Nanosponges for Drug Delivery and Cancer Therapy: Recent Advances

. 2022 Jul 16 ; 12 (14) : . [epub] 20220716

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35889665

Nanosponges with three-dimensional (3D) porous structures, narrow size distribution, and high entrapment efficiency are widely engineered for cancer therapy and drug delivery purposes. They protect the molecular agents from degradation and help to improve the solubility of lipophilic therapeutic agents/drugs with targeted delivery options in addition to being magnetized to attain suitable magnetic features. Nanosponge-based delivery systems have been applied for cancer therapy with high specificity, biocompatibility, degradability, and prolonged release behavior. In this context, the drug loading within nanosponges is influenced by the crystallization degree. Notably, 3D printing technologies can be applied for the development of novel nanosponge-based systems for biomedical applications. The impacts of polymers, cross-linkers, type of drugs, temperature, loading and mechanism of drug release, fabrication methods, and substitution degree ought to be analytically evaluated. Eco-friendly techniques for the manufacturing of nanosponges still need to be uncovered in addition to the existing methods, such as solvent techniques, ultrasound-assisted preparation, melting strategies, and emulsion solvent diffusion methods. Herein, the recent advancements associated with the drug delivery and cancer therapy potential of nanosponges (chiefly, cyclodextrin-based, DNAzyme, and ethylcellulose nanosponges) are deliberated, focusing on the important challenges and future perspectives.

Zobrazit více v PubMed

Joseph X., Akhil V., Arathi A., Mohanan P.V. Nanobiomaterials in support of drug delivery related issues. Mater. Sci. Eng. B. 2022;279:115680. doi: 10.1016/j.mseb.2022.115680. DOI

Sajjadi M., Nasrollahzadeh M., Jaleh B., Jamalipour Soufi G., Iravani S. Carbon-based nanomaterials for targeted cancer nanotherapy: Recent trends and future prospects. J. Drug Target. 2021;29:716–741. doi: 10.1080/1061186X.2021.1886301. PubMed DOI

Carrion C.C., Nasrollahzadeh M., Sajjadi M., Jaleh B., Jamalipour Soufi G., Iravani S. Lignin, lipid, protein, hyaluronic acid, starch, cellulose, gum, pectin, alginate and chitosan-based nanomaterials for cancer nanotherapy: Challenges and opportunities. Int. J. Biol. Macromol. 2021;178:193–228. doi: 10.1016/j.ijbiomac.2021.02.123. PubMed DOI

Iravani S., Varma R.S. Plant pollen grains: A move towards green drug and vaccine delivery systems. Nano-Micro Lett. 2021;13:128. doi: 10.1007/s40820-021-00654-y. PubMed DOI PMC

Iravani S., Varma R.S. Important Roles of Oligo- and Polysaccharides against SARS-CoV-2: Recent Advances. Appl. Sci. 2021;11:3512. doi: 10.3390/app11083512. DOI

Iravani S., Varma R.S. Nanosponges for water treatment: Progress and challenges. Appl. Sci. 2022;12:4182. doi: 10.3390/app12094182. DOI

Wang Y., Pisapati A.V., Zhang X.F., Cheng X. Recent developments in nanomaterial-based shear-sensitive drug delivery systems. Adv. Healthc. Mater. 2021;10:2002196. doi: 10.1002/adhm.202002196. PubMed DOI PMC

Iravani S. Nano- and biosensors for the detection of SARS-CoV-2: Challenges and opportunities. Mater. Adv. 2020;1:3092–3103. doi: 10.1039/D0MA00702A. DOI

Iravani S. Nanophotocatalysts against viruses and antibiotic-resistant bacteria: Recent advances. Crit. Rev. Microbiol. 2022;48:67–82. doi: 10.1080/1040841X.2021.1944053. PubMed DOI

Osmani R.A.M., Hani U., Bhosale R.R., Kulkarni P.K., Shanmuganathan S. Nanosponge carriers-an archetype swing in cancer therapy: A comprehensive review. Curr. Drug Targets. 2017;18:108–118. doi: 10.2174/1389450116666151001105449. PubMed DOI

