Advanced Drug Delivery Micro- and Nanosystems for Cardiovascular Diseases

. 2022 Sep 09 ; 27 (18) : . [epub] 20220909

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid36144581

Advanced drug delivery micro- and nanosystems have been widely explored due to their appealing specificity/selectivity, biodegradability, biocompatibility, and low toxicity. They can be applied for the targeted delivery of pharmaceuticals, with the benefits of good biocompatibility/stability, non-immunogenicity, large surface area, high drug loading capacity, and low leakage of drugs. Cardiovascular diseases, as one of the primary mortalities cause worldwide with significant impacts on the quality of patients' life, comprise a variety of heart and circulatory system pathologies, such as peripheral vascular diseases, myocardial infarction, heart failure, and coronary artery diseases. Designing novel micro- and nanosystems with suitable targeting properties and smart release behaviors can help circumvent crucial challenges of the tolerability, low stability, high toxicity, and possible side- and off-target effects of conventional drug delivery routes. To overcome different challenging issues, namely physiological barriers, low efficiency of drugs, and possible adverse side effects, various biomaterials-mediated drug delivery systems have been formulated with reduced toxicity, improved pharmacokinetics, high bioavailability, sustained release behavior, and enhanced therapeutic efficacy for targeted therapy of cardiovascular diseases. Despite the existing drug delivery systems encompassing a variety of biomaterials for treating cardiovascular diseases, the number of formulations currently approved for clinical use is limited due to the regulatory and experimental obstacles. Herein, the most recent advancements in drug delivery micro- and nanosystems designed from different biomaterials for the treatment of cardiovascular diseases are deliberated, with a focus on the important challenges and future perspectives.

Zobrazit více v PubMed

Jamalipour Soufi G., Iravani S. Eco-friendly and sustainable synthesis of biocompatible nanomaterials for diagnostic imaging: Current challenges and future perspectives. Green Chem. 2020;22:2662–2687. doi: 10.1039/D0GC00734J. DOI

Sajjadi M., Nasrollahzadeh M., Jaleh B., Jamalipour Soufi G., Iravani S. Carbon-based nanomaterials for targeted cancer nanotherapy: Recent trends and future prospects. J. Drug Target. 2021;29:716–741. doi: 10.1080/1061186X.2021.1886301. PubMed DOI

Iravani S., Varma R.S. Plant pollen grains: A move towards green drug and vaccine delivery systems. Nano-Micro Lett. 2021;13:128. doi: 10.1007/s40820-021-00654-y. PubMed DOI PMC

Ghovvati M., Kharaziha M., Ardehali R., Annabi N. Recent Advances in Designing Electroconductive Biomaterials for Cardiac Tissue Engineering. Adv. Healthc. Mater. 2022;11:2200055. doi: 10.1002/adhm.202200055. PubMed DOI PMC

Timmis A., Townsend N., Gale C., Grobbee R., Maniadakis N., Flather M., Wilkins E., Wright L., Vos R., Bax J., et al. European Society of Cardiology: Cardiovascular Disease Statistics 2017. Eur. Heart J. 2018;39:508–579. doi: 10.1093/eurheartj/ehx628. PubMed DOI

Timmis A., Townsend N., Gale C.P., Torbica A., Lettino M., Petersen S.E., Mossialos E.A., Maggioni A.P., Kazakiewicz D., May H.T., et al. European Society of Cardiology: Cardiovascular Disease Statistics 2019. Eur. Heart J. 2020;41:12–85. doi: 10.1093/eurheartj/ehz859. PubMed DOI

Timmis A., Vardas P., Townsend N., Torbica A., Katus H., Smedt D.D., Gale C.P., Maggioni A.P., Petersen S.E., Huculeci R., et al. European Society of Cardiology: Cardiovascular disease statistics 2021. Eur. Heart J. 2022;43:716–799. doi: 10.1093/eurheartj/ehab892. PubMed DOI

Azwa Zuraini N.Z., Sekar M., Wu Y.S., Gan S.H., Bonam S.R., Mat Rani N.N.I., Begum M.Y., Lum P.T., Subramaniyan V., Fuloria N.K., et al. Promising Nutritional Fruits Against Cardiovascular Diseases: An Overview of Experimental Evidence and Understanding Their Mechanisms of Action. Vasc. Health Risk Manag. 2021;17:739–769. doi: 10.2147/VHRM.S328096. PubMed DOI PMC

Shi H.-T., Huang Z.-H., Xu T.-Z., Sun A.-J., Ge J.-B. New diagnostic and therapeutic strategies for myocardial infarction via nanomaterials. eBioMedicine. 2022;78:103968. doi: 10.1016/j.ebiom.2022.103968. PubMed DOI PMC

