Leveraging Cholesterol-Functionalized Cyclodextrin Nanosponges for Enhanced Drug Delivery in Cancer Cells

. 2025 Jan 30 ; 26 (3) : . [epub] 20250130

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39940979

Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000843 Ministry of Education, Youth and Sports, Czech Republic
LM2023066 Ministry of Education, Youth and Sports, Czech Republic

Cholesterol, the essential building block of cellular membranes, has proven to be a useful tool for increasing the biocompatibility and bioavailability of drug delivery systems in cancer treatment. Resveratrol, a natural polyphenolic compound with promising anticancer properties, faces significant limitations due to its low solubility and bioavailability, hindering its clinical utility. Therefore, in the present study, we aimed to design cholesterol-functionalized cyclodextrin nanosponges (Chol-NSs) with a tunable cholesterol content to optimize resveratrol encapsulation and delivery. Both formulations, free carbonyl diimidazole (CDI) NSs and functionalized Chol-NSs, demonstrated high drug loading and encapsulation efficiency. In vitro experiments revealed that cholesterol incorporation significantly improved the cellular uptake of nanocarriers and potentiated the cytotoxic effects of resveratrol on breast cancer cells. Importantly, both free CDI NSs and functionalized Chol-NSs, even at varying cholesterol percentages, demonstrated a safe profile against both fibroblast and breast cancer cell lines. These results indicate that cholesterol-functionalized nanosponges represent a promising platform for the effective and safe delivery of natural compounds in cancer therapy.

Zobrazit více v PubMed

Crini G. Review: A History of Cyclodextrins. Chem. Rev. 2014;114:10940–10975. doi: 10.1021/cr500081p. PubMed DOI

Ioele G., De Luca M., Garofalo A., Ragno G. Photosensitive Drugs: A Review on Their Photoprotection by Liposomes and Cyclodextrins. Drug Deliv. 2017;24:33–44. doi: 10.1080/10717544.2017.1386733. PubMed DOI PMC

Mousazadeh H., Pilehvar-Soltanahmadi Y., Dadashpour M., Zarghami N. Cyclodextrin Based Natural Nanostructured Carbohydrate Polymers as Effective Non-Viral siRNA Delivery Systems for Cancer Gene Therapy. J. Control. Release. 2021;330:1046–1070. doi: 10.1016/j.jconrel.2020.11.011. PubMed DOI

Rubin Pedrazzo A., Caldera F., Zanetti M., Appleton S.L., Dhakar N.K., Trotta F. Mechanochemical Green Synthesis of Hyper-Crosslinked Cyclodextrin Polymers. Beilstein J. Org. Chem. 2020;16:1554–1563. doi: 10.3762/bjoc.16.127. PubMed DOI PMC

Wang J., Yang X.-Q., Li N., Wang L.-L., Xu X.-Y., Zhang C. A Cyclodextrin-Based Turn-off Fluorescent Probe for Naked-Eye Detection of Copper Ions in Aqueous Solution. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2023;287:122069. doi: 10.1016/j.saa.2022.122069. PubMed DOI

Khazaei Monfared Y., Mahmoudian M., Caldera F., Pedrazzo A.R., Zakeri-Milani P., Matencio A., Trotta F. Nisin Delivery by Nanosponges Increases Its Anticancer Activity against In-Vivo Melanoma Model. J. Drug Deliv. Sci. Technol. 2023;79:104065. doi: 10.1016/j.jddst.2022.104065. DOI

Khazaei Monfared Y., Mahmoudian M., Cecone C., Caldera F., Zakeri-Milani P., Matencio A., Trotta F. Stabilization and Anticancer Enhancing Activity of the Peptide Nisin by Cyclodextrin-Based Nanosponges against Colon and Breast Cancer Cells. Polymers. 2022;14:594. doi: 10.3390/polym14030594. PubMed DOI PMC

Monfared Y.K., Pedrazzo A.R., Mahmoudian M., Caldera F., Zakeri-Milani P., Valizadeh H., Cavalli R., Matencio A., Trotta F. Oral Supplementation of Solvent-Free Kynurenic Acid/Cyclodextrin Nanosponges Complexes Increased Its Bioavailability. Colloids Surf. B Biointerfaces. 2023;222:113101. doi: 10.1016/j.colsurfb.2022.113101. PubMed DOI