Allahyari S., Zahednezhad F., Khatami M., Hashemzadeh N., Zakeri-Milani P., Trotta F. Cyclodextrin nanosponges as potential anticancer drug delivery systems to be introduced into the market, compared with liposomes. J. Drug Deliv. Sci. Technol. 2022;67:102931. doi: 10.1016/j.jddst.2021.102931. DOI

Utzeri G., Matias P.M.C., Murtinho D., Valente A.J.M. Cyclodextrin-based nanosponges: Overview and opportunities. Front. Chem. 2022;10:859406. PubMed PMC

Prabhu P.P., Prathvi, Gujaran T.V., Mehta C.H., Suresh A., Koteshwara K.B., Pai K.G., Nayak U.Y. Development of lapatinib nanosponges for enhancing bioavailability. J. Drug Deliv. Sci. Technol. 2021;65:102684. doi: 10.1016/j.jddst.2021.102684. DOI

Lembo D., Trotta F., Cavalli R. Cyclodextrin-based nanosponges as vehicles for antiviral drugs: Challenges and perspectives. Nanomedicine. 2018;13:477–480. doi: 10.2217/nnm-2017-0383. PubMed DOI

Coviello V., Sartini S., Quattrini L., Baraldi C., Gamberini M.C., La Motta C. Cyclodextrin-based nanosponges for the targeted delivery of the anti-restenotic agent DB103: A novel opportunity for the local therapy of vessels wall subjected to percutaneous intervention. Eur. J. Pharm. Biopharm. 2017;117:276–285. doi: 10.1016/j.ejpb.2017.04.028. PubMed DOI

Sherje A.P., Dravyakar B.R., Kadam D., Jadhav M. Cyclodextrin-based nanosponges: A critical review. Carbohydr. Polym. 2017;173:37–49. doi: 10.1016/j.carbpol.2017.05.086. PubMed DOI

Tiwari K., Bhattacharya S. The ascension of nanosponges as a drug delivery carrier: Preparation, characterization, and applications. J. Mater. Sci. Mater. Med. 2022;33:28. doi: 10.1007/s10856-022-06652-9. PubMed DOI PMC

Deng J., Chen Q.J., Li W., Zuberi Z., Feng J.X., Lin Q.L., Ren J.L., Luo F.J., Ding Q.M., Zeng X.X., et al. Toward improvements for carrying capacity of the cyclodextrin-based nanosponges: Recent progress from a material and drug delivery. J. Mater. Sci. 2021;56:5995–6015. doi: 10.1007/s10853-020-05646-8. DOI

Wang H., Yapa A.S., Kariyawasam N.L., Shrestha T.B., Kalubowilage M., Wendel S.O., Yu J., Pyle M., Basel M.T., Malalasekera A.P., et al. Rationally designed peptide nanosponges for cell-based cancer therapy. Nanomedicine. 2017;13:2555–2564. doi: 10.1016/j.nano.2017.07.004. PubMed DOI

Shailaja D., Pramodkumar S. Nanosponges Encapsulated Phytochemicals for Targeting Cancer: A Review. Curr. Drug Targets. 2021;22:443–462. PubMed

Varan C., Anceschi A., Sevli S., Bruni N., Giraudo L., Bilgiç E., Korkusuz P., İskit A.B., Trotta F., Bilensoy E. Preparation and characterization of cyclodextrin nanosponges for organic toxic molecule removal. Int. J. Pharm. 2020;585:119485. doi: 10.1016/j.ijpharm.2020.119485. PubMed DOI

Pawar S., Shende P. A Comprehensive Patent Review on β-cyclodextrin Cross-linked Nanosponges for Multiple Applications. Recent Pat. Nanotechnol. 2020;14:75–89. doi: 10.2174/1872210513666190603083930. PubMed DOI

Varma R.S. Greener approach to nanomaterials and their sustainable applications. Curr. Opin. Chem. Eng. 2012;1:123–128. doi: 10.1016/j.coche.2011.12.002. DOI

Varma R.S. Journey on greener pathways: From the use of alternate energy inputs and benign reaction media to sustainable applications of nano-catalysts in synthesis and environmental remediation. Green Chem. 2014;16:2027–2041. doi: 10.1039/c3gc42640h. DOI

Varma R.S. Greener and sustainable chemistry. Appl. Sci. 2014;4:493–497. doi: 10.3390/app4040493. DOI

Varma R.S. Greener and Sustainable Trends in Synthesis of Organics and Nanomaterials. ACS Sustain. Chem. Eng. 2016;4:5866–5878. doi: 10.1021/acssuschemeng.6b01623. PubMed DOI PMC

Varma R.S. Biomass-Derived Renewable Carbonaceous Materials for Sustainable Chemical and Environmental Applications. ACS Sustain. Chem. Eng. 2019;7:6458–6470. doi: 10.1021/acssuschemeng.8b06550. DOI

Sharma K., Kadian V., Kumar A., Mahant S., Rao R. Evaluation of Solubility, Photostability and Antioxidant Activity of Ellagic Acid Cyclodextrin Nanosponges Fabricated by Melt Method and Microwave-Assisted Synthesis. J. Food Sci. Technol. 2021;59:898–908. doi: 10.1007/s13197-021-05085-6. PubMed DOI PMC

Ciesielska A., Ciesielski W., Girek B., Girek T., Koziel K., Kulawik D., Lagiewka J. Biomedical application of cyclodextrin polymers cross-linked via dianhydrides of carboxylic Acids. Appl. Sci. 2020;10:8463. doi: 10.3390/app10238463. DOI

Caldera F., Tannous M., Cavalli R., Zanetti M., Trotta F. Evolution of Cyclodextrin Nanosponges. Int. J. Pharm. 2017;531:470–479. doi: 10.1016/j.ijpharm.2017.06.072. PubMed DOI

Jain A., Prajapati S.K., Kumari A., Mody N., Bajpai M. Engineered nanosponges as versatile biodegradable carriers: An insight. J. Drug Deliv. Sci. Technol. 2020;57:101643. doi: 10.1016/j.jddst.2020.101643. DOI

Kumari P., Singh P., Singhal A., Alka Cyclodextrin-based nanostructured materials for sustainable water remediation applications. Environ. Sci. Pollut. Res. 2020;27:32432–32448. doi: 10.1007/s11356-020-09519-0. DOI

Khazaei Monfared Y., Mahmoudian M., Cecone C., Caldera F., Zakeri-Milani P., Matencio A., Trotta F. Stabilization and Anticancer Enhancing Activity of the Peptide Nisin by Cyclodextrin-Based Nanosponges against Colon and Breast Cancer Cells. Polymers. 2022;14:594. doi: 10.3390/polym14030594. PubMed DOI PMC

Taka A.L., Pillay K., Mbianda X.Y. Nanosponge cyclodextrin polyurethanes and their modification with nanomaterials for the removal of pollutants from waste water: A review. Carbohydr. Polym. 2017;159:94–107. doi: 10.1016/j.carbpol.2016.12.027. PubMed DOI

Arkas M., Allabashi R., Tsiourvas D., Mattausch E.-M., Perfler R. Organic/Inorganic Hybrid Filters Based on Dendritic and Cyclodextrin “Nanosponges” for the Removal of Organic Pollutants from Water. Environ. Sci. Technol. 2006;40:2771–2777. doi: 10.1021/es052290v. PubMed DOI

Singh P., Ren X., Guo T., Wu L., Shakya S., He Y., Wang C., Maharjan A., Singh V., Zhang J. Biofunctionalization of β-cyclodextrin nanosponges using cholesterol. Carbohydr. Polym. 2018;190:23–30. doi: 10.1016/j.carbpol.2018.02.044. PubMed DOI

Jani R.K., Patel N., Patel Z., Chakraborthy G.S., Upadhye V. Nanosponges as a biocatalyst carrier—An innovative drug delivery technology for enzymes, proteins, vaccines, and antibodies. Biocatal. Agric. Biotechnol. 2022;42:102329. doi: 10.1016/j.bcab.2022.102329. DOI

Menezes P.D.P., Andrade T.d.A., Frank L.A., Soares de Souza E.P.B.S., Trindade G.d.G.G., Trindade I.A.S., Serafini M.R., Guterres S.S., Araújo A.A.d.S. Advances of nanosystems containing cyclodextrins and their applications in pharmaceuticals. Int. J. Pharm. 2019;559:312–328. doi: 10.1016/j.ijpharm.2019.01.041. PubMed DOI

Lee J.S., Oh H., Kim S., Lee J.-H., Shin Y.C., Choi W.I. A Novel Chitosan Nanosponge as a Vehicle for Transepidermal Drug Delivery. Pharmaceutics. 2021;13:1329. doi: 10.3390/pharmaceutics13091329. PubMed DOI PMC

Taka A.L., Fosso-Kankeu E., Pillay K., Yangkou Mbianda X. Metal nanoparticles decorated phosphorylated carbon nanotube/cyclodextrin nanosponge for trichloroethylene and Congo red dye adsorption from wastewater. J. Environ. Chem. Eng. 2020;8:103602. doi: 10.1016/j.jece.2019.103602. DOI

Torne S., Darandale S., Vavia P., Trotta F., Cavalli R. Cyclodextrin-based nanosponges: Effective nanocarrier for tamoxifen delivery. Pharm. Dev. Technol. 2013;18:619–625. doi: 10.3109/10837450.2011.649855. PubMed DOI

Allahyari S., Trotta F., Valizadeh H., Jelvehgari M., Zakeri-Milani P. Cyclodextrin-based nanosponges as promising carriers for active agents. Expert Opin Drug Deliv. 2019;16:467–479. doi: 10.1080/17425247.2019.1591365. PubMed DOI

Real D.A., Bolaños K., Priotti J., Yutronic N., Kogan M.J., Sierpe R., Donoso-González O. Cyclodextrin-Modified Nanomaterials for Drug Delivery: Classification and Advances in Controlled Release and Bioavailability. Pharmaceutics. 2021;13:2131. doi: 10.3390/pharmaceutics13122131. PubMed DOI PMC

Asela I., Donoso-González O., Yutronic N., Sierpe R. β-Cyclodextrin-based nanosponges functionalized with drugs and gold nanoparticles. Pharmaceutics. 2021;13:513. doi: 10.3390/pharmaceutics13040513. PubMed DOI PMC

Dhakar N.K., Caldera F., Bessone F., Cecone C., Pedrazzo A.R., Cavalli R., Dianzani C., Trotta F. Evaluation of solubility enhancement, antioxidant activity, and cytotoxicity studies of kynurenic acid loaded cyclodextrin nanosponge. Carbohydr. Polym. 2019;224:115168. doi: 10.1016/j.carbpol.2019.115168. PubMed DOI

Mendes C., Meirelles G.C., Barp C.G., Assreuy J., Silva M.A., Ponchel G. Cyclodextrin based nanosponge of norfloxacin: Intestinal permeation enhancement and improved antibacterial activity. Carbohydr. Polym. 2018;195:586–592. doi: 10.1016/j.carbpol.2018.05.011. PubMed DOI

Caldera F., Argenziano M., Trotta F., Dianzani C., Gigliotti L., Tannous M., Pastero L., Aquilano D., Nishimoto T., Higashiyama T., et al. Cyclic nigerosyl-1,6-nigerose-based nanosponges: An innovative pH and time-controlled nanocarrier for improving cancer treatment. Carbohydr. Polym. 2018;194:111–121. doi: 10.1016/j.carbpol.2018.04.027. PubMed DOI

Dora C.P., Trotta F., Kushwah V., Devasari N., Singh C., Suresh S., Jain S. Potential of erlotinib cyclodextrin nanosponge complex to enhance solubility, dissolution rate, in vitro cytotoxicity and oral bioavailability. Carbohydr. Polym. 2016;137:339–349. doi: 10.1016/j.carbpol.2015.10.080. PubMed DOI

Minelli R., Cavalli R., Ellis L., Pettazzoni P., Trotta F., Ciamporcero E., Barrera G., Fantozzi R., Dianzani C., Pili R. Nanosponge-encapsulated camptothecin exerts anti-tumor activity in human prostate cancer cells. Eur. J. Pharm. Sci. 2012;47:686–694. doi: 10.1016/j.ejps.2012.08.003. PubMed DOI

Torne S.J., Ansari K.A., Vavia P.R., Trotta F., Cavalli R. Enhanced oral paclitaxel bioavailability after administration of paclitaxel-loaded nanosponges. Drug Deliv. 2010;17:419–425. doi: 10.3109/10717541003777233. PubMed DOI

Allahyari S., Esmailnezhad N., Valizadeh H., Ghorbani M., Jelvehgari M., Ghazi F., Zakeri-Milani P. In-vitro characterization and cytotoxicity study of flutamide loaded cyclodextrin nanosponges. J. Drug Deliv. Sci. Technol. 2021;61:102275. doi: 10.1016/j.jddst.2020.102275. DOI

Gigliotti C.L., Ferrara B., Occhipinti S., Boggio E., Barrera G., Pizzimenti S., Giovarelli M., Fantozzi R., Chiocchetti A., Argenziano M., et al. Enhanced cytotoxic effect of camptothecin nanosponges in anaplastic thyroid cancer cells in vitro and in vivo on orthotopic xenograft tumors. Drug Deliv. 2017;24:670–680. doi: 10.1080/10717544.2017.1303856. PubMed DOI PMC

Pushpalatha R., Selvamuthukumar S., Kilimozhi D. Cross-linked, cyclodextrin-based nanosponges for curcumin delivery-physicochemical characterization, drug release, stability and cytotoxicity. J. Drug Deliv. Sci. Technol. 2018;45:45–53. doi: 10.1016/j.jddst.2018.03.004. DOI

Shringirishi M., Mahor A., Gupta R., Prajapati S.K., Bansal K., Kesharwani P. Fabrication and characterization of nifedipine loaded β-cyclodextrin nanosponges: An in vitro and in vivo evaluation. J. Drug Deliv. Sci. Technol. 2017;41:344–350. doi: 10.1016/j.jddst.2017.08.005. DOI

Pei M., Pai J.-Y., Du P., Liu P. Facile synthesis of fluorescent hyper-cross-linked β-cyclodextrin-carbon quantum dot hybrid nanosponges for tumor theranostic application with enhanced antitumor efficacy. Mol. Pharm. 2018;15:4084–4091. doi: 10.1021/acs.molpharmaceut.8b00508. PubMed DOI

Kumar S., Rao R. Novel dithranol loaded cyclodextrin nanosponges for augmentation of solubility, photostability and cytocompatibility. Cnano. 2021;17:747–761. doi: 10.2174/1573413716666201215165552. DOI

Omar S.M., Ibrahim F., Ismail A. Formulation and evaluation of cyclodextrin-based nanosponges of griseofulvin as pediatric oral liquid dosage form for enhancing bioavailability and masking bitter taste. Saudi Pharm. J. 2020;28:349–361. doi: 10.1016/j.jsps.2020.01.016. PubMed DOI PMC

Shende P.K., Trotta F., Gaud R., Deshmukh K., Cavalli R., Biasizzo M. Influence of different techniques on formulation and comparative characterization of inclusion complexes of ASA with β-cyclodextrin and inclusion complexes of ASA with PMDA cross-linked β-cyclodextrin nanosponges. J. Incl. Phenom. Macrocycl. Chem. 2012;74:447–454. doi: 10.1007/s10847-012-0140-x. DOI

Rao M., Bajaj A., Khole I., Munjapara G., Trotta F. In vitro and in vivo evaluation of b-cyclodextrin-based nanosponges of telmisartan. J. Incl. Phenom. Macrocycl. Chem. 2013;77:135–145. doi: 10.1007/s10847-012-0224-7. DOI