Hajipour M.J., Mehrani M., Abbasi S.H., Amin A., Kassaian S.E., Garbern J.C., Caracciolo G., Zanganeh S., Chitsazan M., Aghaverdi H., et al. Nanoscale Technologies for Prevention and Treatment of Heart Failure: Challenges and Opportunities. Chem. Rev. 2019;119:11352–11390. doi: 10.1021/acs.chemrev.8b00323. PubMed DOI PMC

Iravani S., Jamalipour Soufi G. Algae-derived materials for tissue engineering and regenerative medicine applications: Current trends and future perspectives. Emergent Mater. 2022;5:631–652. doi: 10.1007/s42247-021-00283-6. DOI

Iravani S., Varma R. Plant-derived Edible Nanoparticles and miRNAs: Emerging Frontier for Therapeutics and Targeted Drug-delivery. ACS Sustain. Chem. Eng. 2019;7:8055–8069. doi: 10.1021/acssuschemeng.9b00954. DOI

Iravani S., Varma R.S. Plants and plant-based polymers as scaffolds for tissue engineering. Green Chem. 2019;21:4839–4867. doi: 10.1039/C9GC02391G. DOI

Pala R., Anju V.T., Dyavaiah M., Busi S., Nauli S.M. Nanoparticle-Mediated Drug Delivery for the Treatment of Cardiovascular Diseases. Int. J. Nanomed. 2020;15:3741–3769. doi: 10.2147/IJN.S250872. PubMed DOI PMC

Skourtis D., Stavroulaki D., Athanasiou V., Fragouli P.G., Iatrou H. Nanostructured Polymeric, Liposomal and Other Materials to Control the Drug Delivery for Cardiovascular Diseases. Pharmaceutics. 2020;12:1160. doi: 10.3390/pharmaceutics12121160. PubMed DOI PMC

Tapeinos C., Gao H., Bauleth-Ramos T., Santos H.A. Progress in Stimuli-Responsive Biomaterials for Treating Cardiovascular and Cerebrovascular Diseases. Small. 2022;18:e2200291. doi: 10.1002/smll.202200291. PubMed DOI

Jaberifard F., Arsalani N., Ghorbani M., Mostafavi H. Incorporating halloysite nanotube/carvedilol nanohybrids into gelatin microsphere as a novel oral pH-sensitive drug delivery system. Colloids Surf. A Physicochem. Eng. Asp. 2022;637:128122. doi: 10.1016/j.colsurfa.2021.128122. DOI

Ruiz A.L., Ramirez A., McEnnis K. Single and Multiple Stimuli-Responsive Polymer Particles for Controlled Drug Delivery. Pharmaceutics. 2022;14:421. doi: 10.3390/pharmaceutics14020421. PubMed DOI PMC

Dong Y., Wang B., Liang T., Huang D., Jin J., Li W., Fu L. Melatonin Loaded Cardiac Homing Peptide-Functionalized Gold Nanoparticles for the Care of Anti-Cardiac Hypertrophy. J. Polym. Environ. 2022;30:3791–3801. doi: 10.1007/s10924-022-02452-y. DOI

Cicha I. The grand challenges in cardiovascular drug delivery. Front. Drug. Deliv. 2021;1:784731. doi: 10.3389/fddev.2021.784731. DOI

Scott R.C., Rosano J.M., Ivanov Z., Wang B., Chong P.L.-G., Issekutz A.C., Crabbe D.L., Kiani M.F. Targeting VEGF-encapsulated immunoliposomes to MI heart improves vascularity and cardiac function. FASEB J. 2009;23:3361–3367. doi: 10.1096/fj.08-127373. PubMed DOI

Oduk Y., Zhu W., Kannappan R., Zhao M., Borovjagin A.V., Oparil S., Zhang J.J. VEGF nanoparticles repair the heart after myocardial infarction. Am. J. Physiol. Heart Circ. Physiol. 2018;314:H278–H284. doi: 10.1152/ajpheart.00471.2017. PubMed DOI PMC

Duong H.T.T., Dong Z., Su L., Boyer C., George J., Davis T.P., Wang J. The use of nanoparticles to deliver nitric oxide to hepatic stellate cells for treating liver fibrosis and portal hypertension. Small. 2015;11:2291–2304. doi: 10.1002/smll.201402870. PubMed DOI

Qumbar M., Ameeduzzafar, Imam S.S., Ali J., Ahmad J., Ali A. Formulation and optimization of lacidipine loaded niosomal gel for transdermal delivery: In-vitro characterization and in-vivo activity. Biomed. Pharmacother. 2017;93:255–266. doi: 10.1016/j.biopha.2017.06.043. PubMed DOI

