Biowaste-Derived Carbon Dots: A Perspective on Biomedical Potentials
Language English Country Switzerland Media electronic
Document type Journal Article, Review
PubMed
36234727
PubMed Central
PMC9573568
DOI
10.3390/molecules27196186
PII: molecules27196186
Knihovny.cz E-resources
- Keywords
- biocompatibility, biomedical applications, biowaste-derived carbon dots, green chemistry, sustainability, valorization,
- MeSH
- Diagnostic Imaging MeSH
- Quantum Dots * MeSH
- Drug Delivery Systems MeSH
- Reproducibility of Results MeSH
- Carbon * MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Carbon * MeSH
Today, sustainable and natural resources including biowastes have been considered attractive starting materials for the fabrication of biocompatible and biodegradable carbon dots (CDs) due to the benefits of availability, low cost, biorenewability, and environmentally benign attributes. These carbonaceous nanomaterials have been widely explored in the field of sensing/imaging, optoelectronics, photocatalysis, drug/gene delivery, tissue engineering, regenerative medicine, and cancer theranostics. Designing multifunctional biowaste-derived CDs with a high efficacy-to-toxicity ratio for sustained and targeted drug delivery, along with imaging potentials, opens a new window of opportunity toward theranostic applications. However, crucial challenges regarding the absorption/emission wavelength, up-conversion emission/multiphoton fluorescence mechanisms, and phosphorescence of these CDs still need to be addressed to attain the maximum functionality and efficacy. Future studies ought to focus on optimizing the synthesis techniques/conditions, evaluating the influence of nucleation/growth process on structures/properties, controlling their morphology/size, and finding the photoluminescence mechanisms. Reproducibility of synthesis techniques is another critically important factor that needs to be addressed in the future. Herein, the recent developments related to the biowaste-derived CDs with respect to their biomedical applications are deliberated, focusing on important challenges and future perspectives.
See more in PubMed
Iravani S., Jamalipour Soufi G. Algae-derived materials for tissue engineering and regenerative medicine applications: Current trends and future perspectives. Emergent Mater. 2022;5:631–652. doi: 10.1007/s42247-021-00283-6. DOI
Iravani S., Varma R. Plant-derived Edible Nanoparticles and miRNAs: Emerging Frontier for Therapeutics and Targeted Drug-delivery. ACS Sustain. Chem. Eng. 2019;7:8055–8069. doi: 10.1021/acssuschemeng.9b00954. DOI
Iravani S., Varma R.S. Plants and plant-based polymers as scaffolds for tissue engineering. Green Chem. 2019;21:4839–4867.
Iravani S., Varma R.S. Plant pollen grains: A move towards green drug and vaccine delivery systems. Nano-Micro Lett. 2021;13:128. doi: 10.1007/s40820-021-00654-y. PubMed DOI PMC
Iravani S., Varma R.S. Green synthesis, biomedical and biotechnological applications of carbon and graphene quantum dots. A review. Environ. Chem. Lett. 2020;18:703–727. doi: 10.1007/s10311-020-00984-0. PubMed DOI PMC
