Plant Pollen Grains: A Move Towards Green Drug and Vaccine Delivery Systems
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium electronic
Typ dokumentu časopisecké články
PubMed
34138347
PubMed Central
PMC8124031
DOI
10.1007/s40820-021-00654-y
PII: 10.1007/s40820-021-00654-y
Knihovny.cz E-zdroje
- Klíčová slova
- Drug delivery, Microcapsule shells, Plant pollen grains, Pollens, Sporopollenin, Vaccine delivery,
- Publikační typ
- časopisecké články MeSH
Pollen grains and plant spores have emerged as innovative biomaterials for various applications such as drug/vaccine delivery, catalyst support, and the removal of heavy metals. The natural microcapsules comprising spore shells and pollen grain are designed for protecting the genetic materials of plants from exterior impairments. Two layers make up the shell, the outer layer (exine) that comprised largely of sporopollenin, and the inner layer (intine) that built chiefly of cellulose. These microcapsule shells, namely hollow sporopollenin exine capsules have some salient features such as homogeneity in size, non-toxic nature, resilience to both alkalis and acids, and the potential to withstand at elevated temperatures; they have displayed promising potential for the microencapsulation and the controlled drug delivery/release. The important attribute of mucoadhesion to intestinal tissues can prolong the interaction of sporopollenin with the intestinal mucosa directing to an augmented effectiveness of nutraceutical or drug delivery. Here, current trends and prospects related to the application of plant pollen grains for the delivery of vaccines and drugs and vaccine are discussed.
Zobrazit více v PubMed
Krol S, Macrez R, Docagne F, Defer G, Laurent S, et al. Therapeutic benefits from nanoparticles: the potential significance of nanoscience in diseases with compromise to the blood brain barrier. Chem. Rev. 2012;113:1877–1903. doi: 10.1021/cr200472g. PubMed DOI
Lam P-L, Wong W-Y, Bian Z, Chui C-H, Gambari R. Recent advances in green nanoparticulate systems for drug delivery: efficient delivery and safety concern. Nanomedicine. 2017;12:357–385. doi: 10.2217/nnm-2016-0305. PubMed DOI
Mo R, Jiang T, Gu Z. Recent progress in multidrug delivery to cancer cells by liposomes. Nanomedicine. 2014;9:1117–1120. doi: 10.2217/nnm.14.62. PubMed DOI
M. Nasrollahzadeh, S.M. Sajadi, M. Sajjadi, Z. Issaabadi, An Introduction to Nanotechnology, in: Interface Science and Technology, Elsevier, 2019, pp. 1–27. 10.1016/B978-0-12-813586-0.00001-8
Denk T, Tekleva MV. Comparative pollen morphology and ultrastructure of Platanus: implications for phylogeny and evaluation of the fossil record. Grana. 2006;45:195–221. doi: 10.1080/00173130600873901. DOI
Hamad SA, Dyab AFK, Stoyanov SD, Paunov VN. Encapsulation of living cells into sporopollenin microcapsules. J. Mater. Chem. 2011;21:18018–18023. doi: 10.1039/c1jm13719k. DOI
Diego-Taboada A, Maillet L, Banoub JH, Lorch M, Rigby AS, et al. Protein free microcapsules obtained from plant spores as a model for drug delivery: ibuprofen encapsulation, release and taste masking. J. Mater. Chem. B. 2013;1:707–713. doi: 10.1039/C2TB00228K. PubMed DOI
Palazzo I, Mezzetta A, Guazzelli L, Sartini S, Pomelli CS, et al. Chiral ionic liquids supported on natural sporopollenin microcapsules. RSC Adv. 2018;8:21174–21183. doi: 10.1039/C8RA03455A. PubMed DOI PMC
Uddin MJ, Gill HS. From allergen to oral vaccine carrier: a new face of ragweed pollen. Int. J. Pharmac. 2018;545:286–294. doi: 10.1016/j.ijpharm.2018.05.003. PubMed DOI PMC
Pomelli CS, D'Andrea F, Mezzetta A, Guazzelli L. Exploiting pollen and sporopollenin for thesustainable production of microstructures. New J. Chem. 2020;44:647–652. doi: 10.1039/C9NJ05082E. DOI
Park JH, Seo J, Jackman JA, Cho N-J. Inflated sporopollenin exine capsules obtained from thin-walled pollen. Sci. Rep. 2016;6:28017. doi: 10.1038/srep28017. PubMed DOI PMC
Atkin SL, Barrier S, Cui Z, Fletcher PD, Mackenzie G, et al. UV and visible light screening by individual sporopollenin exines derived from Lycopodium clavatum (club moss) and Ambrosia trifida (giant ragweed) J. Photochem. Photobiol. B Biol. 2011;102:209–217. doi: 10.1016/j.jphotobiol.2010.12.005. PubMed DOI