Ahad A., Aqil M., Kohli K., Sultana Y., Mujeeb M. Nano vesicular lipid carriers of angiotensin II receptor blocker: Anti-hypertensive and skin toxicity study in focus. Artif. Cells Nanomed. Biotechnol. 2016;44:1002–1007. doi: 10.3109/21691401.2015.1008509. PubMed DOI

He H., Yuan Q., Bie J., Wallace R.L., Yannie P.J., Wang J., Lancina M.G.R., Zolotarskaya O.Y., Korzun W., Yang H., et al. Development of mannose functionalized dendrimeric nanoparticles for targeted delivery to macrophages: Use of this platform to modulate atherosclerosis. Transl. Res. 2018;193:13–30. doi: 10.1016/j.trsl.2017.10.008. PubMed DOI PMC

Jones A.D., 3rd, Mi G., Webster T.J. A Status Report on FDA Approval of Medical Devices Containing Nanostructured Materials. Trends Biotechnol. 2019;37:117–120. doi: 10.1016/j.tibtech.2018.06.003. PubMed DOI

Iafisco M., Alogna A., Miragoli M., Catalucci D. Cardiovascular nanomedicine: The route ahead. Nanomedicine. 2019;14:2391–2394. doi: 10.2217/nnm-2019-0228. PubMed DOI

Choi Y.H., Han H.K. Nanomedicines: Current status and future perspectives in aspect of drug delivery and pharmacokinetics. J. Pharm. Investig. 2018;48:43–60. doi: 10.1007/s40005-017-0370-4. PubMed DOI PMC

Mohamed N.A., Marei I., Crovella S., Abou-Saleh H. Recent Developments in Nanomaterials-Based Drug Delivery and Upgrading Treatment of Cardiovascular Diseases. Int. J. Mol. Sci. 2022;23:1404. doi: 10.3390/ijms23031404. PubMed DOI PMC

Wang Y., Pisapati A.V., Zhang X.F., Cheng X. Recent developments in nanomaterial-based shear-sensitive drug delivery systems. Adv. Healthc. Mater. 2021;10:2002196. doi: 10.1002/adhm.202002196. PubMed DOI PMC

Dormont F., Varna M., Couvreur P. Nanoplumbers: Biomaterials to fight cardiovascular diseases. Materialstoday. 2018;21:122–143. doi: 10.1016/j.mattod.2017.07.008. DOI

Hu C., Luo R., Wang Y. Heart Valves Cross-Linked with Erythrocyte Membrane Drug-Loaded Nanoparticles as a Biomimetic Strategy for Anti-coagulation, Anti-inflammation, Anti-calcification, and Endothelialization. ACS Appl. Mater. Interfaces. 2020;12:41113–41126. doi: 10.1021/acsami.0c12688. PubMed DOI

Deng Y., Zhang X., Shen H., He Q., Wu Z., Liao W., Yuan M. Application of the Nano-Drug Delivery System in Treatment of Cardiovascular Diseases. Front. Bioeng. Biotechnol. 2020;7:489. doi: 10.3389/fbioe.2019.00489. PubMed DOI PMC

Naseroleslami M., Mousavi Niri N., Akbarzade I., Sharifi M., Aboutaleb N. Simvastatin-loaded nano-niosomes confer cardioprotection against myocardial ischemia/reperfusion injury. Drug Deliv. Transl. Res. 2022;12:1423–1432. doi: 10.1007/s13346-021-01019-z. PubMed DOI

Varma R.S. Journey on greener pathways: From the use of alternate energy inputs and benign reaction media to sustainable applications of nano-catalysts in synthesis and environmental remediation. Green Chem. 2014;16:2027–2041. doi: 10.1039/c3gc42640h. DOI

Varma R.S. Greener and Sustainable Trends in Synthesis of Organics and Nanomaterials. ACS Sustain. Chem. Eng. 2016;4:5866–5878. doi: 10.1021/acssuschemeng.6b01623. PubMed DOI PMC

Varma R.S. Biomass-Derived Renewable Carbonaceous Materials for Sustainable Chemical and Environmental Applications. ACS Sustain. Chem. Eng. 2019;7:6458–6470. doi: 10.1021/acssuschemeng.8b06550. DOI

Silva A.K.A., Letourneur D., Chauvierre C. Polysaccharide Nanosystems for Future Progress in Cardiovascular Pathologies. Theranostics. 2014;4:579–591. doi: 10.7150/thno.7688. PubMed DOI PMC