Xu C., Nasrollahzadeh M., Selva M., Issaabadi Z., Luque R. Waste-to-wealth: Biowaste valorization into valuable bio(nano) materials. Chem. Soc. Rev. 2019;48:4791–4822. doi: 10.1039/C8CS00543E. PubMed DOI
Shaik S.A., Sengupta S., Varma R.S., Gawande M.B., Goswami A. Syntheses of N-Doped Carbon Quantum Dots (NCQDs) from Bioderived Precursors: A Timely Update. ACS Sustain. Chem. Eng. 2021;9:3–49. doi: 10.1021/acssuschemeng.0c04727. DOI
Ðorđević L., Arcudi F., Cacioppo M., Prato M. A multifunctional chemical toolbox to engineer carbon dots for biomedical and energy applications. Nat. Nanotechnol. 2022;17:112–130. doi: 10.1038/s41565-021-01051-7. PubMed DOI
Chauhan P., Saini J., Chaudhary S., Bhasin K.K. Sustainable synthesis of carbon dots from agarose waste and prospective application in sensing of l-aspartic acid. Mater. Res. Bull. 2021;134:111113. doi: 10.1016/j.materresbull.2020.111113. DOI
Ghosal K., Ghosh A. Carbon dots: The next generation platform for biomedical applications. Mater. Sci. Eng. C. 2019;96:887–903. doi: 10.1016/j.msec.2018.11.060. PubMed DOI
Behi M., Gholami L., Naficy S., Palomba S., Dehghani F. Carbon dots: A novel platform for biomedical applications. Nanoscale Adv. 2022;4:353–376. doi: 10.1039/D1NA00559F. PubMed DOI PMC
Meng W., Bai X., Wang B., Liu Z., Lu S., Yang B. Biomass-Derived Carbon Dots and Their Applications. Energy Environ. Mater. 2019;2:172–192. doi: 10.1002/eem2.12038. DOI
Wang Y., Li X., Zhao S., Wang B., Song X., Xiao J., Lan M. Synthesis strategies, luminescence mechanisms, and biomedical applications of near-infrared fluorescent carbon dots. Coord. Chem. Rev. 2022;470:214703. doi: 10.1016/j.ccr.2022.214703. DOI
Kumar V.B., Porat Z., Gedanken A. Synthesis of Doped/Hybrid Carbon Dots and Their Biomedical Application. Nanomaterials. 2022;12:898. doi: 10.3390/nano12060898. PubMed DOI PMC
Rabiee N., Ahmadi S., Rabiee M., Bagherzadeh M., Vahabi H., Jouyandeh M., Saeb M.R. Green carbon-based nanocomposite biomaterials through the lens of microscopes. Emergent Mater. 2022;5:665–671. doi: 10.1007/s42247-021-00277-4. DOI
Taghavi S., Abnous K., Taghdisi S.M., Ramezani M., Alibolandi M. Hybrid carbon-based materials for gene delivery in cancer therapy. J. Control. Release. 2020;318:158–175. doi: 10.1016/j.jconrel.2019.12.030. PubMed DOI
Lai W.F. Non-aromatic clusteroluminogenic polymers: Structural design and applications in bioactive agent delivery. Mater. Today Chem. 2022;23:100712. doi: 10.1016/j.mtchem.2021.100712. DOI
Döring A., Ushakova E., Rogach A.L. Chiral carbon dots: Synthesis, optical properties, and emerging applications. Light Sci. Appl. 2022;11:75. doi: 10.1038/s41377-022-00764-1. PubMed DOI PMC
Li P., Sun L., Xue S., Qu D., An L., Wang X., Sun Z. Recent advances of carbon dots as new antimicrobial agents. SmartMat. 2022;3:226–248. doi: 10.1002/smm2.1131. DOI
Kong B., Yang T., Cheng F., Qian Y., Li C., Zhan L., Li Y., Zou H., Huang C. Carbon dots as nanocatalytic medicine for anti-inflammation therapy. J. Colloid Interface Sci. 2022;611:545–553. doi: 10.1016/j.jcis.2021.12.107. PubMed DOI
Tejwan N., Saini A.K., Sharma A., Singh T.A., Kumar N., Das J. Metal-doped and hybrid carbon dots: A comprehensive review on their synthesis and biomedical applications. J. Control. Release. 2021;330:132–150. doi: 10.1016/j.jconrel.2020.12.023. PubMed DOI
