Nanosponges for Drug Delivery and Cancer Therapy: Recent Advances
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
35889665
PubMed Central
PMC9323080
DOI
10.3390/nano12142440
PII: nano12142440
Knihovny.cz E-zdroje
- Klíčová slova
- DNAzyme nanosponges, cancer therapy, cyclodextrin-based nanosponges, drug delivery, ethylcellulose nanosponges, nanosponges,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Nanosponges with three-dimensional (3D) porous structures, narrow size distribution, and high entrapment efficiency are widely engineered for cancer therapy and drug delivery purposes. They protect the molecular agents from degradation and help to improve the solubility of lipophilic therapeutic agents/drugs with targeted delivery options in addition to being magnetized to attain suitable magnetic features. Nanosponge-based delivery systems have been applied for cancer therapy with high specificity, biocompatibility, degradability, and prolonged release behavior. In this context, the drug loading within nanosponges is influenced by the crystallization degree. Notably, 3D printing technologies can be applied for the development of novel nanosponge-based systems for biomedical applications. The impacts of polymers, cross-linkers, type of drugs, temperature, loading and mechanism of drug release, fabrication methods, and substitution degree ought to be analytically evaluated. Eco-friendly techniques for the manufacturing of nanosponges still need to be uncovered in addition to the existing methods, such as solvent techniques, ultrasound-assisted preparation, melting strategies, and emulsion solvent diffusion methods. Herein, the recent advancements associated with the drug delivery and cancer therapy potential of nanosponges (chiefly, cyclodextrin-based, DNAzyme, and ethylcellulose nanosponges) are deliberated, focusing on the important challenges and future perspectives.
Zobrazit více v PubMed
Joseph X., Akhil V., Arathi A., Mohanan P.V. Nanobiomaterials in support of drug delivery related issues. Mater. Sci. Eng. B. 2022;279:115680. doi: 10.1016/j.mseb.2022.115680. DOI
Sajjadi M., Nasrollahzadeh M., Jaleh B., Jamalipour Soufi G., Iravani S. Carbon-based nanomaterials for targeted cancer nanotherapy: Recent trends and future prospects. J. Drug Target. 2021;29:716–741. doi: 10.1080/1061186X.2021.1886301. PubMed DOI
Carrion C.C., Nasrollahzadeh M., Sajjadi M., Jaleh B., Jamalipour Soufi G., Iravani S. Lignin, lipid, protein, hyaluronic acid, starch, cellulose, gum, pectin, alginate and chitosan-based nanomaterials for cancer nanotherapy: Challenges and opportunities. Int. J. Biol. Macromol. 2021;178:193–228. doi: 10.1016/j.ijbiomac.2021.02.123. PubMed DOI
Iravani S., Varma R.S. Plant pollen grains: A move towards green drug and vaccine delivery systems. Nano-Micro Lett. 2021;13:128. doi: 10.1007/s40820-021-00654-y. PubMed DOI PMC
Iravani S., Varma R.S. Important Roles of Oligo- and Polysaccharides against SARS-CoV-2: Recent Advances. Appl. Sci. 2021;11:3512. doi: 10.3390/app11083512. DOI
Iravani S., Varma R.S. Nanosponges for water treatment: Progress and challenges. Appl. Sci. 2022;12:4182. doi: 10.3390/app12094182. DOI