Diego-Taboada A, Beckett TS, Atkin LS, Mackenzie G. Hollow pollen shells to enhance drug delivery. Pharmaceutics. 2014;6:80–96. doi: 10.3390/pharmaceutics6010080. PubMed DOI PMC
Luppi B, Cerchiara T, Bigucci F, Orienti I, Zecchi V. pH-sensitive polymeric physical-mixture for possible site-specific delivery of ibuprofen. Eur. J. Pharm. Biopharm. 2003;55:199–202. doi: 10.1016/S0939-6411(02)00190-X. PubMed DOI
Paunov VN, Mackenzie G, Stoyanov SD. Sporopollenin micro-reactors for in-situ preparation, encapsulation and targeted delivery of active components. J. Mater. Chem. 2007;17:609–612. doi: 10.1039/b615865j. DOI
Barrier S, Diego-Taboada A, Thomasson MJ, Madden L, Pointon JC, et al. Viability of plant spore exine capsules for microencapsulation. J. Mater. Chem. 2011;21:975–981. doi: 10.1039/C0JM02246B. DOI
W. Brandon Goodwin, I.J. Gomez, Y. Fang, J.C. Meredith, K.H. Sandhage, Conversion of pollen particles into three-dimensional ceramic replicas tailored for multimodal adhesion. Chem. Mater. 25, 4529–4536 (2013). 10.1021/cm402226w
Uddin MJ, Gill HS. Ragweed pollen as an oral vaccine delivery system: mechanistic insights. J. Control. Release. 2017;268:416–426. doi: 10.1016/j.jconrel.2017.10.019. PubMed DOI PMC
S.M. Alshehri, H.A. Al-Lohedan, E. Al-Farraj, N. Alhokbany, A.A. Chaudhary et al., Macroporous natural capsules extracted from Phoenix dactylifera L. spore and their application in oral drugs delivery. Int. J. Pharm. 504, 39–47 (2016). 10.1016/j.ijpharm.2016.02.049 PubMed
Alshehri SM, Al-Lohedan HA, Chaudhary AA, Al-Farraj E, Alhokbany N, et al. Delivery of ibuprofen by natural macroporous sporopollenin exine capsules extracted from Phoenix dactylifera L. Eur. J. Pharm. Sci. 2016;88:158–165. doi: 10.1016/j.ejps.2016.02.004. PubMed DOI
Harris TL, Wenthur CJ, Diego-Taboada A, Mackenzie G, Corbitt TS, et al. Lycopodium clavatum exine microcapsules enable safe oral delivery of 3,4-diaminopyridine for treatment of botulinum neurotoxin A intoxication. Chem. Commun. 2016;52:4187–4190. doi: 10.1039/C6CC00615A. PubMed DOI PMC
Mundargi RC, Potroz MG, Park JH, Seo J, Lee JH, et al. Extraction of sporopollenin exine capsules from sunflower pollen grains. RSC Adv. 2016;6:16533–16539. doi: 10.1039/C5RA27207F. DOI
Mundargi RC, Potroz MG, Park S, Park JH, Shirahama H, et al. Lycopodium spores: a naturally manufactured, superrobust biomaterial for drug delivery. Adv. Funct. Mater. 2016;26:487–497. doi: 10.1002/adfm.201502322. DOI
Lale SV, Gill HS. Pollen grains as a novel microcarrier for oral delivery of proteins. Int. J. Pharm. 2018;552:352–359. doi: 10.1016/j.ijpharm.2018.10.016. PubMed DOI PMC
Wu D, Wang X, Wang S, Li B, Liang H. Nanoparticle encapsulation strategy: leveraging plant exine capsules used as secondary capping for oral delivery. J. Agric. Food Chem. 2019;67:8168–8176. doi: 10.1021/acs.jafc.9b02003. PubMed DOI
Guilford WJ, Schneider DM, Labovitz J, Opella SJ. High resolution solid state (13)c nmr spectroscopy of sporopollenins from different plant taxa. Plant Physiol. 1988;86:134–136. doi: 10.1104/pp.86.1.134. PubMed DOI PMC
G. Shaw, A. Yeadon, Chemical studies on the constitution of some pollen and spore membranes. J. Chem. Soci. C Org. 16–22 (1966). 10.1039/j39660000016 PubMed
Shaw G, Yeadon A. Chemical studies on the constitution of some pollen and spore membranes. Grana Palynol. 1964;5:247–252. doi: 10.1080/00173136409430017. PubMed DOI
Xu Y, Shrestha N, Préat V, Beloqui A. Overcoming the intestinal barrier: a look into targeting approaches for improved oral drug delivery systems. J. Control. Release. 2020;322:486–508. doi: 10.1016/j.jconrel.2020.04.006. PubMed DOI
Jungfermann C, Ahlers F, Grote M, Gubatz S, Steuernagel S, et al. Solution of sporopollenin and reaggregation of a sporopollenin-like material: a new approach in the sporopollenin research. J. Plant Physiol. 1997;151:513–519. doi: 10.1016/S0176-1617(97)80224-6. DOI
Nikezić AVV, Bondžić AM, Vasić VM. Drug delivery systems based on nanoparticles and related nanostructures. Eur. J. Pharm. Sci. 2020;151:105412. doi: 10.1016/j.ejps.2020.105412. PubMed DOI
Park S, Chin H, Hwang Y, Fan T-F, Cho N-J. A facile approach to patterning pollen microparticles for in situ imaging. Appl. Mater. Today. 2020;20:100702. doi: 10.1016/j.apmt.2020.100702. DOI
Gonzalez-Cruz P, Uddin MJ, Atwe SU, Abidi N, Gill HS. A chemical treatment method for obtaining clean and intact pollen shells of different species. ACS Biomater. Sci. Eng. 2018;4:2319–2329. doi: 10.1021/acsbiomaterials.8b00304. PubMed DOI PMC
T. Maric, M.Z. Mohamad Nasir, N.F. Rosli, M. Budanović, R.D. Webster et al., Microrobots derived from variety plant pollen grains for efficient environmental clean up and as an anti‐cancer drug carrier. Adv. Funct. Mater. 30, 2000112 (2020). 10.1002/adfm.202000112
D. Wu, Y. Liang, Y. Pei, B. Li, H. Liang, Plant exine capsules based encapsulation strategy: a high loading and long-term effective delivery system for nobiletin. Food Res. Int. 127, 108691 (2020). 10.1016/j.foodres.2019.108691 PubMed
Fan T, Park JH, Pham QA, Tan E-L, Mundargi RC, et al. Extraction of cage-like sporopollenin exine capsules from dandelion pollen grains. Sci. Rep. 2018;8:6565. doi: 10.1038/s41598-018-24336-9. PubMed DOI PMC
Deng Z, Pei Y, Wang S, Zhou B, Hou X, et al. Designable carboxymethylpachymaran/metal ion architecture on sunflower sporopollenin exine capsules as delivery vehicles for bioactive macromolecules. J. Agric. Food Chem. 2020;68:13990–14000. doi: 10.1021/acs.jafc.0c05169. PubMed DOI
Mujtaba M, Sargin I, Akyuz L, Ceter T, Kaya M. Newly isolated sporopollenin microcages from Platanus orientalis pollens as a vehicle for controlled drug delivery. Mater. Sci. Eng. C. 2017;77:263–270. doi: 10.1016/j.msec.2017.02.176. PubMed DOI
M. Mujtaba, B.A. Yılmaz, D. Cansaran-Duman, L. Akyuz, S. Yangın et al., Newly isolated sporopollenin microcages from Cedrus libani and Pinus nigra for controlled delivery of Oxaliplatin. bioRxiv (2020). 10.1101/2020.10.19.345157
Sargin I, Akyuz L, Kaya M, Tan G, Ceter T, et al. Controlled release and anti-proliferative effect of imatinib mesylate loaded sporopollenin microcapsules extracted from pollens of Betula pendula. Int. J. Biol. Macromol. 2017;105:749–756. doi: 10.1016/j.ijbiomac.2017.07.093. PubMed DOI
Dyab AKF, Mohamed MA, Meligi NM, Mohamed SK. Encapsulation of erythromycin and bacitracin antibiotics into natural sporopollenin microcapsules: antibacterial, cytotoxicity, in vitro and in vivo release studies for enhanced bioavailability. RSC Adv. 2018;8:33432–33444. doi: 10.1039/C8RA05499A. PubMed DOI PMC
Bailey CS, Zarins-Tutt JS, Agbo M, Gao H, Diego-Taboada A, et al. A natural solution to photoprotection and isolation of the potent polyene antibiotic, marinomycin A. Chem. Sci. 2019;10:7549–7553. doi: 10.1039/C9SC01375J. PubMed DOI PMC
Thomasson MJ, Diego-Taboada A, Barrier S, Martin-Guyout J, Amedjou E, et al. Sporopollenin exine capsules (SpECs) derived from Lycopodium clavatum provide practical antioxidant properties by retarding rancidification of an ω-3 oil. Ind Crops Prod. 2020;154:112714. doi: 10.1016/j.indcrop.2020.112714. DOI
Corliss MK, Bok CK, Gillissen J, Potroz MG, Jung H, et al. Preserving the inflated structure of lyophilized sporopollenin exine capsules with polyethylene glycol osmolyte. J. Ind. Eng. Chem. 2018;61:255–264. doi: 10.1016/j.jiec.2017.12.023. DOI
Akyuz L, Sargin I, Kaya M, Ceter T, Akata I. A new pollen-derived microcarrier for pantoprazole delivery. Mater. Sci. Eng. C. 2017;71:937–942. doi: 10.1016/j.msec.2016.11.009. PubMed DOI
Atwe SU, Ma Y, Gill HS. Pollen grains for oral vaccination. J. Control. Release. 2014;194:45–52. doi: 10.1016/j.jconrel.2014.08.010. PubMed DOI PMC
H.S. Gill, Transforming pollen grains from an allergy causing material into a biomaterial for oral vaccination. Southwest Respir. Crit. Care Chron. 7, 4–6 (2019). 10.12746/swrccc.v7i27.510
Biowaste-Derived Carbon Dots: A Perspective on Biomedical Potentials
Advanced Drug Delivery Micro- and Nanosystems for Cardiovascular Diseases
Nanosponges for Drug Delivery and Cancer Therapy: Recent Advances