Feng Z., Adolfsson K.H., Xu Y., Fang H., Hakkarainen M., Wu M. Carbon dot/polymer nanocomposites: From green synthesis to energy, environmental and biomedical applications. Sustain. Mater. Technol. 2021;29:e00304. doi: 10.1016/j.susmat.2021.e00304. DOI
Kurian M., Paul A. Recent trends in the use of green sources for carbon dot synthesis–A short review. Carbon Trends. 2021;3:100032. doi: 10.1016/j.cartre.2021.100032. DOI
Wareing T.C., Gentile P., Phan A.N. Biomass-Based Carbon Dots: Current Development and Future Perspectives. ACS Nano. 2021;15:15471–15501. doi: 10.1021/acsnano.1c03886. PubMed DOI
Ge G., Li L., Wang D., Chen M., Zeng Z., Xiong W., Wu X., Guo C. Carbon dots: Synthesis, properties and biomedical applications. J. Mater. Chem. B. 2021;9:6553–6575. doi: 10.1039/D1TB01077H. PubMed DOI
Gudimella K.k., Gedda G., Kumar P.S., Babu B.K., Yamajala B., Rao B.V., Singh P.P., Kumar D., Sharma A. Novel synthesis of fluorescent carbon dots from bio-based Carica Papaya Leaves: Optical and structural properties with antioxidant and anti-inflammatory activities. Environ. Res. 2022;204:111854. doi: 10.1016/j.envres.2021.111854. PubMed DOI
Khayal A., Dawane V., Amin M.A., Tirth V., Yadav V.K., Algahtani A., Khan S.H., Islam S., Yadav K.K., Jeon B.-H. Advances in the Methods for the Synthesis of Carbon Dots and Their Emerging Applications. Polymers. 2021;13:3190. doi: 10.3390/polym13183190. PubMed DOI PMC
Zhang J., Yu S.-H. Carbon dots: Large-scale synthesis, sensing and bioimaging. Mater. Today. 2016;19:382–393. doi: 10.1016/j.mattod.2015.11.008. DOI
Hu Y., Yang J., Tian J., Jia L., Yu J.S. Waste frying oil as a precursor for one-step synthesis of sulfur-doped carbon dots with pH-sensitive photoluminescence. Carbon. 2014;77:775–782. doi: 10.1016/j.carbon.2014.05.081. DOI
Dehvari K., Liu K.Y., Tseng P.J., Gedda G., Girma W.M., Chang J.Y. Sonochemical-assisted green synthesis of nitrogen-doped carbon dots from crab shell as targeted nanoprobes for cell imaging. J. Taiwan Inst. Chem. Eng. 2019;95:495–503. doi: 10.1016/j.jtice.2018.08.037. DOI
Xia C., Zhu S., Feng T., Yang M., Yang B. Evolution and Synthesis of Carbon Dots: From Carbon Dots to Carbonized Polymer Dots. Adv. Sci. 2019;6:1901316. doi: 10.1002/advs.201901316. PubMed DOI PMC
Brar K.K., Magdouli S., Othmani A., Ghanei J., Narisetty V., Sindhu R., Binod P., Pugazhendhi A., Awasthi M.K., Pandey A. Green route for recycling of low-cost waste resources for the biosynthesis of nanoparticles (NPs) and nanomaterials (NMs)-A review. Environ. Res. 2022;207:112202. doi: 10.1016/j.envres.2021.112202. PubMed DOI
Atchudan R., Immanuel Edison T.N.J., Perumal S., Muthuchamy N., Lee Y.R. Hydrophilic nitrogen-doped carbon dots from biowaste using dwarf banana peel for environmental and biological applications. Fuel. 2020;275:117821. doi: 10.1016/j.fuel.2020.117821. DOI
Wu J., Chen G., Jia Y., Ji C., Wang Y., Zhou Y., Leblanc R.M., Peng Z. Carbon dot composites for bioapplications: A review. J. Mater. Chem. B. 2022;10:843–869. doi: 10.1039/D1TB02446A. PubMed DOI