Wang Y., Pisapati A.V., Zhang X.F., Cheng X. Recent developments in nanomaterial-based shear-sensitive drug delivery systems. Adv. Healthc. Mater. 2021;10:2002196. doi: 10.1002/adhm.202002196. PubMed DOI PMC
Iravani S. Nano- and biosensors for the detection of SARS-CoV-2: Challenges and opportunities. Mater. Adv. 2020;1:3092–3103. doi: 10.1039/D0MA00702A. DOI
Iravani S. Nanophotocatalysts against viruses and antibiotic-resistant bacteria: Recent advances. Crit. Rev. Microbiol. 2022;48:67–82. doi: 10.1080/1040841X.2021.1944053. PubMed DOI
Osmani R.A.M., Hani U., Bhosale R.R., Kulkarni P.K., Shanmuganathan S. Nanosponge carriers-an archetype swing in cancer therapy: A comprehensive review. Curr. Drug Targets. 2017;18:108–118. doi: 10.2174/1389450116666151001105449. PubMed DOI
Allahyari S., Zahednezhad F., Khatami M., Hashemzadeh N., Zakeri-Milani P., Trotta F. Cyclodextrin nanosponges as potential anticancer drug delivery systems to be introduced into the market, compared with liposomes. J. Drug Deliv. Sci. Technol. 2022;67:102931. doi: 10.1016/j.jddst.2021.102931. DOI
Utzeri G., Matias P.M.C., Murtinho D., Valente A.J.M. Cyclodextrin-based nanosponges: Overview and opportunities. Front. Chem. 2022;10:859406. PubMed PMC
Prabhu P.P., Prathvi, Gujaran T.V., Mehta C.H., Suresh A., Koteshwara K.B., Pai K.G., Nayak U.Y. Development of lapatinib nanosponges for enhancing bioavailability. J. Drug Deliv. Sci. Technol. 2021;65:102684. doi: 10.1016/j.jddst.2021.102684. DOI
Lembo D., Trotta F., Cavalli R. Cyclodextrin-based nanosponges as vehicles for antiviral drugs: Challenges and perspectives. Nanomedicine. 2018;13:477–480. doi: 10.2217/nnm-2017-0383. PubMed DOI
Coviello V., Sartini S., Quattrini L., Baraldi C., Gamberini M.C., La Motta C. Cyclodextrin-based nanosponges for the targeted delivery of the anti-restenotic agent DB103: A novel opportunity for the local therapy of vessels wall subjected to percutaneous intervention. Eur. J. Pharm. Biopharm. 2017;117:276–285. doi: 10.1016/j.ejpb.2017.04.028. PubMed DOI
Sherje A.P., Dravyakar B.R., Kadam D., Jadhav M. Cyclodextrin-based nanosponges: A critical review. Carbohydr. Polym. 2017;173:37–49. doi: 10.1016/j.carbpol.2017.05.086. PubMed DOI
Tiwari K., Bhattacharya S. The ascension of nanosponges as a drug delivery carrier: Preparation, characterization, and applications. J. Mater. Sci. Mater. Med. 2022;33:28. doi: 10.1007/s10856-022-06652-9. PubMed DOI PMC
Deng J., Chen Q.J., Li W., Zuberi Z., Feng J.X., Lin Q.L., Ren J.L., Luo F.J., Ding Q.M., Zeng X.X., et al. Toward improvements for carrying capacity of the cyclodextrin-based nanosponges: Recent progress from a material and drug delivery. J. Mater. Sci. 2021;56:5995–6015. doi: 10.1007/s10853-020-05646-8. DOI
Wang H., Yapa A.S., Kariyawasam N.L., Shrestha T.B., Kalubowilage M., Wendel S.O., Yu J., Pyle M., Basel M.T., Malalasekera A.P., et al. Rationally designed peptide nanosponges for cell-based cancer therapy. Nanomedicine. 2017;13:2555–2564. doi: 10.1016/j.nano.2017.07.004. PubMed DOI
Shailaja D., Pramodkumar S. Nanosponges Encapsulated Phytochemicals for Targeting Cancer: A Review. Curr. Drug Targets. 2021;22:443–462. PubMed
