun PMDA/Cyclodextrin Polymer. Molecules. 2018;23:1694. doi: 10.3390/molecules23071694. PubMed DOI PMC
Rao M.R.P., Chaudhari J., Trotta F., Caldera F. Investigation of Cyclodextrin-Based Nanosponges for Solubility and Bioavailability Enhancement of Rilpivirine. AAPS PharmSciTech. 2018;19:2358–2369. doi: 10.1208/s12249-018-1064-6. PubMed DOI
Zidan M.F., Ibrahim H.M., Afouna M.I., Ibrahim E.A. In vitro and in vivo evaluation of cyclodextrin-based nanosponges for enhancing oral bioavailability of atorvastatin calcium. Drug Dev. Ind. Pharm. 2018;44:1243–1253. doi: 10.1080/03639045.2018.1442844. PubMed DOI
Mendes C., Meirelles G.C., Germano C., Assreuy J., Silva M.A.S., Ponchel G. Cyclodextrin based nanosponge of norfloxacin: Intestinal permeation enhancement and improved antibacterial activity. Carbohydr. Polym. 2018;195:586–592. doi: 10.1016/j.carbpol.2018.05.011. PubMed DOI
Singh P., Ren X., Guo T., Wu L., Shakya S., He Y. Biofunctionalization of β -cyclodextrin nanosponges using cholesterol. Carbohydr. Polym. 2018;190:23–30. doi: 10.1016/j.carbpol.2018.02.044. PubMed DOI
Nait Bachir Y., Nait Bachir R., Hadj-Ziane-Zafour A. Nanodispersions stabilized by β-cyclodextrin nanosponges: Application for simultaneous enhancement of bioactivity and stability of sage essential oil. Drug Dev. Ind. Pharm. 2019;45:333–347. doi: 10.1080/03639045.2018.1542705. PubMed DOI
Pushpalatha R., Selvamuthukumar S., Kilimozhi D. Cross-linked, cyclodextrin-based nanosponges for curcumin delivery—Physicochemical characterization, drug release, stability and cytotoxicity. J. Drug Deliv. Sci. Technol. 2018;45:45–53. doi: 10.1016/j.jddst.2018.03.004. DOI
Pushpalatha R., Selvamuthukumar S., Kilimozhi D. Carbonyl and carboxylate crosslinked cyclodextrin as a nanocarrier for resveratrol: In silico, in vitro and in vivo evaluation. J. Incl. Phenom. Macrocycl. Chem. 2018;92:261–272. doi: 10.1007/s10847-018-0843-8. DOI
Rezaei A., Varshosaz J., Fesharaki M., Farhang A., Jafari S.M. Improving the solubility and in vitro cytotoxicity (anticancer activity) of ferulic acid by loading it into cyclodextrin nanosponges. Int. J. Nanomed. 2019;14:4589–4599. doi: 10.2147/IJN.S206350. PubMed DOI PMC
Gholibegloo E., Mortezazadeh T., Salehian F., Forootanfar H., Firoozpour L., Foroumadi A., Ramazani A., Khoobi M. Folic acid decorated magnetic nanosponge: An efficient nanosystem for targeted curcumin delivery and magnetic resonance imaging. J. Colloid Interface Sci. 2019;556:128–139. doi: 10.1016/j.jcis.2019.08.046. PubMed DOI
Gholibegloo E., Mortezazadeh T., Salehian F., Ramazani A., Amanlou M., Khoobi M. Improved curcumin loading, release, solubility and toxicity by tuning the molar ratio of cross-linker to β-cyclodextrin. Carbohydr. Polym. 2019;213:70–78. doi: 10.1016/j.carbpol.2019.02.075. PubMed DOI
Dhakar N.K., Caldera F., Bessone F., Cecone C., Rubin A., Cavalli R., Dianzani C., Trotta F. Evaluation of solubility enhancement, antioxidant activity, and cytotoxicity studies of kynurenic acid loaded cyclodextrin nanosponge. Carbohydr. Polym. 2019;224 doi: 10.1016/j.carbpol.2019.115168. PubMed DOI
Sherje A.P., Surve A., Shende P. CDI cross-linked β-cyclodextrin nanosponges of paliperidone: Synthesis and physicochemical characterization. J. Mater. Sci. Med. 2019;30 doi: 10.1007/s10856-019-6268-0. PubMed DOI