Chung H.K., Wongso V., Sambudi N.S., Isnaeni Biowaste-derived carbon dots/hydroxyapatite nanocomposite as drug delivery vehicle for acetaminophen. J. Sol-Gel Sci. Technol. 2020;93:214–223. doi: 10.1007/s10971-019-05141-w. DOI
Ghirardello M., Ramos-Soriano J., Galan M.C. Carbon Dots as an Emergent Class of Antimicrobial Agents. Nanomaterials. 2021;11:1877. doi: 10.3390/nano11081877. PubMed DOI PMC
Thakur A., Devi P., Saini S., Jain R., Sinha R.K., Kumar P. Citrus limetta Organic Waste Recycled Carbon Nanolights: Photoelectro Catalytic, Sensing, and Biomedical Applications. ACS Sustain. Chem. Eng. 2019;7:502–512. doi: 10.1021/acssuschemeng.8b04025. DOI
Paul A., Kurian M. Facile synthesis of nitrogen doped carbon dots from waste biomass: Potential optical and biomedical applications. Clean. Eng. Technol. 2021;3:100103. doi: 10.1016/j.clet.2021.100103. DOI
Atchudan R., Kishore S.C., Gangadaran P., Immanuel Edison T.N.J., Perumal S., Rajendran R.L., Alagan M., Al-Rashed S., Ahn B.-C., Lee Y.R. Tunable fluorescent carbon dots from biowaste as fluorescence ink and imaging human normal and cancer cells. Environ. Res. 2022;204:112365. doi: 10.1016/j.envres.2021.112365. PubMed DOI
Kasinathan K., Samayanan S., Marimuthu K., Yim J.-H. Green synthesis of multicolour fluorescence carbon quantum dots from sugarcane waste: Investigation of mercury (II) ion sensing, and bio-imaging applications. Appl. Surf. Sci. 2022;601:154266. doi: 10.1016/j.apsusc.2022.154266. DOI
Zhu J., Zhu F., Yue X., Chen P., Sun Y., Zhang L., Mu D., Ke F. Waste utilization of synthetic carbon quantum dots based on tea and peanut shell. J. Nanomater. 2019;2019:7965756. doi: 10.1155/2019/7965756. DOI
Wang X., Zhang Y., Kong H., Cheng J., Zhang M., Sun Z., Wang S., Liu J., Qu H., Zhao Y. Novel mulberry silkworm cocoon-derived carbon dots and their anti-inflammatory properties. Artif. Cells Nanomed. Biotechnol. 2020;48:68–76. doi: 10.1080/21691401.2019.1699810. PubMed DOI
Yang H., Zhou B., Zhang Y., Liu H., Liu Y., He Y., Xia S. Valorization of expired passion fruit shell by hydrothermal conversion into carbon quantum dot: Physical and optical properties. Waste Biomass Valoriz. 2021;12:2109–2117. doi: 10.1007/s12649-020-01132-z. DOI
Das P., Ganguly S., Maity P.P., Srivastava H.K., Bose M., Dhara S., Bandyopadhyay S., Das A.K., Banerjee S., Das N.C. Converting waste Allium sativum peel to nitrogen and sulphur co-doped photoluminescence carbon dots for solar conversion, cell labeling, and photobleaching diligences: A path from discarded waste to value-added products. J. Photochem. Photobiol. B. 2019;197:111545. doi: 10.1016/j.jphotobiol.2019.111545. PubMed DOI
Wang B., Lu S. The light of carbon dots: From mechanism to applications. Matter. 2022;5:110–149. doi: 10.1016/j.matt.2021.10.016. DOI
Li D., Ushakova E.V., Rogach A.L., Qu S. Optical Properties of Carbon Dots in the Deep-Red to Near-Infrared Region Are Attractive for Biomedical Applications. Small. 2021;17:2102325. doi: 10.1002/smll.202102325. PubMed DOI
Wan J., Zhang X., Fu K., Zhang X., Shang L., Su Z. Highly fluorescent carbon dots as novel theranostic agents for biomedical applications. Nanoscale. 2021;13:17236–17253. doi: 10.1039/D1NR03740D. PubMed DOI