Ghofrani A., Taghavi L., Khalilivavdareh B., Shirvan A.R., Nouri A. Additive manufacturing and advanced functionalities of cardiac patches: A review. Eur. Polym. J. 2022;174:111332. doi: 10.1016/j.eurpolymj.2022.111332. DOI

Mousa H.M., Ali M.G., Rezk A.I., Nasr E.A., Hussein K.H. Development of conductive polymeric nanofiber patches for cardiac tissue engineering application. J. Appl. Polym. Sci. 2022;139:e52757. doi: 10.1002/app.52757. DOI

Patel B., Manne R., Patel D.B., Gorityala S., Palaniappan A., Kurakula M. Chitosan as Functional Biomaterial for Designing Delivery Systems in Cardiac Therapies. Gels. 2021;7:253. doi: 10.3390/gels7040253. PubMed DOI PMC

Lv J., Liu W., Shi G., Zhu F., He X., Zhu Z., Chen H. Human cardiac extracellular matrix-chitosan-gelatin composite scaffold and its endothelialization. Exp. Ther. Med. 2019;19:1225–1234. doi: 10.3892/etm.2019.8349. PubMed DOI PMC

Ke X., Li M., Wang X., Liang J., Wang X., Wu S., Long M., Hu C. An injectable chitosan/dextran/β -glycerophosphate hydrogel as cell delivery carrier for therapy of myocardial infarction. Carbohydr. Polym. 2020;229:115516. doi: 10.1016/j.carbpol.2019.115516. PubMed DOI

Chen J., Zhan Y., Wang Y., Han D., Tao B., Luo Z., Ma S., Wang Q., Li X., Fan L., et al. Chitosan/silk fibroin modified nanofibrous patches with mesenchymal stem cells prevent heart remodeling post-myocardial infarction in rats. Acta Biomater. 2018;80:154–168. doi: 10.1016/j.actbio.2018.09.013. PubMed DOI

Deng B., Shen L., Wu Y., Shen Y., Ding X., Lu S., Jia J., Qian J., Ge J. Delivery of alginate-chitosan hydrogel promotes endogenous repair and preserves cardiac function in rats with myocardial infarction. J. Biomed. Mater. Res. Part A. 2015;103:907–918. doi: 10.1002/jbm.a.35232. PubMed DOI

Jiménez-Gómez C.P., Cecilia J.A. Chitosan: A Natural Biopolymer with a Wide and Varied Range of Applications. Molecules. 2020;25:3981. doi: 10.3390/molecules25173981. PubMed DOI PMC

Lomis N., Sarfaraz Z.K., Alruwaih A., Westfall S., Shum-Tim D., Prakash S. Albumin Nanoparticle Formulation for Heart-Targeted Drug Delivery: In Vivo Assessment of Congestive Heart Failure. Pharmaceuticals. 2021;14:697. doi: 10.3390/ph14070697. PubMed DOI PMC

Ferrari P.F., Zattera E., Pastorino L., Perego P., Palombo D. Dextran/poly-L-arginine multi-layered CaCO3-based nanosystem for vascular drug delivery. Int. J. Biol. Macromol. 2021;177:548–558. doi: 10.1016/j.ijbiomac.2021.02.058. PubMed DOI

Matoba T., Koga J.-I., Nakano K., Egashira K., Tsutsui H. Nanoparticle-mediated drug delivery system for atherosclerotic cardiovascular disease. J. Cardiol. 2017;70:206–211. doi: 10.1016/j.jjcc.2017.03.005. PubMed DOI

Hardy N., Viola H.M., Johnstone V.P.A., Clemons T.D., Szappanos H.C., Singh R., Smith N.M., Iyer K.S., Hool L.C. Nanoparticle-Mediated Dual Delivery of an Antioxidant and a Peptide against the L-Type Ca2+ Channel Enables Simultaneous Reduction of Cardiac Ischemia-Reperfusion Injury. ACS Nano. 2015;9:279–289. doi: 10.1021/nn5061404. PubMed DOI

Katsuki S., Matoba T., Nakashiro S., Sato K., Koga J.-I., Nakano K., Nakano Y., Egusa S., Sunagawa K., Egashira K. Nanoparticle-mediated delivery of pitavastatin inhibits atherosclerotic plaque destabilization/rupture in mice by regulating the recruitment of inflammatory monocytes. Circulation. 2014;129:896–906. doi: 10.1161/CIRCULATIONAHA.113.002870. PubMed DOI