Argenziano M., Haimhoffer A., Bastiancich C., Caldera F., Trotta F., Scutera S., Alotto D., Fumagalli M., Musso T., Castagnoli C., et al. In Vitro Enhanced Skin Permeation and Retention of Imiquimod Loaded in β -Cyclodextrin Nanosponge Hydrogel. Pharmaceutics. 2019;11:138. doi: 10.3390/pharmaceutics11030138. PubMed DOI PMC
Garcia-Fernandez M.J., Tabary N., Chai F., Cazaux F., Blanchemain N., Flament M.P., Martel B. New multifunctional pharmaceutical excipient in tablet formulation based on citric acid-cyclodextrin polymer. Int. J. Pharm. 2016;511:913–920. doi: 10.1016/j.ijpharm.2016.07.059. PubMed DOI
Gangadharappa H.V., Chandra Prasad S.M., Singh R.P. Formulation, in vitro and in vivo evaluation of celecoxib nanosponge hydrogels for topical application. J. Drug Deliv. Sci. Technol. 2017;41:488–501. doi: 10.1016/j.jddst.2017.09.004. DOI
Dhakar N.K., Matencio A., Caldera F., Argenziano M., Cavalli R., Dianzani C., Zanetti M., López-Nicolás J.M., Trotta F. Comparative evaluation of solubility, cytotoxicity and photostability studies of resveratrol and oxyresveratrol loaded nanosponges. Pharmaceutics. 2019;11:545. doi: 10.3390/pharmaceutics11100545. PubMed DOI PMC
Ncube P., Krause R.W.M., Mamba B.B. Detection of chloroform in water using an azo dye-modified β-cyclodextrin—Epichlorohydrin copolymer as a fluorescent probe. Phys. Chem. Earth. 2014;67–69:79–85. doi: 10.1016/j.pce.2013.10.009. DOI
Trotta F., Caldera F., Dianzani C., Argenziano M., Barrera G., Cavalli R. Glutathione Bioresponsive Cyclodextrin Nanosponges. Chempluschem. 2016;81:439–443. doi: 10.1002/cplu.201500531. PubMed DOI
Argenziano M., Lombardi C., Ferrara B., Trotta F., Caldera F., Blangetti M., Koltai H., Kapulnik Y., Yarden R., Gigliotti L., et al. Glutathione/pH-responsive nanosponges enhance strigolactone delivery to prostate cancer cells. Oncotarget. 2018;9:35813–35829. doi: 10.18632/oncotarget.26287. PubMed DOI PMC
Fontana R.M., Milano N., Barbara L., Di Vincenzo A., Gallo G., Meo P. Lo Cyclodextrin-Calixarene Nanosponges as Potential Platforms for pH-Dependent Delivery of Tetracycline. ChemistrySelect. 2019;4:9743–9747. doi: 10.1002/slct.201902373. DOI
Trotta F., Caldera F., Cavalli R., Soster M., Riedo C., Biasizzo M., Uccello Barretta G., Balzano F., Brunella V. Molecularly imprinted cyclodextrin nanosponges for the controlled delivery of L-DOPA: Perspectives for the treatment of Parkinson’s disease. Expert Opin. Drug Deliv. 2016;13:1671–1680. doi: 10.1080/17425247.2017.1248398. PubMed DOI
Byrne M.E., Park K., Peppas N.A. Molecular imprinting within hydrogels. Adv. Drug Deliv. Rev. 2002;54:149–161. doi: 10.1016/S0169-409X(01)00246-0. PubMed DOI
Seong H., Lee H.B., Park K. Glucose binding to molecularly imprinted polymers. J. Biomater. Sci. Polym. Ed. 2002;13:637–649. doi: 10.1163/156856202320269139. PubMed DOI
Deshmukh K., Tanwar Y.S., Shende P., Cavalli R. Biomimetic estimation of glucose using non-molecular and molecular imprinted polymer nanosponges. Int. J. Pharm. 2015;494:244–248. doi: 10.1016/j.ijpharm.2015.08.022. PubMed DOI
Rousseau J., Menuel S., Rousseau C., Hapiot F., Monflier E. Organic Nanoreactors: From Molecular to Supramolecular Organic Compounds. Elsevier Inc.; Amsterdam, The Netherlands: 2016. Cyclodextrins as Porous Material for Catalysis; pp. 15–42.