Daga M., de Graaf I.A.M., Argenziano M., Barranco A.S.M., Loeck M., Al-Adwi Y., Cucci M.A., Caldera F., Trotta F., Barrera G., et al. Glutathione-responsive cyclodextrin-nanosponges as drug delivery systems for doxorubicin: Evaluation of toxicity and transport mechanisms in the liver. Toxicol. Vitr. 2020;65:104800. doi: 10.1016/j.tiv.2020.104800. PubMed DOI

Dai Y., Li Q., Zhang S., Shi S., Li Y., Zhao X., Zhou L., Wang X., Zhu Y., Li W. Smart GSH/pH dual-bioresponsive degradable nanosponges based on β-CD-appended hyper-cross-linked polymer for triggered intracellular anticancer drug delivery. J. Drug Deliv. Sci. Technol. 2021;64:102650. doi: 10.1016/j.jddst.2021.102650. DOI

Pawar S., Shende P. Dual drug delivery of cyclodextrin cross-linked artemether and lumefantrine nanosponges for synergistic action using 23 full factorial designs. Colloids Surf. A Physicochem. Eng. Asp. 2020;602:125049. doi: 10.1016/j.colsurfa.2020.125049. DOI

Khalid Q., Ahmad M., Minhas M.U., Batool F., Malik N.S., Rehman M. Novel β-cyclodextrin nanosponges by chain growth condensation for solubility enhancement of dexibuprofen: Characterization and acute oral toxicity studies. J. Drug Deliv. Sci. Technol. 2021;61:102089. doi: 10.1016/j.jddst.2020.102089. DOI

Rizvi S.S.B., Akhtar N., Minhas M.U., Mahmood A., Khan K.U. Synthesis and Characterization of Carboxymethyl Chitosan Nanosponges with Cyclodextrin Blends for Drug Solubility Improvement. Gels. 2022;8:55. doi: 10.3390/gels8010055. PubMed DOI PMC

Krabicová I., Appleton S.L., Tannous M., Hoti G., Caldera F., Pedrazzo A.R., Cecone C., Cavalli R., Trotta F. History of Cyclodextrin Nanosponges. Polymers. 2020;12:1122. doi: 10.3390/polym12051122. PubMed DOI PMC

Palminteri M., Dhakar N.K., Ferraresi A., Caldera F., Vidoni C., Trotta F., Isidoro C. Cyclodextrin nanosponge for the GSH-mediated delivery of Resveratrol in human cancer cells. Nanotheranostics. 2021;5:197–212. doi: 10.7150/ntno.53888. PubMed DOI PMC

Gardouh A.R., Elhusseiny S., Gad S. Mixed Avanafil and Dapoxetin Hydrochloride cyclodextrin nano-sponges: Preparation, in-vitro characterization, and bioavailability determination. J. Drug Deliv. Sci. Technol. 2022;68:103100. doi: 10.1016/j.jddst.2022.103100. DOI

Caldera F., Nisticò R., Magnacca G., Matencio A., Monfared Y.K., Trotta F. Magnetic Composites of Dextrin-Based Carbonate Nanosponges and Iron Oxide Nanoparticles with Potential Application in Targeted Drug Delivery. Nanomaterials. 2022;12:754. doi: 10.3390/nano12050754. PubMed DOI PMC

Jin Y., Liang L., Sun X., Yu G., Chen S., Shi S., Liu H., Li Z., Ge K., Liu D., et al. Deoxyribozyme-nanosponges for improved photothermal therapy by overcoming thermoresistance. NPG Asia Mater. 2018;10:373–384. doi: 10.1038/s41427-018-0040-7. DOI

Wang J., Yu S., Wu Q., Gong X., He S., Shang J., Liu X., Wang F. A self-catabolic multifunctional DNAzyme nanosponge for programmable drug delivery and efficient gene silencing. Angew Chem. 2021;60:10766–10774. doi: 10.1002/anie.202101474. PubMed DOI