Daga M., Ullio C., Argenziano M., Dianzani C., Cavalli R., Trotta F., Ferretti C., Zara G.P., Gigliotti C.L., Ciamporcero E.S., et al. GSH-Targeted Nanosponges Increase Doxorubicin-Induced Toxicity “in Vitro” and “in Vivo” in Cancer Cells with High Antioxidant Defenses. Free Radic. Biol. Med. 2016;97:24–37. doi: 10.1016/j.freeradbiomed.2016.05.009. PubMed DOI

Rao M.R.P., Chaudhari J., Trotta F., Caldera F. Investigation of Cyclodextrin-Based Nanosponges for Solubility and Bioavailability Enhancement of Rilpivirine. Aaps Pharmscitech. 2018;19:2358–2369. doi: 10.1208/s12249-018-1064-6. PubMed DOI

Trotta F., Cavalli R. Characterization and Applications of New Hyper-Cross-Linked Cyclodextrins. Compos. Interfaces. 2009;16:39–48. doi: 10.1163/156855408X379388. DOI

Mognetti B., Barberis A., Marino S., Berta G., Francia S., Trotta F., Cavalli R. In Vitro Enhancement of Anticancer Activity of Paclitaxel by a Cremophor Free Cyclodextrin-Based Nanosponge Formulation. J. Incl. Phenom. Macrocycl. Chem. 2012;74:201–210. doi: 10.1007/s10847-011-0101-9. DOI

Trotta F., Dianzani C., Caldera F., Mognetti B., Cavalli R. The Application of Nanosponges to Cancer Drug Delivery. Expert Opin. Drug Deliv. 2014;11:931–941. doi: 10.1517/17425247.2014.911729. PubMed DOI

Olteanu A.A., Aramă C.-C., Radu C., Mihăescu C., Monciu C.-M. Effect of β-Cyclodextrins Based Nanosponges on the Solubility of Lipophilic Pharmacological Active Substances (Repaglinide) J. Incl. Phenom. Macrocycl. Chem. 2014;80:17–24. doi: 10.1007/s10847-014-0406-6. DOI

Rao M.R.P., Shirsath C. Enhancement of Bioavailability of Non-Nucleoside Reverse Transciptase Inhibitor Using Nanosponges. AAPS PharmSciTech. 2017;18:1728–1738. doi: 10.1208/s12249-016-0636-6. PubMed DOI

Zainuddin R., Zaheer Z., Sangshetti J.N., Momin M. Enhancement of Oral Bioavailability of Anti-HIV Drug Rilpivirine HCl through Nanosponge Formulation. Drug Dev. Ind. Pharm. 2017;43:2076–2084. doi: 10.1080/03639045.2017.1371732. PubMed DOI

Olim F., Neves A.R., Vieira M., Tomás H., Sheng R. Self-Assembly of Cholesterol-Doxorubicin and TPGS into Prodrug-Based Nanoparticles with Enhanced Cellular Uptake and Lysosome-Dependent Pathway in Breast Cancer Cells. Eur. J. Lipid Sci. Technol. 2021;123:2000337. doi: 10.1002/ejlt.202000337. DOI

Misiak P., Niemirowicz-Laskowska K., Markiewicz K.H., Wielgat P., Kurowska I., Czarnomysy R., Misztalewska-Turkowicz I., Car H., Bielawski K., Wilczewska A.Z. Doxorubicin-Loaded Polymeric Nanoparticles Containing Ketoester-Based Block and Cholesterol Moiety as Specific Vehicles to Fight Estrogen-Dependent Breast Cancer. Cancer Nanotechnol. 2023;14:23. doi: 10.1186/s12645-023-00176-9. DOI

Singh P., Ren X., Guo T., Wu L., Shakya S., He Y., Wang C., Maharjan A., Singh V., Zhang J. Biofunctionalization of β-Cyclodextrin Nanosponges Using Cholesterol. Carbohydr. Polym. 2018;190:23–30. doi: 10.1016/j.carbpol.2018.02.044. PubMed DOI

Chen C.-J., Wang J.-C., Zhao E.-Y., Gao L.-Y., Feng Q., Liu X.-Y., Zhao Z.-X., Ma X.-F., Hou W.-J., Zhang L.-R., et al. Self-Assembly Cationic Nanoparticles Based on Cholesterol-Grafted Bioreducible Poly(Amidoamine) for siRNA Delivery. Biomaterials. 2013;34:5303–5316. doi: 10.1016/j.biomaterials.2013.03.056. PubMed DOI

Kim W.J., Chang C.-W., Lee M., Kim S.W. Efficient siRNA Delivery Using Water Soluble Lipopolymer for Anti-Angiogenic Gene Therapy. J. Control. Release. 2007;118:357–363. doi: 10.1016/j.jconrel.2006.12.026. PubMed DOI