Varan C., Anceschi A., Sevli S., Bruni N., Giraudo L., Bilgiç E., Korkusuz P., İskit A.B., Trotta F., Bilensoy E. Preparation and characterization of cyclodextrin nanosponges for organic toxic molecule removal. Int. J. Pharm. 2020;585:119485. doi: 10.1016/j.ijpharm.2020.119485. PubMed DOI
Pawar S., Shende P. A Comprehensive Patent Review on β-cyclodextrin Cross-linked Nanosponges for Multiple Applications. Recent Pat. Nanotechnol. 2020;14:75–89. doi: 10.2174/1872210513666190603083930. PubMed DOI
Varma R.S. Greener approach to nanomaterials and their sustainable applications. Curr. Opin. Chem. Eng. 2012;1:123–128. doi: 10.1016/j.coche.2011.12.002. DOI
Varma R.S. Journey on greener pathways: From the use of alternate energy inputs and benign reaction media to sustainable applications of nano-catalysts in synthesis and environmental remediation. Green Chem. 2014;16:2027–2041. doi: 10.1039/c3gc42640h. DOI
Varma R.S. Greener and sustainable chemistry. Appl. Sci. 2014;4:493–497. doi: 10.3390/app4040493. DOI
Varma R.S. Greener and Sustainable Trends in Synthesis of Organics and Nanomaterials. ACS Sustain. Chem. Eng. 2016;4:5866–5878. doi: 10.1021/acssuschemeng.6b01623. PubMed DOI PMC
Varma R.S. Biomass-Derived Renewable Carbonaceous Materials for Sustainable Chemical and Environmental Applications. ACS Sustain. Chem. Eng. 2019;7:6458–6470. doi: 10.1021/acssuschemeng.8b06550. DOI
Sharma K., Kadian V., Kumar A., Mahant S., Rao R. Evaluation of Solubility, Photostability and Antioxidant Activity of Ellagic Acid Cyclodextrin Nanosponges Fabricated by Melt Method and Microwave-Assisted Synthesis. J. Food Sci. Technol. 2021;59:898–908. doi: 10.1007/s13197-021-05085-6. PubMed DOI PMC
Ciesielska A., Ciesielski W., Girek B., Girek T., Koziel K., Kulawik D., Lagiewka J. Biomedical application of cyclodextrin polymers cross-linked via dianhydrides of carboxylic Acids. Appl. Sci. 2020;10:8463. doi: 10.3390/app10238463. DOI
Caldera F., Tannous M., Cavalli R., Zanetti M., Trotta F. Evolution of Cyclodextrin Nanosponges. Int. J. Pharm. 2017;531:470–479. doi: 10.1016/j.ijpharm.2017.06.072. PubMed DOI
Jain A., Prajapati S.K., Kumari A., Mody N., Bajpai M. Engineered nanosponges as versatile biodegradable carriers: An insight. J. Drug Deliv. Sci. Technol. 2020;57:101643. doi: 10.1016/j.jddst.2020.101643. DOI
Kumari P., Singh P., Singhal A., Alka Cyclodextrin-based nanostructured materials for sustainable water remediation applications. Environ. Sci. Pollut. Res. 2020;27:32432–32448. doi: 10.1007/s11356-020-09519-0. DOI
Khazaei Monfared Y., Mahmoudian M., Cecone C., Caldera F., Zakeri-Milani P., Matencio A., Trotta F. Stabilization and Anticancer Enhancing Activity of the Peptide Nisin by Cyclodextrin-Based Nanosponges against Colon and Breast Cancer Cells. Polymers. 2022;14:594. doi: 10.3390/polym14030594. PubMed DOI PMC
Taka A.L., Pillay K., Mbianda X.Y. Nanosponge cyclodextrin polyurethanes and their modification with nanomaterials for the removal of pollutants from waste water: A review. Carbohydr. Polym. 2017;159:94–107. doi: 10.1016/j.carbpol.2016.12.027. PubMed DOI
Arkas M., Allabashi R., Tsiourvas D., Mattausch E.-M., Perfler R. Organic/Inorganic Hybrid Filters Based on Dendritic and Cyclodextrin “Nanosponges” for the Removal of Organic Pollutants from Water. Environ. Sci. Technol. 2006;40:2771–2777. doi: 10.1021/es052290v. PubMed DOI
Singh P., Ren X., Guo T., Wu L., Shakya S., He Y., Wang C., Maharjan A., Singh V., Zhang J. Biofunctionalization of β-cyclodextrin nanosponges using cholesterol. Carbohydr. Polym. 2018;190:23–30. doi: 10.1016/j.carbpol.2018.02.044. PubMed DOI
Jani R.K., Patel N., Patel Z., Chakraborthy G.S., Upadhye V. Nanosponges as a biocatalyst carrier—An innovative drug delivery technology for enzymes, proteins, vaccines, and antibodies. Biocatal. Agric. Biotechnol. 2022;42:102329. doi: 10.1016/j.bcab.2022.102329. DOI
Menezes P.D.P., Andrade T.d.A., Frank L.A., Soares de Souza E.P.B.S., Trindade G.d.G.G., Trindade I.A.S., Serafini M.R., Guterres S.S., Araújo A.A.d.S. Advances of nanosystems containing cyclodextrins and their applications in pharmaceuticals. Int. J. Pharm. 2019;559:312–328. doi: 10.1016/j.ijpharm.2019.01.041. PubMed DOI
Lee J.S., Oh H., Kim S., Lee J.-H., Shin Y.C., Choi W.I. A Novel Chitosan Nanosponge as a Vehicle for Transepidermal Drug Delivery. Pharmaceutics. 2021;13:1329. doi: 10.3390/pharmaceutics13091329. PubMed DOI PMC
Taka A.L., Fosso-Kankeu E., Pillay K., Yangkou Mbianda X. Metal nanoparticles decorated phosphorylated carbon nanotube/cyclodextrin nanosponge for trichloroethylene and Congo red dye adsorption from wastewater. J. Environ. Chem. Eng. 2020;8:103602. doi: 10.1016/j.jece.2019.103602. DOI
Torne S., Darandale S., Vavia P., Trotta F., Cavalli R. Cyclodextrin-based nanosponges: Effective nanocarrier for tamoxifen delivery. Pharm. Dev. Technol. 2013;18:619–625. doi: 10.3109/10837450.2011.649855. PubMed DOI
Allahyari S., Trotta F., Valizadeh H., Jelvehgari M., Zakeri-Milani P. Cyclodextrin-based nanosponges as promising carriers for active agents. Expert Opin Drug Deliv. 2019;16:467–479. doi: 10.1080/17425247.2019.1591365. PubMed DOI
Real D.A., Bolaños K., Priotti J., Yutronic N., Kogan M.J., Sierpe R., Donoso-González O. Cyclodextrin-Modified Nanomaterials for Drug Delivery: Classification and Advances in Controlled Release and Bioavailability. Pharmaceutics. 2021;13:2131. doi: 10.3390/pharmaceutics13122131. PubMed DOI PMC
Asela I., Donoso-González O., Yutronic N., Sierpe R. β-Cyclodextrin-based nanosponges functionalized with drugs and gold nanoparticles. Pharmaceutics. 2021;13:513. doi: 10.3390/pharmaceutics13040513. PubMed DOI PMC
Dhakar N.K., Caldera F., Bessone F., Cecone C., Pedrazzo A.R., Cavalli R., Dianzani C., Trotta F. Evaluation of solubility enhancement, antioxidant activity, and cytotoxicity studies of kynurenic acid loaded cyclodextrin nanosponge. Carbohydr. Polym. 2019;224:115168. doi: 10.1016/j.carbpol.2019.115168. PubMed DOI
Mendes C., Meirelles G.C., Barp C.G., Assreuy J., Silva M.A., Ponchel G. Cyclodextrin based nanosponge of norfloxacin: Intestinal permeation enhancement and improved antibacterial activity. Carbohydr. Polym. 2018;195:586–592. doi: 10.1016/j.carbpol.2018.05.011. PubMed DOI
Caldera F., Argenziano M., Trotta F., Dianzani C., Gigliotti L., Tannous M., Pastero L., Aquilano D., Nishimoto T., Higashiyama T., et al. Cyclic nigerosyl-1,6-nigerose-based nanosponges: An innovative pH and time-controlled nanocarrier for improving cancer treatment. Carbohydr. Polym. 2018;194:111–121. doi: 10.1016/j.carbpol.2018.04.027. PubMed DOI
Dora C.P., Trotta F., Kushwah V., Devasari N., Singh C., Suresh S., Jain S. Potential of erlotinib cyclodextrin nanosponge complex to enhance solubility, dissolution rate, in vitro cytotoxicity and oral bioavailability. Carbohydr. Polym. 2016;137:339–349. doi: 10.1016/j.carbpol.2015.10.080. PubMed DOI
Minelli R., Cavalli R., Ellis L., Pettazzoni P., Trotta F., Ciamporcero E., Barrera G., Fantozzi R., Dianzani C., Pili R. Nanosponge-encapsulated camptothecin exerts anti-tumor activity in human prostate cancer cells. Eur. J. Pharm. Sci. 2012;47:686–694. doi: 10.1016/j.ejps.2012.08.003. PubMed DOI
Torne S.J., Ansari K.A., Vavia P.R., Trotta F., Cavalli R. Enhanced oral paclitaxel bioavailability after administration of paclitaxel-loaded nanosponges. Drug Deliv. 2010;17:419–425. doi: 10.3109/10717541003777233. PubMed DOI
Allahyari S., Esmailnezhad N., Valizadeh H., Ghorbani M., Jelvehgari M., Ghazi F., Zakeri-Milani P. In-vitro characterization and cytotoxicity study of flutamide loaded cyclodextrin nanosponges. J. Drug Deliv. Sci. Technol. 2021;61:102275. doi: 10.1016/j.jddst.2020.102275. DOI
Gigliotti C.L., Ferrara B., Occhipinti S., Boggio E., Barrera G., Pizzimenti S., Giovarelli M., Fantozzi R., Chiocchetti A., Argenziano M., et al. Enhanced cytotoxic effect of camptothecin nanosponges in anaplastic thyroid cancer cells in vitro and in vivo on orthotopic xenograft tumors. Drug Deliv. 2017;24:670–680. doi: 10.1080/10717544.2017.1303856. PubMed DOI PMC
Pushpalatha R., Selvamuthukumar S., Kilimozhi D. Cross-linked, cyclodextrin-based nanosponges for curcumin delivery-physicochemical characterization, drug release, stability and cytotoxicity. J. Drug Deliv. Sci. Technol. 2018;45:45–53. doi: 10.1016/j.jddst.2018.03.004. DOI
Shringirishi M., Mahor A., Gupta R., Prajapati S.K., Bansal K., Kesharwani P. Fabrication and characterization of nifedipine loaded β-cyclodextrin nanosponges: An in vitro and in vivo evaluation. J. Drug Deliv. Sci. Technol. 2017;41:344–350. doi: 10.1016/j.jddst.2017.08.005. DOI
Pei M., Pai J.-Y., Du P., Liu P. Facile synthesis of fluorescent hyper-cross-linked β-cyclodextrin-carbon quantum dot hybrid nanosponges for tumor theranostic application with enhanced antitumor efficacy. Mol. Pharm. 2018;15:4084–4091. doi: 10.1021/acs.molpharmaceut.8b00508. PubMed DOI
Kumar S., Rao R. Novel dithranol loaded cyclodextrin nanosponges for augmentation of solubility, photostability and cytocompatibility. Cnano. 2021;17:747–761. doi: 10.2174/1573413716666201215165552. DOI
Omar S.M., Ibrahim F., Ismail A. Formulation and evaluation of cyclodextrin-based nanosponges of griseofulvin as pediatric oral liquid dosage form for enhancing bioavailability and masking bitter taste. Saudi Pharm. J. 2020;28:349–361. doi: 10.1016/j.jsps.2020.01.016. PubMed DOI PMC
Shende P.K., Trotta F., Gaud R., Deshmukh K., Cavalli R., Biasizzo M. Influence of different techniques on formulation and comparative characterization of inclusion complexes of ASA with β-cyclodextrin and inclusion complexes of ASA with PMDA cross-linked β-cyclodextrin nanosponges. J. Incl. Phenom. Macrocycl. Chem. 2012;74:447–454. doi: 10.1007/s10847-012-0140-x. DOI
Rao M., Bajaj A., Khole I., Munjapara G., Trotta F. In vitro and in vivo evaluation of b-cyclodextrin-based nanosponges of telmisartan. J. Incl. Phenom. Macrocycl. Chem. 2013;77:135–145. doi: 10.1007/s10847-012-0224-7. DOI
Daga M., de Graaf I.A.M., Argenziano M., Barranco A.S.M., Loeck M., Al-Adwi Y., Cucci M.A., Caldera F., Trotta F., Barrera G., et al. Glutathione-responsive cyclodextrin-nanosponges as drug delivery systems for doxorubicin: Evaluation of toxicity and transport mechanisms in the liver. Toxicol. Vitr. 2020;65:104800. doi: 10.1016/j.tiv.2020.104800. PubMed DOI
Dai Y., Li Q., Zhang S., Shi S., Li Y., Zhao X., Zhou L., Wang X., Zhu Y., Li W. Smart GSH/pH dual-bioresponsive degradable nanosponges based on β-CD-appended hyper-cross-linked polymer for triggered intracellular anticancer drug delivery. J. Drug Deliv. Sci. Technol. 2021;64:102650. doi: 10.1016/j.jddst.2021.102650. DOI
Pawar S., Shende P. Dual drug delivery of cyclodextrin cross-linked artemether and lumefantrine nanosponges for synergistic action using 23 full factorial designs. Colloids Surf. A Physicochem. Eng. Asp. 2020;602:125049. doi: 10.1016/j.colsurfa.2020.125049. DOI
Khalid Q., Ahmad M., Minhas M.U., Batool F., Malik N.S., Rehman M. Novel β-cyclodextrin nanosponges by chain growth condensation for solubility enhancement of dexibuprofen: Characterization and acute oral toxicity studies. J. Drug Deliv. Sci. Technol. 2021;61:102089. doi: 10.1016/j.jddst.2020.102089. DOI
Rizvi S.S.B., Akhtar N., Minhas M.U., Mahmood A., Khan K.U. Synthesis and Characterization of Carboxymethyl Chitosan Nanosponges with Cyclodextrin Blends for Drug Solubility Improvement. Gels. 2022;8:55. doi: 10.3390/gels8010055. PubMed DOI PMC
Krabicová I., Appleton S.L., Tannous M., Hoti G., Caldera F., Pedrazzo A.R., Cecone C., Cavalli R., Trotta F. History of Cyclodextrin Nanosponges. Polymers. 2020;12:1122. doi: 10.3390/polym12051122. PubMed DOI PMC
Palminteri M., Dhakar N.K., Ferraresi A., Caldera F., Vidoni C., Trotta F., Isidoro C. Cyclodextrin nanosponge for the GSH-mediated delivery of Resveratrol in human cancer cells. Nanotheranostics. 2021;5:197–212. doi: 10.7150/ntno.53888. PubMed DOI PMC
Gardouh A.R., Elhusseiny S., Gad S. Mixed Avanafil and Dapoxetin Hydrochloride cyclodextrin nano-sponges: Preparation, in-vitro characterization, and bioavailability determination. J. Drug Deliv. Sci. Technol. 2022;68:103100. doi: 10.1016/j.jddst.2022.103100. DOI
Caldera F., Nisticò R., Magnacca G., Matencio A., Monfared Y.K., Trotta F. Magnetic Composites of Dextrin-Based Carbonate Nanosponges and Iron Oxide Nanoparticles with Potential Application in Targeted Drug Delivery. Nanomaterials. 2022;12:754. doi: 10.3390/nano12050754. PubMed DOI PMC
Jin Y., Liang L., Sun X., Yu G., Chen S., Shi S., Liu H., Li Z., Ge K., Liu D., et al. Deoxyribozyme-nanosponges for improved photothermal therapy by overcoming thermoresistance. NPG Asia Mater. 2018;10:373–384. doi: 10.1038/s41427-018-0040-7. DOI
Wang J., Yu S., Wu Q., Gong X., He S., Shang J., Liu X., Wang F. A self-catabolic multifunctional DNAzyme nanosponge for programmable drug delivery and efficient gene silencing. Angew Chem. 2021;60:10766–10774. doi: 10.1002/anie.202101474. PubMed DOI
Wang J., Wang H., Wang H., He S., Li R., Deng Z., Liu X., Wang F. Nonviolent Self-Catabolic DNAzyme Nanosponges for Smart Anticancer Drug Delivery. ACS Nano. 2019;13:5852–5863. doi: 10.1021/acsnano.9b01589. PubMed DOI
Zhang K., Liu J., Song Q., Yang X., Wang D., Liu W., Shi J., Zhang Z. DNA Nanosponge for Adsorption and Clearance of Intracellular miR-21 and Enhanced Antitumor Chemotherapy. ACS Appl. Mater. Interfaces. 2019;11:46604–46613. doi: 10.1021/acsami.9b18282. PubMed DOI
Luo D., Lin X., Zhao Y., Hu J., Mo F., Song G., Zou Z., Wang F., Liu X. A dynamic DNA nanosponge for triggered amplification of gene-photodynamic modulation. Chem. Sci. 2022;13:5155–5163. doi: 10.1039/D2SC00459C. PubMed DOI PMC
Shah H.S., Nasrullah U., Zaib S., Usman F., Khan A., Gohar U.F., Uddin J., Khan I., Al-Harrasi A. Preparation, Characterization, and Pharmacological Investigation of Withaferin-A Loaded Nanosponges for Cancer Therapy; In Vitro, In Vivo and Molecular Docking Studies. Molecules. 2021;26:6990. doi: 10.3390/molecules26226990. PubMed DOI PMC
Anwer M.K., Fatima F., Ahmed M.M., Aldawsari M.F., Alali A.S., Kalam M.A., Alshamsan A., Alkholief M., Malik A., Az A., et al. Abemaciclib-loaded ethylcellulose based nanosponges for sustained cytotoxicity against MCF-7 and MDA-MB-231 human breast cancer cells lines. Saudi Pharm. J. 2022;30:726–734. doi: 10.1016/j.jsps.2022.03.019. PubMed DOI PMC
Rodrigues K., Nadaf S., Rarokar N., Gurav N., Jagtap P., Mali P., Ayyanar M., Kalaskar M., Gurav S. QBD approach for the development of hesperetin loaded colloidal nanosponges for sustained delivery: In-vitro, ex-vivo, and in-vivo assessment. OpenNano. 2022;7:100045. doi: 10.1016/j.onano.2022.100045. DOI
Almutairy B.K., Alshetaili A., Alali A.S., Ahmed M.M., Anwer M.K., Aboudzadeh M.A. Design of olmesartan medoxomil-loaded nanosponges for hypertension and lung cancer treatments. Polymers. 2021;13:2272. doi: 10.3390/polym13142272. PubMed DOI PMC
Aldawsari H.M., Badr-Eldin S.M., Labib G.S., El-Kamel A.H. Design and formulation of a topical hydrogel integrating lemongrass-loaded nanosponges with an enhanced antifungal effect: In vitro/in vivo evaluation. Int. J. Nanomed. 2015;10:893–902. PubMed PMC
Hafiz M.A., Abbas N., Bukhari N.I. Quality by design approach for formulation development and evaluation of carboplatin loaded ethylcellulose nanosponges. Int. J. Polym. Mater. Polym. Biomater. 2022;71:1012–1024. doi: 10.1080/00914037.2021.1933978. DOI
Ahmed M.M., Fatima F., Alali A., Kalam M.A., Alhazzani K., Bhatia S., Alshehri S., Ghoneim M.M. Ribociclib-loaded ethylcellulose-based nanosponges: Formulation, physicochemical characterization, and cytotoxic potential against breast cancer. Adsorpt. Sci. Technol. 2022;2022:1922263. doi: 10.1155/2022/1922263. DOI
Ahmed M.M., Fatima F., Anwer M.K., Ansari M.J., Das S.S., Alshahrani S.M. Development and characterization of ethyl cellulose nanosponges for sustained release of brigatinib for the treatment of non-small cell lung cancer. J. Polym. Eng. 2020;40:823–832. doi: 10.1515/polyeng-2019-0365. DOI