Chung Y.J., Kim J., Park C.B. Photonic Carbon Dots as an Emerging Nanoagent for Biomedical and Healthcare Applications. ACS Nano. 2020;14:6470–6497. doi: 10.1021/acsnano.0c02114. PubMed DOI
Mote U.S., Gore A.H., Panja S.K., Kolekar G.B. Effect of various aqueous extracting agents on fluorescence properties of waste tea residue derived carbon dots (WTR-CDs): Comparative spectroscopic analysis. Luminescence. 2022;37:440–447. doi: 10.1002/bio.4190. PubMed DOI
Gunjal D.B., Naik V.M., Waghmare R.D., Patil C.S., Shejwal R.V., Gore A.H., Kolekar G.B. Sustainable carbon nanodots synthesised from kitchen derived waste tea residue for highly selective fluorimetric recognition of free chlorine in acidic water: A waste utilization approach. J. Taiwan Inst. Chem. Eng. 2019;95:147–154. doi: 10.1016/j.jtice.2018.10.014. DOI
Himaja A.L., Karthik P.S., Sreedhar B., Prakash Singh S. Synthesis of Carbon Dots from Kitchen Waste: Conversion of Waste to Value Added Product. J. Fluoresc. 2014;24:1767–1773. doi: 10.1007/s10895-014-1465-1. PubMed DOI
Xiao-Yan W., Xue-Yan H., Tian-Qi W., Xu-Cheng F. Crown daisy leaf waste-derived carbon dots: A simple and green fluorescent probe for copper ion. Surf. Interface Anal. 2020;52:148–155. doi: 10.1002/sia.6733. DOI
Yao Y.-Y., Gedda G., Girma W.M., Yen C.-L., Ling Y.-C., Chang J.-Y. Magnetofluorescent Carbon Dots Derived from Crab Shell for Targeted Dual-Modality Bioimaging and Drug Delivery. ACS Appl. Mater. Interfaces. 2017;9:13887–13899. doi: 10.1021/acsami.7b01599. PubMed DOI
Jia Q., Zheng X., Ge J., Liu W., Ren H., Chen S., Wen Y., Zhang H., Wu J., Wang P. Synthesis of carbon dots from Hypocrella bambusae for bimodel fluorescence/photoacoustic imaging-guided synergistic photodynamic/photothermal therapy of cancer. J. Colloid Interface Sci. 2018;526:302–311. doi: 10.1016/j.jcis.2018.05.005. PubMed DOI
Hsu P.-C., Chen P.-C., Ou C.-M., Chang H.-Y., Chang H.-T. Extremely high inhibition activity of photoluminescent carbon nanodots toward cancer cells. J. Mater. Chem. B. 2013;1:1774–1781. doi: 10.1039/c3tb00545c. PubMed DOI
Ghosal K., Ghosh S., Ghosh D., Sarkar K. Natural polysaccharide derived carbon dot based in situ facile green synthesis of silver nanoparticles: Synergistic effect on breast cancer. Int. J. Biol. Macromol. 2020;162:1605–1615. doi: 10.1016/j.ijbiomac.2020.07.315. PubMed DOI
Shivaji K., Mani S., Ponmurugan P., De Castro C.S., Lloyd Davies M., Balasubramanian M.G., Pitchaimuthu S. Green-Synthesis-Derived CdS Quantum Dots Using Tea Leaf Extract: Antimicrobial, Bioimaging, and Therapeutic Applications in Lung Cancer Cells. ACS Appl. Nano Mater. 2018;1:1683–1693. doi: 10.1021/acsanm.8b00147. DOI
Zhang X., Jiang M., Niu N., Chen Z., Li S., Liu S., Li J. Natural-product-derived carbon dots: From natural products to functional materials. ChemSusChem. 2018;11:11–24. doi: 10.1002/cssc.201701847. PubMed DOI
Geng B., Qin H., Shen W., Li P., Fang F., Li X., Pan D., Shen L. Carbon dot/WS2 heterojunctions for NIR-II enhanced photothermal therapy of osteosarcoma and bone regeneration. Chem. Eng. J. 2020;383:123102. doi: 10.1016/j.cej.2019.123102. DOI