Misiak P., Niemirowicz-Laskowska K., Markiewicz K.H., Misztalewska-Turkowicz I., Wielgat P., Kurowska I., Siemiaszko G., Destarac M., Car H., Wilczewska A.Z. Evaluation of Cytotoxic Effect of Cholesterol End-Capped Poly(N-Isopropylacrylamide)s on Selected Normal and Neoplastic Cells. Int. J. Nanomed. 2020;15:7263–7278. doi: 10.2147/IJN.S262582. PubMed DOI PMC

Auzély-Velty R., Djedaïni-Pilard F., Désert S., Perly B., Zemb T. Micellization of Hydrophobically Modified Cyclodextrins. 1. Micellar Structure. Langmuir. 2000;16:3727–3734. doi: 10.1021/la991361z. DOI

Klaus A., Fajolles C., Bauer M., Collot M., Mallet J.-M., Daillant J. Amphiphilic Behavior and Membrane Solubility of a Dicholesteryl-Cyclodextrin. Langmuir. 2011;27:7580–7586. doi: 10.1021/la200863c. PubMed DOI

Wang T., Chipot C., Shao X., Cai W. Structural Characterization of Micelles Formed of Cholesteryl-Functionalized Cyclodextrins. Langmuir. 2011;27:91–97. doi: 10.1021/la103288j. PubMed DOI

Singh V., Guo T., Xu H., Wu L., Gu J., Wu C., Gref R., Zhang J. Moisture Resistant and Biofriendly CD-MOF Nanoparticles Obtained via Cholesterol Shielding. Chem. Commun. 2017;53:9246–9249. doi: 10.1039/C7CC03471G. PubMed DOI

López-Valverde N., López-Valverde A., Montero J., Rodríguez C., Macedo de Sousa B., Aragoneses J.M. Antioxidant, Anti-Inflammatory and Antimicrobial Activity of Natural Products in Periodontal Disease: A Comprehensive Review. Front. Bioeng. Biotechnol. 2023;11:1226907. doi: 10.3389/fbioe.2023.1226907. PubMed DOI PMC

Larik M.O., Ahmed A., Khan L., Iftekhar M.A. Effects of Resveratrol on Polycystic Ovarian Syndrome: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Endocrine. 2023;83:51–59. doi: 10.1007/s12020-023-03479-4. PubMed DOI

Yang Q., Meng D., Zhang Q., Wang J. Advances in the Role of Resveratrol and Its Mechanism of Action in Common Gynecological Tumors. Front. Pharmacol. 2024;15:1–17. doi: 10.3389/fphar.2024.1417532. PubMed DOI PMC

Xu X.-L., Deng S.-L., Lian Z.-X., Yu K. Resveratrol Targets a Variety of Oncogenic and Oncosuppressive Signaling for Ovarian Cancer Prevention and Treatment. Antioxidants. 2021;10:1718. doi: 10.3390/antiox10111718. PubMed DOI PMC

Tang H., Wen J., Qin T., Chen Y., Huang J., Yang Q., Jiang P., Wang L., Zhao Y., Yang Q. New Insights into Sirt1: Potential Therapeutic Targets for the Treatment of Cerebral Ischemic Stroke. Front. Cell. Neurosci. 2023;17:1228761. doi: 10.3389/fncel.2023.1228761. PubMed DOI PMC

Chandrasekaran V., Hediyal T.A., Anand N., Kendaganna P.H., Gorantla V.R., Mahalakshmi A.M., Ghanekar R.K., Yang J., Sakharkar M.K., Chidambaram S.B. Polyphenols, Autophagy and Neurodegenerative Diseases: A Review. Biomolecules. 2023;13:1196. doi: 10.3390/biom13081196. PubMed DOI PMC

Guo S., Chen M., Li S., Geng Z., Jin Y., Liu D. Natural Products Treat Colorectal Cancer by Regulating miRNA. Pharmaceuticals. 2023;16:1122. doi: 10.3390/ph16081122. PubMed DOI PMC

Roshani M., Jafari A., Loghman A., Sheida A.H., Taghavi T., Tamehri Zadeh S.S., Hamblin M.R., Homayounfal M., Mirzaei H. Applications of Resveratrol in the Treatment of Gastrointestinal Cancer. Biomed. Pharmacother. 2022;153:113274. doi: 10.1016/j.biopha.2022.113274. PubMed DOI

Badawi J.K. Resveratrol Used as Nanotherapeutic: A Promising Additional Therapeutic Tool against Hormone-Sensitive, Hormone-Insensitive and Resistant Prostate Cancer. Am. J. Clin. Exp. Urol. 2023;11:1–11. PubMed PMC

Ahmed H., Abdelraheem A., Salem M., Sabry M., Fekry N., Mohamed F., Saber A., Piatti D., Sabry M., Sabry O., et al. Suppression of Breast Cancer: Modulation of Estrogen Receptor and Downregulation of Gene Expression Using Natural Products. Nat. Prod. Res. 2023;38:1997–2006. doi: 10.1080/14786419.2023.2232926. PubMed DOI

Alaouna M., Penny C., Hull R., Molefi T., Chauke-Malinga N., Khanyile R., Makgoka M., Bida M., Dlamini Z. Overcoming the Challenges of Phytochemicals in Triple Negative Breast Cancer Therapy: The Path Forward. Plants. 2023;12:2350. doi: 10.3390/plants12122350. PubMed DOI PMC

Kowsari H., Davoodvandi A., Dashti F., Mirazimi S.M.A., Bahabadi Z.R., Aschner M., Sahebkar A., Gilasi H.R., Hamblin M.R., Mirzaei H. Resveratrol in Cancer Treatment with a Focus on Breast Cancer. Curr. Mol. Pharmacol. 2023;16:346–361. doi: 10.2174/1874467215666220616145216. PubMed DOI

Choi I., Li N., Zhong Q. Enhancing Bioaccessibility of Resveratrol by Loading in Natural Porous Starch Microparticles. Int. J. Biol. Macromol. 2022;194:982–992. doi: 10.1016/j.ijbiomac.2021.11.157. PubMed DOI

Yi J., He Q., Peng G., Fan Y. Improved Water Solubility, Chemical Stability, Antioxidant and Anticancer Activity of Resveratrol via Nanoencapsulation with Pea Protein Nanofibrils. Food Chem. 2022;377:131942. doi: 10.1016/j.foodchem.2021.131942. PubMed DOI

Gadag S., Narayan R., Nayak A.S., Catalina Ardila D., Sant S., Nayak Y., Garg S., Nayak U.Y. Development and Preclinical Evaluation of Microneedle-Assisted Resveratrol Loaded Nanostructured Lipid Carriers for Localized Delivery to Breast Cancer Therapy. Int. J. Pharm. 2021;606:120877. doi: 10.1016/j.ijpharm.2021.120877. PubMed DOI PMC

Lee D.G., Lee M., Go E.B., Chung N. Resveratrol-Loaded Gold Nanoparticles Enhance Caspase-Mediated Apoptosis in PANC-1 Pancreatic Cells via Mitochondrial Intrinsic Apoptotic Pathway. Cancer Nanotechnol. 2022;13:34. doi: 10.1186/s12645-022-00143-w. DOI

Thipe V.C., Amiri K.P., Bloebaum P., Karikachery A.R., Khoobchandani M., Katti K.K., Jurisson S.S., Katti K.V. Development of Resveratrol-Conjugated Gold Nanoparticles: Interrelationship of Increased Resveratrol Corona on Anti-Tumor Efficacy against Breast, Pancreatic and Prostate Cancers. Int. J. Nanomed. 2019;14:4413–4428. doi: 10.2147/IJN.S204443. PubMed DOI PMC

Ioniţă S., Lincu D., Mitran R.-A., Ziko L., Sedky N.K., Deaconu M., Brezoiu A.-M., Matei C., Berger D. Resveratrol Encapsulation and Release from Pristine and Functionalized Mesoporous Silica Carriers. Pharmaceutics. 2022;14:203. doi: 10.3390/pharmaceutics14010203. PubMed DOI PMC

Marinheiro D., Ferreira B.J.M.L., Oskoei P., Oliveira H., Daniel-da-Silva A.L. Encapsulation and Enhanced Release of Resveratrol from Mesoporous Silica Nanoparticles for Melanoma Therapy. Materials. 2021;14:1382. doi: 10.3390/ma14061382. PubMed DOI PMC

Das S., Lin H.-S., Ho P.C., Ng K.-Y. The Impact of Aqueous Solubility and Dose on the Pharmacokinetic Profiles of Resveratrol. Pharm. Res. 2008;25:2593–2600. doi: 10.1007/s11095-008-9677-1. PubMed DOI

Dhakar N.K., Matencio A., Caldera F., Argenziano M., Cavalli R., Dianzani C., Zanetti M., Manuel Lopez-Nicolas J., Trotta F. Comparative Evaluation of Solubility, Cytotoxicity and Photostability Studies of Resveratrol and Oxyresveratrol Loaded Nanosponges. Pharmaceutics. 2019;11:545. doi: 10.3390/pharmaceutics11100545. PubMed DOI PMC