Bakola V., Karagkiozaki V., Tsiapla A.R., Pappa F., Moutsios I., Pavlidou E., Logothetidis S. Dipyridamole-loaded biodegradable PLA nanoplatforms as coatings for cardiovascular stents. Nanotechnology. 2018;29:275101. doi: 10.1088/1361-6528/aabc69. PubMed DOI

Wu X., Reboll M.R., Korf-Klingebiel M., Wollert K.C. Angiogenesis after acute myocardial infarction. Cardiovasc. Res. 2020;117:1257–1273. doi: 10.1093/cvr/cvaa287. PubMed DOI

Quadros H.C., Ferreira Santos L.d.M., Meira C.S., Khouri M.I., Mattei B., Pereira Soares M.B., Castro-Borges W.D., Farias L.P., Formiga F.R. Development and in vitro characterization of polymeric nanoparticles containing recombinant adrenomedullin-2 intended for therapeutic angiogenesis. Int. J. Pharm. 2020;576:118997. doi: 10.1016/j.ijpharm.2019.118997. PubMed DOI

Shen J.-W., Li C., Yang M.-Y., Lin J.-F., Yin M.-D., Zou J.-J., Wu P.-Y., Chen L., Song L.-X., Shao J.-W. Biomimetic nanoparticles: U937 cell membranes based core–shell nanosystems for targeted atherosclerosis therapy. Int. J. Pharm. 2022;611:121297. doi: 10.1016/j.ijpharm.2021.121297. PubMed DOI

Ferreira M.P.A., Ranjan S., Kinnunen S., Correia A., Talman V., Mäkilä E., Barrios-Lopez B., Kemell M., Balasubramanian V., Salonen J., et al. Drug-Loaded Multifunctional Nanoparticles Targeted to the Endocardial Layer of the Injured Heart Modulate Hypertrophic Signaling. Small. 2017;13:1701276. doi: 10.1002/smll.201701276. PubMed DOI

Liu S., Chen X., Bao L., Liu T., Yuan P., Yang X., Qiu X., Gooding J.J., Bai Y., Xiao J., et al. Treatment of infarcted heart tissue via the capture and local delivery of circulating exosomes through antibody-conjugated magnetic nanoparticles. Nat. Biomed. Eng. 2020;4:1063–1075. doi: 10.1038/s41551-020-00637-1. PubMed DOI

Zamani P., Fereydouni N., Butler A.E., Navashenaq J.G., Sahebkar A. The therapeutic and diagnostic role of exosomes in cardiovascular diseases. Trends Cardiovasc. Med. 2019;29:313–323. doi: 10.1016/j.tcm.2018.10.010. PubMed DOI

Wu T., Liu W. Functional hydrogels for the treatment of myocardial infarction. NPG Asia Mater. 2022;14:9. doi: 10.1038/s41427-021-00330-y. DOI

Zhang Y., Zhu D., Wei Y., Wu Y., Cui W., Liuqin L., Fan G., Yang Q., Wang Z., Xu Z., et al. A collagen hydrogel loaded with HDAC7-derived peptide promotes the regeneration of infarcted myocardium with functional improvement in a rodent mode. Acta Biomater. 2019;86:223–234. doi: 10.1016/j.actbio.2019.01.022. PubMed DOI

Wu T., Cui C., Huang Y., Liu Y., Fan C., Han X., Yang Y., Xu Z., Liu B., Fan G., et al. Coadministration of an adhesive conductive hydrogel patch and an injectable hydrogel to treat MI. ACS Appl. Mater. Interfaces. 2020;12:2039–2048. doi: 10.1021/acsami.9b17907. PubMed DOI

Carlini A.S., Gaetani R., Braden R.L., Luo C., Christman K.L., Gianneschi N.C. Enzyme-responsive progelator cyclic peptides for minimally invasive delivery to the heart post-myocardial infarction. Nat. Commun. 2019;10:1735. doi: 10.1038/s41467-019-09587-y. PubMed DOI PMC

Peña B., Laughter M., Jett S., Rowland T.J., Taylor M.R.G., Mestroni L., Park D. Injectable Hydrogels for Cardiac Tissue Engineering. Macromol. Biosci. 2018;18:1800079. doi: 10.1002/mabi.201800079. PubMed DOI PMC

Liang S., Zhang Y., Wang H., Xu Z., Chen J., Bao R., Tan B., Cui Y., Fan G., Wang W., et al. Paintable and Rapidly Bondable Conductive Hydrogels as Therapeutic Cardiac Patches. Adv. Mater. 2018;30:e1704235. PubMed