Zaidi S.A. Molecular imprinting: A useful approach for drug delivery. Mater. Sci. Energy Technol. 2020;3:72–77. doi: 10.1016/j.mset.2019.10.012. DOI
Pei M., Pai J.Y., Du P., Liu P. Facile Synthesis of Fluorescent Hyper-Cross-Linked β-Cyclodextrin-Carbon Quantum Dot Hybrid Nanosponges for Tumor Theranostic Application with Enhanced Antitumor Efficacy. Mol. Pharm. 2018;15:4084–4091. doi: 10.1021/acs.molpharmaceut.8b00508. PubMed DOI
Peila R., Scordino P., Shanko D.B., Caldera F., Trotta F., Ferri A. Synthesis and characterization of β-cyclodextrin nanosponges for N,N-diethyl-meta-toluamide complexation and their application on polyester fabrics. React. Funct. Polym. 2017;119:87–94. doi: 10.1016/j.reactfunctpolym.2017.08.008. DOI
Cecone C., Caldera F., Anceschi A., Scalarone D., Trotta F., Bracco P., Zanetti M. One-step facile process to obtain insoluble polysaccharides fibrous mats from electrospinning of water-soluble PMDA/cyclodextrin polymer. J. Appl. Polym. Sci. 2018;135:46490. doi: 10.1002/app.46490. DOI
Cecone C., Zanetti M., Anceschi A., Caldera F., Trotta F., Bracco P. Microfibers of microporous carbon obtained from the pyrolysis of electrospun β-cyclodextrin/pyromellitic dianhydride nanosponges. Polym. Degrad. Stab. 2019;161:277–282. doi: 10.1016/j.polymdegradstab.2019.02.001. DOI
Ma M., Li D.Q. New organic nanoporous polymers and their inclusion complexes. Chem. Mater. 1999;11:872–874. doi: 10.1021/cm981090y. DOI
Femminò S., Penna C., Bessone F., Caldera F., Dhakar N., Cau D., Pagliaro P., Cavalli R., Trotta F. α-Cyclodextrin and α-Cyclodextrin Polymers as Oxygen Nanocarriers to Limit Hypoxia/Reoxygenation Injury: Implications from an In Vitro Model. Polymers. 2018;10:211. doi: 10.3390/polym10020211. PubMed DOI PMC
Sadjadi S., Heravi M.M., Daraie M. Cyclodextrin nanosponges: A potential catalyst and catalyst support for synthesis of xanthenes. Res. Chem. Intermed. 2017;43:843–857. doi: 10.1007/s11164-016-2668-7. DOI
Silva F., Caldera F., Trotta F., Nerín C., Domingues F.C. Encapsulation of coriander essential oil in cyclodextrin nanosponges: A new strategy to promote its use in controlled-release active packaging. Innov. Food Sci. Emerg. Technol. 2019;56 doi: 10.1016/j.ifset.2019.102177. DOI
Simionato I., Domingues F.C., Nerín C., Silva F. Encapsulation of cinnamon oil in cyclodextrin nanosponges and their potential use for antimicrobial food packaging. Food Chem. Toxicol. 2019;132 doi: 10.1016/j.fct.2019.110647. PubMed DOI
Silva F., Simionato I., Domeño C., Domingues F.C. Cyclodextrin nanosponges as a new encapsulating agent for essential oils and their effectiveness against foodborne pathogens. Facta Univ. 2018;16:42.