Shi Y., Zhou J., Jiang B., Miao M. Resveratrol and Inflammatory Bowel Disease. Ann. N. Y. Acad. Sci. 2017;1403:38–47. doi: 10.1111/nyas.13426. PubMed DOI

Gruber A., Navarro L., Klinger D. Reactive Precursor Particles as Synthetic Platform for the Generation of Functional Nanoparticles, Nanogels, and Microgels. Adv. Mater. Interfaces. 2020;7:1901676. doi: 10.1002/admi.201901676. DOI

Lee A.L.Z., Venkataraman S., Sirat S.B.M., Gao S., Hedrick J.L., Yang Y.Y. The Use of Cholesterol-Containing Biodegradable Block Copolymers to Exploit Hydrophobic Interactions for the Delivery of Anticancer Drugs. Biomaterials. 2012;33:1921–1928. doi: 10.1016/j.biomaterials.2011.11.032. PubMed DOI

Qin Y., Peng X. Synthesis of Biocompatible Cholesteryl–Carboxymethyl Xylan Micelles for Tumor-Targeting Intracellular DOX Delivery. ACS Biomater. Sci. Eng. 2020;6:1582–1589. doi: 10.1021/acsbiomaterials.0c00090. PubMed DOI

Muddineti O.S., Kumari P., Ray E., Ghosh B., Biswas S. Curcumin-Loaded Chitosan–Cholesterol Micelles: Evaluation in Monolayers and 3D Cancer Spheroid Model. Nanomedicine. 2017;12:1435–1453. doi: 10.2217/nnm-2017-0036. PubMed DOI

Shaikh V.A.E., Lonikar S.V., Dhobale D.A., Pawar G.M. Cholesterol-Linked β-Cyclodextrin—A Thermotropic Liquid-Crystalline Derivative. Bull. Chem. Soc. Jpn. 2007;80:1975–1980. doi: 10.1246/bcsj.80.1975. DOI

Mok Z.H. The Effect of Particle Size on Drug Bioavailability in Various Parts of the Body. Pharm. Sci. Adv. 2024;2:100031. doi: 10.1016/j.pscia.2023.100031. DOI

Bommana M.M., Raut S. Nanostructures for the Engineering of Cells, Tissues and Organs. Elsevier; Amsterdam, The Netherlands: 2018. Brain Targeting of Payload Using Mild Magnetic Field; pp. 167–185.

Tang L., Yang X., Yin Q., Cai K., Wang H., Chaudhury I., Yao C., Zhou Q., Kwon M., Hartman J.A., et al. Investigating the Optimal Size of Anticancer Nanomedicine. Proc. Natl. Acad. Sci. USA. 2014;111:15344–15349. doi: 10.1073/pnas.1411499111. PubMed DOI PMC

Krabicová I., Appleton S.L., Tannous M., Hoti G., Caldera F., Rubin Pedrazzo A., Cecone C., Cavalli R., Trotta F. History of Cyclodextrin Nanosponges. Polymers. 2020;12:1122. doi: 10.3390/polym12051122. PubMed DOI PMC

Hao X., Sun X., Zhu H., Xie L., Wang X., Jiang N., Fu P., Sang M. Hydroxypropyl-β-Cyclodextrin-Complexed Resveratrol Enhanced Antitumor Activity in a Cervical Cancer Model: In Vivo Analysis. Front. Pharmacol. 2021;12:573909. doi: 10.3389/fphar.2021.573909. PubMed DOI PMC

Zhang W., Zhang R., Chang Z., Wang X. Resveratrol Activates CD8+ T Cells through IL-18 Bystander Activation in Lung Adenocarcinoma. Front. Pharmacol. 2022;13:1031438. doi: 10.3389/fphar.2022.1031438. PubMed DOI PMC

Ansari K.A., Vavia P.R., Trotta F., Cavalli R. Cyclodextrin-Based Nanosponges for Delivery of Resveratrol: In Vitro Characterisation, Stability, Cytotoxicity and Permeation Study. AAPS PharmSciTech. 2011;12:279–286. doi: 10.1208/s12249-011-9584-3. PubMed DOI PMC

Misiak P., Markiewicz K.H., Szymczuk D., Wilczewska A.Z. Polymeric Drug Delivery Systems Bearing Cholesterol Moieties: A Review. Polymers. 2020;12:2620. doi: 10.3390/polym12112620. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...