Kobayashi K., Ichihara Y., Tano N., Fields L., Murugesu N., Ito T., Ikebe C., Lewis F., Yashiro K., Shintani Y., et al. Fibrin glue-aided, instant epicardial placement enhances the efficacy of mesenchymal stromal cell-based therapy for heart failure. Sci. Rep. 2018;8:9448. doi: 10.1038/s41598-018-27881-5. PubMed DOI PMC

Su T., Huang K., Daniele M.A., Hensley M.T., Young A.T., Tang J., Allen T.A., Vandergriff A.C., Erb P.D., Ligler F.S., et al. Cardiac Stem Cell Patch Integrated with Microengineered Blood Vessels Promotes Cardiomyocyte Proliferation and Neovascularization after Acute Myocardial Infarction. ACS Appl. Mater. Interfaces. 2018;10:33088–33096. doi: 10.1021/acsami.8b13571. PubMed DOI PMC

Hua C., Liu J., Hua X., Wang X. Synergistic Fabrication of Dose–Response Chitosan/Dextran/β-Glycerophosphate Injectable Hydrogel as Cell Delivery Carrier for Cardiac Healing After Acute Myocardial Infarction. Dose-Response. 2020;18:1559325820941323. doi: 10.1177/1559325820941323. PubMed DOI PMC

You Y., Kobayashi K., Colak B., Luo P., Cozens E., Fields L., Suzuki K., Gautrot J. Engineered cell-degradable poly(2-alkyl-2-oxazoline) hydrogel for epicardial placement of mesenchymal stem cells for myocardial repair. Biomaterials. 2021;269:120356. doi: 10.1016/j.biomaterials.2020.120356. PubMed DOI PMC

Carrion C.C., Nasrollahzadeh M., Sajjadi M., Jaleh B., Jamalipour Soufi G., Iravani S. Lignin, lipid, protein, hyaluronic acid, starch, cellulose, gum, pectin, alginate and chitosan-based nanomaterials for cancer nanotherapy: Challenges and opportunities. Int. J. Biol. Macromol. 2021;178:193–228. doi: 10.1016/j.ijbiomac.2021.02.123. PubMed DOI

Dasa K.S.S., Suzuki R., Gutknecht M., Brinton L.T., Tian Y., Michaelsson E., Lindfors L., Klibanov A.L., French B.A., Kelly K.A. Development of target-specific liposomes for delivering small molecule drugs after reperfused myocardial infarction. J. Control. Release. 2015;220:556–567. doi: 10.1016/j.jconrel.2015.06.017. PubMed DOI PMC

Li M., Tang X., Liu X., Cui X., Lian M., Zhao M., Peng H., Han X. Targeted miR-21 loaded liposomes for acute myocardial infarction. J. Mater. Chem. B. 2020;8:10384–10391. doi: 10.1039/D0TB01821J. PubMed DOI

Sercombe L., Veerati T., Moheimani F., Wu S.Y., Sood A.K., Hua S. Advances and Challenges of Liposome Assisted Drug Delivery. Front. Pharmacol. 2015;6:286. doi: 10.3389/fphar.2015.00286. PubMed DOI PMC

Moosavian S.A., Bianconi V., Pirro M., Sahebkar A. Challenges and pitfalls in the development of liposomal delivery systems for cancer therapy. Semin. Cancer Biol. 2021;69:337–348. doi: 10.1016/j.semcancer.2019.09.025. PubMed DOI

Santos L.M.F., Barreto B.C., Quadros H.C., Meira C.S., Carvalho R.d.S.F., Rebouças J.d.S., Macambira S.G., Vasconcelos J.F., Souza B.S.d.F., Soares M.B.P., et al. Tissue response and retention of micro- and nanosized liposomes in infarcted mice myocardium after ultrasound-guided transthoracic injection. Eur. J. Pharm. Biopharm. 2022;173:141–149. doi: 10.1016/j.ejpb.2022.03.005. PubMed DOI

Gothwal A., Kesharwani P., Gupta U., Khan I., Mohd Amin M.C.I., Banerjee S., Iyer A.K. Dendrimers as an Effective Nanocarrier in Cardiovascular Disease. Curr. Pharm. Des. 2015;21:4519–4526. PubMed

Yu M., Jie X., Xu L., Chen C., Shen W., Cao Y., Lian G., Qi R. Recent Advances in Dendrimer Research for Cardiovascular Diseases. Biomacromolecules. 2015;16:2588–2598. doi: 10.1021/acs.biomac.5b00979. PubMed DOI

Shen M., Yao S., Li S., Wu X., Liu S., Yang Q., Du J., Wang J., Zheng X., Li Y. A ROS and shear stress dual-sensitive bionic system with cross-linked dendrimers for atherosclerosis therapy. Nanoscale. 2021;13:20013–20027. doi: 10.1039/D1NR05355H. PubMed DOI