Saranti A., Tiron-Stathopoulos A., Papaioannou L., Gioti C., Ioannou A., Karakassides M.A., Avgoustakis K., Koutselas I., Dimos K. 3D-printed bioactive scaffolds for bone regeneration bearing carbon dots for bioimaging purposes. Smart Mater. Med. 2022;3:12–19. doi: 10.1016/j.smaim.2021.11.002. DOI
Omidi M., Yadegari A., Tayebi L. Wound dressing application of pH-sensitive carbon dots/chitosan hydrogel. RSC Adv. 2017;7:10638–10649. doi: 10.1039/C6RA25340G. DOI
Shafiei S., Omidi M., Nasehi F., Golzar H., Mohammadrezaei D., Rezai Rad M., Khojasteh A. Egg shell-derived calcium phosphate/carbon dot nanofibrous scaffolds for bone tissue engineering: Fabrication and characterization. Mater. Sci. Eng. C. 2019;100:564–575. doi: 10.1016/j.msec.2019.03.003. PubMed DOI
Rajabnejad Keleshteri A., Moztarzadeh F., Farokhi M., Mehrizi A.A., Basiri H., Mohseni S.S. Preparation of microfluidic-based pectin microparticles loaded carbon dots conjugated with BMP-2 embedded in gelatin-elastin-hyaluronic acid hydrogel scaffold for bone tissue engineering application. Int. J. Biol. Macromol. 2021;184:29–41. doi: 10.1016/j.ijbiomac.2021.05.148. PubMed DOI
Basiri H., Mehrizi A.A., Ghaee A., Farokhi M., Chekini M., Kumacheva E. Carbon Dots Conjugated with Vascular Endothelial Growth Factor for Protein Tracking in Angiogenic Therapy. Langmuir. 2020;36:2893–2900. doi: 10.1021/acs.langmuir.9b03980. PubMed DOI
Ehtesabi H., Massah F. Improvement of hydrophilicity and cell attachment of polycaprolactone scaffolds using green synthesized carbon dots. Mater. Today Sustain. 2021;13:100075. doi: 10.1016/j.mtsust.2021.100075. DOI
Shao D., Lu M., Xu D., Zheng X., Pan Y., Song Y., Xu J., Li M., Zhang M., Li J., et al. Carbon dots for tracking and promoting the osteogenic differentiation of mesenchymal stem cells. Biomater. Sci. 2017;5:1820–1827. doi: 10.1039/C7BM00358G. PubMed DOI
Khajuria D.K., Kumar V.B., Gigi D., Gedanken A., Karasik D. Accelerated Bone Regeneration by Nitrogen-Doped Carbon Dots Functionalized with Hydroxyapatite Nanoparticles. ACS Appl. Mater. Interfaces. 2018;10:19373–19385. doi: 10.1021/acsami.8b02792. PubMed DOI
Wang L., Zhou H.S. Green synthesis of luminescent nitrogen-doped carbon dots from milk and its imaging application. Anal. Chem. 2014;86:8902–8905. doi: 10.1021/ac502646x. PubMed DOI
Lim S.Y., Shen W., Gao Z. Carbon quantum dots and their applications. Chem. Soc. Rev. 2015;44:362–381. doi: 10.1039/C4CS00269E. PubMed DOI
Amjad M., Iqbal M., Faisal A., Junjua A.M., Hussain I., Hussain S.Z., Ghramh H.A., Khan K.A., Janjua H.A. Hydrothermal synthesis of carbon nanodots from bovine gelatin and PHM3 microalgae strain for anticancer and bioimaging applications. Nanoscale Adv. 2019;1:2924–2936. doi: 10.1039/C9NA00164F. PubMed DOI PMC
Ding H., Zhou X.-X., Wei J.-S., Li X.-B., Qin B.-T., Chen X.-B., Xiong H.-M. Carbon dots with red/near-infrared emissions and their intrinsic merits for biomedical applications. Carbon. 2020;167:322–344. doi: 10.1016/j.carbon.2020.06.024. DOI
He D., Yan M., Sun P., Sun Y., Qu L., Li Z. Recent progress in carbon-dots-based nanozymes for chemosensing and biomedical applications. Chin. Chem. Lett. 2021;32:2994–3006. doi: 10.1016/j.cclet.2021.03.078. DOI