Wang J., Wang H., Wang H., He S., Li R., Deng Z., Liu X., Wang F. Nonviolent Self-Catabolic DNAzyme Nanosponges for Smart Anticancer Drug Delivery. ACS Nano. 2019;13:5852–5863. doi: 10.1021/acsnano.9b01589. PubMed DOI

Zhang K., Liu J., Song Q., Yang X., Wang D., Liu W., Shi J., Zhang Z. DNA Nanosponge for Adsorption and Clearance of Intracellular miR-21 and Enhanced Antitumor Chemotherapy. ACS Appl. Mater. Interfaces. 2019;11:46604–46613. doi: 10.1021/acsami.9b18282. PubMed DOI

Luo D., Lin X., Zhao Y., Hu J., Mo F., Song G., Zou Z., Wang F., Liu X. A dynamic DNA nanosponge for triggered amplification of gene-photodynamic modulation. Chem. Sci. 2022;13:5155–5163. doi: 10.1039/D2SC00459C. PubMed DOI PMC

Shah H.S., Nasrullah U., Zaib S., Usman F., Khan A., Gohar U.F., Uddin J., Khan I., Al-Harrasi A. Preparation, Characterization, and Pharmacological Investigation of Withaferin-A Loaded Nanosponges for Cancer Therapy; In Vitro, In Vivo and Molecular Docking Studies. Molecules. 2021;26:6990. doi: 10.3390/molecules26226990. PubMed DOI PMC

Anwer M.K., Fatima F., Ahmed M.M., Aldawsari M.F., Alali A.S., Kalam M.A., Alshamsan A., Alkholief M., Malik A., Az A., et al. Abemaciclib-loaded ethylcellulose based nanosponges for sustained cytotoxicity against MCF-7 and MDA-MB-231 human breast cancer cells lines. Saudi Pharm. J. 2022;30:726–734. doi: 10.1016/j.jsps.2022.03.019. PubMed DOI PMC

Rodrigues K., Nadaf S., Rarokar N., Gurav N., Jagtap P., Mali P., Ayyanar M., Kalaskar M., Gurav S. QBD approach for the development of hesperetin loaded colloidal nanosponges for sustained delivery: In-vitro, ex-vivo, and in-vivo assessment. OpenNano. 2022;7:100045. doi: 10.1016/j.onano.2022.100045. DOI

Almutairy B.K., Alshetaili A., Alali A.S., Ahmed M.M., Anwer M.K., Aboudzadeh M.A. Design of olmesartan medoxomil-loaded nanosponges for hypertension and lung cancer treatments. Polymers. 2021;13:2272. doi: 10.3390/polym13142272. PubMed DOI PMC

Aldawsari H.M., Badr-Eldin S.M., Labib G.S., El-Kamel A.H. Design and formulation of a topical hydrogel integrating lemongrass-loaded nanosponges with an enhanced antifungal effect: In vitro/in vivo evaluation. Int. J. Nanomed. 2015;10:893–902. PubMed PMC

Hafiz M.A., Abbas N., Bukhari N.I. Quality by design approach for formulation development and evaluation of carboplatin loaded ethylcellulose nanosponges. Int. J. Polym. Mater. Polym. Biomater. 2022;71:1012–1024. doi: 10.1080/00914037.2021.1933978. DOI

Ahmed M.M., Fatima F., Alali A., Kalam M.A., Alhazzani K., Bhatia S., Alshehri S., Ghoneim M.M. Ribociclib-loaded ethylcellulose-based nanosponges: Formulation, physicochemical characterization, and cytotoxic potential against breast cancer. Adsorpt. Sci. Technol. 2022;2022:1922263. doi: 10.1155/2022/1922263. DOI

Ahmed M.M., Fatima F., Anwer M.K., Ansari M.J., Das S.S., Alshahrani S.M. Development and characterization of ethyl cellulose nanosponges for sustained release of brigatinib for the treatment of non-small cell lung cancer. J. Polym. Eng. 2020;40:823–832. doi: 10.1515/polyeng-2019-0365. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...