Modi H.R., Wang Q., Olmstead S.J., Khoury E.S., Sah N., Guo Y., Gharibani P., Sharma R., Kannan R.M., Kannan S., et al. Systemic administration of dendrimer N-acetyl cysteine improves outcomes and survival following cardiac arrest. Bioeng. Transl. Med. 2022;7:e10259. doi: 10.1002/btm2.10259. PubMed DOI PMC

Fayed N.D., Goda A.E., Essa E.A., El Maghraby G.M. Chitosan-encapsulated niosomes for enhanced oral delivery of atorvastatin. J. Drug Deliv. Sci. Technol. 2021;66:102866. doi: 10.1016/j.jddst.2021.102866. DOI

Liu Q., Xu J., Liao K., Tang N. Oral Bioavailability Improvement of Tailored Rosuvastatin Loaded Niosomal Nanocarriers to Manage Ischemic Heart Disease: Optimization, Ex Vivo and In Vivo Studies. AAPS PharmSciTech. 2021;22:58. doi: 10.1208/s12249-021-01934-x. PubMed DOI

Ghasemiyeh P., Mohammadi-Samani S. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: Applications, advantages and disadvantages. Res. Pharm. Sci. 2018;13:288–303. PubMed PMC

Gao Y., Gu W., Chen L., Xu Z., Li Y. The role of daidzein-loaded sterically stabilized solid lipid nanoparticles in therapy for cardio-cerebrovascular diseases. Biomaterials. 2008;29:4129–4136. doi: 10.1016/j.biomaterials.2008.07.008. PubMed DOI

Shrestha S.C., Ghebremeskel K., White K., Minelli C., Tewfik I., Thapa P., Tewfik S. Formulation and Characterization of Phytostanol Ester Solid Lipid Nanoparticles for the Management of Hypercholesterolemia: An ex vivo Study. Int. J. Nanomed. 2021;16:1977–1992. doi: 10.2147/IJN.S276301. PubMed DOI PMC

Purohit D., Jalwal P., Manchanda D., Saini S., Verma R., Kaushik D., Mittal V., Kumar M., Bhattacharya T., Rahman M.H., et al. Nanocapsules: An Emerging Drug Delivery System. Recent Pat. Nanotechnol. 2022 doi: 10.2174/1872210516666220210113256. online ahead of print . PubMed DOI

Chaves P.d.S., Ourique A.F., Frank L.A., Pohlmann A.R., Guterres S.S., Ruver Beck R.C. Carvedilol-loaded nanocapsules: Mucoadhesive properties and permeability across the sublingual mucosa. Eur. J. Pharm. Biopharm. 2017;114:88–95. doi: 10.1016/j.ejpb.2017.01.007. PubMed DOI

Molloy C.P., Yao Y., Kammoun H., Bonnard T., Hoefer T., Alt K., Tovar-Lopez F., Rosengarten G., Ramsland P.A., van der Meer A.D., et al. Shear-sensitive nanocapsule drug release for site-specific inhibition of occlusive thrombus formation. J. Thromb. Haemost. 2017;15:972–982. doi: 10.1111/jth.13666. PubMed DOI

Ribas J., Sadeghi H., Manbachi A., Leijten J., Brinegar K., Zhang Y.S., Ferreira L., Khademhosseini A. Cardiovascular organ-on-a-chip platforms for drug discovery and development. Appl. In Vitro Toxicol. 2016;2:82–96. doi: 10.1089/aivt.2016.0002. PubMed DOI PMC

Paloschi V., Sabater-Lleal M., Middelkamp H., Vivas A., Johansson S., van der Meer A., Tenje M., Maegdefessel L. Organ-on-a-chip technology: A novel approach to investigate cardiovascular diseases. Cardiovasc. Res. 2021;117:2742–2754. doi: 10.1093/cvr/cvab088. PubMed DOI PMC

Rodrigues R.O., Sousa P.C., Gaspar J., Bañobre-López M., Lima R., Minas G. Organ-on-a-Chip: A Preclinical Microfluidic Platform for the Progress of Nanomedicine. Small. 2020;16:2003517. doi: 10.1002/smll.202003517. PubMed DOI

Cong Y., Han X., Wang Y., Chen Z., Lu Y., Liu T., Wu Z., Jin Y., Luo Y., Zhang X. Drug toxicity evaluation based on organ-on-a-chip technology: A review. Micromachines. 2020;11:381. doi: 10.3390/mi11040381. PubMed DOI PMC