Salgin S., Salgin U., Vatansever Ö. Synthesis and Characterization of β-Cyclodextrin Nanosponge and Its Application for the Removal of p-Nitrophenol from Water. Clean Soil Air Water. 2017;45 doi: 10.1002/clen.201500837. DOI
Pedrazzo A.R., Smarra A., Caldera F., Musso G., Dhakar N.K., Cecone C., Hamedi A., Corsi I., Trotta F. Eco-Friendly beta-cyclodextrin and Linecaps Polymers for the Removal of Heavy Metals. Polymers. 2019;11:1658. doi: 10.3390/polym11101658. PubMed DOI PMC
Liao X., Zhang Q. Mesoporous Polymer Nanosponges Immobilized with Functional Polyols for Rapid Removal of Boric Acid and Organic Micropollutants. ACS Appl. Polym. Mater. 2019;1:2089–2098. doi: 10.1021/acsapm.9b00399. DOI
Massella D., Argenziano M., Ferri A., Guan J., Giraud S., Cavalli R., Barresi A.A., Salaün F. Bio-Functional Textiles: Combining Pharmaceutical Nanocarriers with Fibrous Materials for Innovative Dermatological Therapies. Pharmaceutics. 2019;11:403. doi: 10.3390/pharmaceutics11080403. PubMed DOI PMC
Mihailiasa M., Caldera F., Li J., Peila R., Ferri A., Trotta F. Preparation of functionalized cotton fabrics by means of melatonin loaded β-cyclodextrin nanosponges. Carbohydr. Polym. 2016;142:24–30. doi: 10.1016/j.carbpol.2016.01.024. PubMed DOI
Gentili A. Cyclodextrin-based sorbents for solid phase extraction. J. Chromatogr. A. 2019:460654. doi: 10.1016/j.chroma.2019.460654. PubMed DOI
Sadjadi S., Heravi M.M., Daraie M. A novel hybrid catalytic system based on immobilization of phosphomolybdic acid on ionic liquid decorated cyclodextrin-nanosponges: Efficient catalyst for the green synthesis of benzochromeno-pyrazole through cascade reaction: Triply green. J. Mol. Liq. 2017;231:98–105. doi: 10.1016/j.molliq.2017.01.072. DOI
Kumar S., Rao R. Analytical tools for cyclodextrin nanosponges in pharmaceutical field: A review. J. Incl. Phenom. Macrocycl. Chem. 2019;94:11–30. doi: 10.1007/s10847-019-00903-z. DOI
Zhao F., Repo E., Yin D., Meng Y., Jafari S., Sillanpää M. EDTA-Cross-Linked β-Cyclodextrin: An Environmentally Friendly Bifunctional Adsorbent for Simultaneous Adsorption of Metals and Cationic Dyes. Environ. Sci. Technol. 2015;49:10570–10580. doi: 10.1021/acs.est.5b02227. PubMed DOI
Venuti V., Rossi B., D’Amico F., Mele A., Castiglione F., Punta C., Melone L., Crupi V., Majolino D., Trotta F., et al. Combining Raman and infrared spectroscopy as a powerful tool for the structural elucidation of cyclodextrin-based polymeric hydrogels. Phys. Chem. Chem. Phys. 2015;17:10274–10282. doi: 10.1039/C5CP00607D. PubMed DOI
Hayiyana Z., Choonara Y., Makgotloe A., Toit L., Kumar P., Pillay V. Ester-Based Hydrophilic Cyclodextrin Nanosponges for Topical Ocular Drug Delivery. Curr. Pharm. Des. 2017;22:6988–6997. doi: 10.2174/1381612822666161216113207. PubMed DOI
Pawar S., Shende P., Trotta F. Diversity of β -cyclodextrin-based nanosponges for transformation of actives. Int. J. Pharm. 2019;565:333–350. doi: 10.1016/j.ijpharm.2019.05.015. PubMed DOI
Morin-Crini N., Winterton P., Fourmentin S., Wilson L.D., Fenyvesi É., Crini G. Water-insoluble β-cyclodextrin–epichlorohydrin polymers for removal of pollutants from aqueous solutions by sorption processes using batch studies: A review of inclusion mechanisms. Prog. Polym. Sci. 2018;78:1–23. doi: 10.1016/j.progpolymsci.2017.07.004. DOI
Deshmukh K., Tanwar Y.S., Sharma S., Shende P., Cavalli R. Functionalized nanosponges for controlled antibacterial and antihypocalcemic actions. Biomed. Pharmacother. 2016;84:485–494. doi: 10.1016/j.biopha.2016.09.017. PubMed DOI
Russo M., Saladino M.L., Chillura Martino D., Lo Meo P., Noto R. Polyaminocyclodextrin nanosponges: Synthesis, characterization and pH-responsive sequestration abilities. RSC Adv. 2016;6:49941–49953. doi: 10.1039/C6RA06417E. DOI
Junthip J., Promma W., Sonsupap S., Boonyanusith C. Adsorption of paraquat from water by insoluble cyclodextrin polymer crosslinked with 1,2,3,4-butanetetracarboxylic acid. Iran. Polym. J. 2019;28:213–223. doi: 10.1007/s13726-019-00692-9. DOI
Singireddy A., Pedireddi S.R., Subramanian S. Optimization of reaction parameters for synthesis of Cyclodextrin nanosponges in controlled nanoscopic size dimensions. J. Polym. Res. 2019;26 doi: 10.1007/s10965-019-1754-0. DOI
Nanosponges: An overlooked promising strategy to combat SARS-CoV-2
Nanosponges for Drug Delivery and Cancer Therapy: Recent Advances