Gonçalves I.M., Carvalho V., Rodrigues R.O., Pinho D., Teixeira S.F.C.F., Moita A., Hori T., Kaji H., Lima R., Minas G. Organ-on-a-chip platforms for drug screening and delivery in tumor cells: A systematic review. Cancers. 2022;14:935. doi: 10.3390/cancers14040935. PubMed DOI PMC

Park J., Wu Z., Steiner P.R., Zhu B., Zhang J.X.J. Heart-on-chip for combined cellular dynamics measurements and computational modeling towards clinical applications. Ann. Biomed. Eng. 2022;50:111–137. doi: 10.1007/s10439-022-02902-7. PubMed DOI

Danku A.E., Dulf E.-H., Braicu C., Jurj A., Berindan-Neagoe I. Organ-On-A-Chip: A Survey of Technical Results and Problems. Front. Bioeng. Biotechnol. 2022;10:840674. doi: 10.3389/fbioe.2022.840674. PubMed DOI PMC

Qian F., Huang C., Lin Y.D., Ivanovskaya A.N., O’Hara T.J., Booth R.H., Creek C.J., Enright H.A., Soscia D.A., Belle A.M. Simultaneous electrical recording of cardiac electrophysiology and contraction on chip. Lab Chip. 2017;17:1732–1739. doi: 10.1039/C7LC00210F. PubMed DOI

Soltantabar P., Calubaquib E.L., Mostafavi E., Ghazavi A., Stefan M.C. Heart/liver-on-a-chip as a model for the evaluation of cardiotoxicity induced by chemotherapies. Organs-on-a-Chip. 2021;3:100008. doi: 10.1016/j.ooc.2021.100008. DOI

Faulkner-Jones A., Zamora V., Hortigon-Vinagre M.P., Wang W., Ardron M., Smith G.L., Shu W. A Bioprinted Heart-on-a-Chip with Human Pluripotent Stem Cell-Derived Cardiomyocytes for Drug Evaluation. Bioengineering. 2022;9:32. doi: 10.3390/bioengineering9010032. PubMed DOI PMC

Gonçalves I.M., Rodrigues R.O., Moita A.S., Hori T., Kaji H., Lima R.A., Minas G. Recent trends of biomaterials and biosensors for organ-on-chip platforms. Bioprinting. 2022;26:e00202. doi: 10.1016/j.bprint.2022.e00202. DOI

Pitingolo G., Nizard P., Riaud A., Taly V. Beyond the on/off chip trade-off: A reversibly sealed microfluidic platform for 3D tumor microtissue analysis. Sens. Actuators B Chem. 2018;274:393–401. doi: 10.1016/j.snb.2018.07.166. DOI

Le N.X.T., Trinh K.T.L., Lee N.Y. Poly(acrylic acid) as an adhesion promoter for UV-assisted thermoplastic bonding: Application for the in vitro construction of human blood vessels. Mater. Sci. Eng. C. 2021;122:111874. doi: 10.1016/j.msec.2021.111874. PubMed DOI

Park S.M., Kim H.M., Song K.H., Eom S., Park H.J., Doh J., Kim D.S. Ultra-thin, aligned, free-standing nanofiber membranes to recapitulate multi-layered blood vessel/tissue interface for leukocyte infiltration study. Biomaterials. 2018;169:22–34. doi: 10.1016/j.biomaterials.2018.03.053. PubMed DOI

Annabi N., Selimović Š., Acevedo Cox J.P., Ribas J., Bakooshli M.A., Heintze D., Weiss A.S., Cropek D., Khademhosseini A. Hydrogel-coated microfluidic channels for cardiomyocyte culture. Lab Chip. 2013;13:3569–3577. doi: 10.1039/c3lc50252j. PubMed DOI PMC

Lakshmanan R., Maulik N. Development of next generation cardiovascular therapeutics through bio-assisted nanotechnology. J. Biomed. Mater. Res. B Appl. Biomater. 2018;106:2072–2083. doi: 10.1002/jbm.b.34000. PubMed DOI

Fan C., Joshi J., Li F., Xu B., Khan M., Yang J., Zhu W. Nanoparticle-mediated drug delivery for treatment of ischemic heart disease. Front. Bioeng. Biotechnol. 2020;8:687. doi: 10.3389/fbioe.2020.00687. PubMed DOI PMC

Ulbrich K., Holá K., Šubr V., Bakandritsos A., Tuček J., Zbořil R. Targeted Drug Delivery with Polymers and Magnetic Nanoparticles: Covalent and Noncovalent Approaches, Release Control, and Clinical Studies. Chem. Rev. 2016;116:5338–5431. doi: 10.1021/acs.chemrev.5b00589. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace