Leveraging Cholesterol-Functionalized Cyclodextrin Nanosponges for Enhanced Drug Delivery in Cancer Cells
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000843
Ministry of Education, Youth and Sports, Czech Republic
LM2023066
Ministry of Education, Youth and Sports, Czech Republic
PubMed
39940979
PubMed Central
PMC11818590
DOI
10.3390/ijms26031213
PII: ijms26031213
Knihovny.cz E-zdroje
- Klíčová slova
- cholesterol, crosslinked polymer, drug delivery, functionalization, nanosponge,
- MeSH
- biologická dostupnost MeSH
- buňky 3T3 MeSH
- cholesterol * chemie MeSH
- cyklodextriny * chemie MeSH
- imidazoly chemie MeSH
- lékové transportní systémy * metody MeSH
- lidé MeSH
- MFC-7 buňky MeSH
- myši MeSH
- nádory prsu * farmakoterapie patologie MeSH
- nanostruktury * chemie MeSH
- příprava léků metody MeSH
- protinádorové látky aplikace a dávkování farmakokinetika MeSH
- resveratrol * aplikace a dávkování farmakokinetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cholesterol * MeSH
- cyklodextriny * MeSH
- imidazoly MeSH
- N,N-carbonyldiimidazole MeSH Prohlížeč
- protinádorové látky MeSH
- resveratrol * MeSH
Cholesterol, the essential building block of cellular membranes, has proven to be a useful tool for increasing the biocompatibility and bioavailability of drug delivery systems in cancer treatment. Resveratrol, a natural polyphenolic compound with promising anticancer properties, faces significant limitations due to its low solubility and bioavailability, hindering its clinical utility. Therefore, in the present study, we aimed to design cholesterol-functionalized cyclodextrin nanosponges (Chol-NSs) with a tunable cholesterol content to optimize resveratrol encapsulation and delivery. Both formulations, free carbonyl diimidazole (CDI) NSs and functionalized Chol-NSs, demonstrated high drug loading and encapsulation efficiency. In vitro experiments revealed that cholesterol incorporation significantly improved the cellular uptake of nanocarriers and potentiated the cytotoxic effects of resveratrol on breast cancer cells. Importantly, both free CDI NSs and functionalized Chol-NSs, even at varying cholesterol percentages, demonstrated a safe profile against both fibroblast and breast cancer cell lines. These results indicate that cholesterol-functionalized nanosponges represent a promising platform for the effective and safe delivery of natural compounds in cancer therapy.
Candiolo Cancer Institute FPO IRCCS 10060 Candiolo Italy
Department of Chemistry University of Turin 10125 Turin Italy
Department of Oncology University of Torino 10060 Candiolo Italy
Institute of Genetic and Biomedical Research 20139 Milan Italy
Zobrazit více v PubMed
Crini G. Review: A History of Cyclodextrins. Chem. Rev. 2014;114:10940–10975. doi: 10.1021/cr500081p. PubMed DOI
Ioele G., De Luca M., Garofalo A., Ragno G. Photosensitive Drugs: A Review on Their Photoprotection by Liposomes and Cyclodextrins. Drug Deliv. 2017;24:33–44. doi: 10.1080/10717544.2017.1386733. PubMed DOI PMC
Mousazadeh H., Pilehvar-Soltanahmadi Y., Dadashpour M., Zarghami N. Cyclodextrin Based Natural Nanostructured Carbohydrate Polymers as Effective Non-Viral siRNA Delivery Systems for Cancer Gene Therapy. J. Control. Release. 2021;330:1046–1070. doi: 10.1016/j.jconrel.2020.11.011. PubMed DOI
Rubin Pedrazzo A., Caldera F., Zanetti M., Appleton S.L., Dhakar N.K., Trotta F. Mechanochemical Green Synthesis of Hyper-Crosslinked Cyclodextrin Polymers. Beilstein J. Org. Chem. 2020;16:1554–1563. doi: 10.3762/bjoc.16.127. PubMed DOI PMC
Wang J., Yang X.-Q., Li N., Wang L.-L., Xu X.-Y., Zhang C. A Cyclodextrin-Based Turn-off Fluorescent Probe for Naked-Eye Detection of Copper Ions in Aqueous Solution. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2023;287:122069. doi: 10.1016/j.saa.2022.122069. PubMed DOI
Khazaei Monfared Y., Mahmoudian M., Caldera F., Pedrazzo A.R., Zakeri-Milani P., Matencio A., Trotta F. Nisin Delivery by Nanosponges Increases Its Anticancer Activity against In-Vivo Melanoma Model. J. Drug Deliv. Sci. Technol. 2023;79:104065. doi: 10.1016/j.jddst.2022.104065. DOI
Khazaei Monfared Y., Mahmoudian M., Cecone C., Caldera F., Zakeri-Milani P., Matencio A., Trotta F. Stabilization and Anticancer Enhancing Activity of the Peptide Nisin by Cyclodextrin-Based Nanosponges against Colon and Breast Cancer Cells. Polymers. 2022;14:594. doi: 10.3390/polym14030594. PubMed DOI PMC
Monfared Y.K., Pedrazzo A.R., Mahmoudian M., Caldera F., Zakeri-Milani P., Valizadeh H., Cavalli R., Matencio A., Trotta F. Oral Supplementation of Solvent-Free Kynurenic Acid/Cyclodextrin Nanosponges Complexes Increased Its Bioavailability. Colloids Surf. B Biointerfaces. 2023;222:113101. doi: 10.1016/j.colsurfb.2022.113101. PubMed DOI
Daga M., Ullio C., Argenziano M., Dianzani C., Cavalli R., Trotta F., Ferretti C., Zara G.P., Gigliotti C.L., Ciamporcero E.S., et al. GSH-Targeted Nanosponges Increase Doxorubicin-Induced Toxicity “in Vitro” and “in Vivo” in Cancer Cells with High Antioxidant Defenses. Free Radic. Biol. Med. 2016;97:24–37. doi: 10.1016/j.freeradbiomed.2016.05.009. PubMed DOI
Rao M.R.P., Chaudhari J., Trotta F., Caldera F. Investigation of Cyclodextrin-Based Nanosponges for Solubility and Bioavailability Enhancement of Rilpivirine. Aaps Pharmscitech. 2018;19:2358–2369. doi: 10.1208/s12249-018-1064-6. PubMed DOI
Trotta F., Cavalli R. Characterization and Applications of New Hyper-Cross-Linked Cyclodextrins. Compos. Interfaces. 2009;16:39–48. doi: 10.1163/156855408X379388. DOI
Mognetti B., Barberis A., Marino S., Berta G., Francia S., Trotta F., Cavalli R. In Vitro Enhancement of Anticancer Activity of Paclitaxel by a Cremophor Free Cyclodextrin-Based Nanosponge Formulation. J. Incl. Phenom. Macrocycl. Chem. 2012;74:201–210. doi: 10.1007/s10847-011-0101-9. DOI
Trotta F., Dianzani C., Caldera F., Mognetti B., Cavalli R. The Application of Nanosponges to Cancer Drug Delivery. Expert Opin. Drug Deliv. 2014;11:931–941. doi: 10.1517/17425247.2014.911729. PubMed DOI
Olteanu A.A., Aramă C.-C., Radu C., Mihăescu C., Monciu C.-M. Effect of β-Cyclodextrins Based Nanosponges on the Solubility of Lipophilic Pharmacological Active Substances (Repaglinide) J. Incl. Phenom. Macrocycl. Chem. 2014;80:17–24. doi: 10.1007/s10847-014-0406-6. DOI
Rao M.R.P., Shirsath C. Enhancement of Bioavailability of Non-Nucleoside Reverse Transciptase Inhibitor Using Nanosponges. AAPS PharmSciTech. 2017;18:1728–1738. doi: 10.1208/s12249-016-0636-6. PubMed DOI
Zainuddin R., Zaheer Z., Sangshetti J.N., Momin M. Enhancement of Oral Bioavailability of Anti-HIV Drug Rilpivirine HCl through Nanosponge Formulation. Drug Dev. Ind. Pharm. 2017;43:2076–2084. doi: 10.1080/03639045.2017.1371732. PubMed DOI
Olim F., Neves A.R., Vieira M., Tomás H., Sheng R. Self-Assembly of Cholesterol-Doxorubicin and TPGS into Prodrug-Based Nanoparticles with Enhanced Cellular Uptake and Lysosome-Dependent Pathway in Breast Cancer Cells. Eur. J. Lipid Sci. Technol. 2021;123:2000337. doi: 10.1002/ejlt.202000337. DOI
Misiak P., Niemirowicz-Laskowska K., Markiewicz K.H., Wielgat P., Kurowska I., Czarnomysy R., Misztalewska-Turkowicz I., Car H., Bielawski K., Wilczewska A.Z. Doxorubicin-Loaded Polymeric Nanoparticles Containing Ketoester-Based Block and Cholesterol Moiety as Specific Vehicles to Fight Estrogen-Dependent Breast Cancer. Cancer Nanotechnol. 2023;14:23. doi: 10.1186/s12645-023-00176-9. DOI
Singh P., Ren X., Guo T., Wu L., Shakya S., He Y., Wang C., Maharjan A., Singh V., Zhang J. Biofunctionalization of β-Cyclodextrin Nanosponges Using Cholesterol. Carbohydr. Polym. 2018;190:23–30. doi: 10.1016/j.carbpol.2018.02.044. PubMed DOI
Chen C.-J., Wang J.-C., Zhao E.-Y., Gao L.-Y., Feng Q., Liu X.-Y., Zhao Z.-X., Ma X.-F., Hou W.-J., Zhang L.-R., et al. Self-Assembly Cationic Nanoparticles Based on Cholesterol-Grafted Bioreducible Poly(Amidoamine) for siRNA Delivery. Biomaterials. 2013;34:5303–5316. doi: 10.1016/j.biomaterials.2013.03.056. PubMed DOI
Kim W.J., Chang C.-W., Lee M., Kim S.W. Efficient siRNA Delivery Using Water Soluble Lipopolymer for Anti-Angiogenic Gene Therapy. J. Control. Release. 2007;118:357–363. doi: 10.1016/j.jconrel.2006.12.026. PubMed DOI
Misiak P., Niemirowicz-Laskowska K., Markiewicz K.H., Misztalewska-Turkowicz I., Wielgat P., Kurowska I., Siemiaszko G., Destarac M., Car H., Wilczewska A.Z. Evaluation of Cytotoxic Effect of Cholesterol End-Capped Poly(N-Isopropylacrylamide)s on Selected Normal and Neoplastic Cells. Int. J. Nanomed. 2020;15:7263–7278. doi: 10.2147/IJN.S262582. PubMed DOI PMC
Auzély-Velty R., Djedaïni-Pilard F., Désert S., Perly B., Zemb T. Micellization of Hydrophobically Modified Cyclodextrins. 1. Micellar Structure. Langmuir. 2000;16:3727–3734. doi: 10.1021/la991361z. DOI
Klaus A., Fajolles C., Bauer M., Collot M., Mallet J.-M., Daillant J. Amphiphilic Behavior and Membrane Solubility of a Dicholesteryl-Cyclodextrin. Langmuir. 2011;27:7580–7586. doi: 10.1021/la200863c. PubMed DOI
Wang T., Chipot C., Shao X., Cai W. Structural Characterization of Micelles Formed of Cholesteryl-Functionalized Cyclodextrins. Langmuir. 2011;27:91–97. doi: 10.1021/la103288j. PubMed DOI
Singh V., Guo T., Xu H., Wu L., Gu J., Wu C., Gref R., Zhang J. Moisture Resistant and Biofriendly CD-MOF Nanoparticles Obtained via Cholesterol Shielding. Chem. Commun. 2017;53:9246–9249. doi: 10.1039/C7CC03471G. PubMed DOI
López-Valverde N., López-Valverde A., Montero J., Rodríguez C., Macedo de Sousa B., Aragoneses J.M. Antioxidant, Anti-Inflammatory and Antimicrobial Activity of Natural Products in Periodontal Disease: A Comprehensive Review. Front. Bioeng. Biotechnol. 2023;11:1226907. doi: 10.3389/fbioe.2023.1226907. PubMed DOI PMC
Larik M.O., Ahmed A., Khan L., Iftekhar M.A. Effects of Resveratrol on Polycystic Ovarian Syndrome: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Endocrine. 2023;83:51–59. doi: 10.1007/s12020-023-03479-4. PubMed DOI
Yang Q., Meng D., Zhang Q., Wang J. Advances in the Role of Resveratrol and Its Mechanism of Action in Common Gynecological Tumors. Front. Pharmacol. 2024;15:1–17. doi: 10.3389/fphar.2024.1417532. PubMed DOI PMC
Xu X.-L., Deng S.-L., Lian Z.-X., Yu K. Resveratrol Targets a Variety of Oncogenic and Oncosuppressive Signaling for Ovarian Cancer Prevention and Treatment. Antioxidants. 2021;10:1718. doi: 10.3390/antiox10111718. PubMed DOI PMC
Tang H., Wen J., Qin T., Chen Y., Huang J., Yang Q., Jiang P., Wang L., Zhao Y., Yang Q. New Insights into Sirt1: Potential Therapeutic Targets for the Treatment of Cerebral Ischemic Stroke. Front. Cell. Neurosci. 2023;17:1228761. doi: 10.3389/fncel.2023.1228761. PubMed DOI PMC
Chandrasekaran V., Hediyal T.A., Anand N., Kendaganna P.H., Gorantla V.R., Mahalakshmi A.M., Ghanekar R.K., Yang J., Sakharkar M.K., Chidambaram S.B. Polyphenols, Autophagy and Neurodegenerative Diseases: A Review. Biomolecules. 2023;13:1196. doi: 10.3390/biom13081196. PubMed DOI PMC
Guo S., Chen M., Li S., Geng Z., Jin Y., Liu D. Natural Products Treat Colorectal Cancer by Regulating miRNA. Pharmaceuticals. 2023;16:1122. doi: 10.3390/ph16081122. PubMed DOI PMC
Roshani M., Jafari A., Loghman A., Sheida A.H., Taghavi T., Tamehri Zadeh S.S., Hamblin M.R., Homayounfal M., Mirzaei H. Applications of Resveratrol in the Treatment of Gastrointestinal Cancer. Biomed. Pharmacother. 2022;153:113274. doi: 10.1016/j.biopha.2022.113274. PubMed DOI
Badawi J.K. Resveratrol Used as Nanotherapeutic: A Promising Additional Therapeutic Tool against Hormone-Sensitive, Hormone-Insensitive and Resistant Prostate Cancer. Am. J. Clin. Exp. Urol. 2023;11:1–11. PubMed PMC
Ahmed H., Abdelraheem A., Salem M., Sabry M., Fekry N., Mohamed F., Saber A., Piatti D., Sabry M., Sabry O., et al. Suppression of Breast Cancer: Modulation of Estrogen Receptor and Downregulation of Gene Expression Using Natural Products. Nat. Prod. Res. 2023;38:1997–2006. doi: 10.1080/14786419.2023.2232926. PubMed DOI
Alaouna M., Penny C., Hull R., Molefi T., Chauke-Malinga N., Khanyile R., Makgoka M., Bida M., Dlamini Z. Overcoming the Challenges of Phytochemicals in Triple Negative Breast Cancer Therapy: The Path Forward. Plants. 2023;12:2350. doi: 10.3390/plants12122350. PubMed DOI PMC
Kowsari H., Davoodvandi A., Dashti F., Mirazimi S.M.A., Bahabadi Z.R., Aschner M., Sahebkar A., Gilasi H.R., Hamblin M.R., Mirzaei H. Resveratrol in Cancer Treatment with a Focus on Breast Cancer. Curr. Mol. Pharmacol. 2023;16:346–361. doi: 10.2174/1874467215666220616145216. PubMed DOI
Choi I., Li N., Zhong Q. Enhancing Bioaccessibility of Resveratrol by Loading in Natural Porous Starch Microparticles. Int. J. Biol. Macromol. 2022;194:982–992. doi: 10.1016/j.ijbiomac.2021.11.157. PubMed DOI
Yi J., He Q., Peng G., Fan Y. Improved Water Solubility, Chemical Stability, Antioxidant and Anticancer Activity of Resveratrol via Nanoencapsulation with Pea Protein Nanofibrils. Food Chem. 2022;377:131942. doi: 10.1016/j.foodchem.2021.131942. PubMed DOI
Gadag S., Narayan R., Nayak A.S., Catalina Ardila D., Sant S., Nayak Y., Garg S., Nayak U.Y. Development and Preclinical Evaluation of Microneedle-Assisted Resveratrol Loaded Nanostructured Lipid Carriers for Localized Delivery to Breast Cancer Therapy. Int. J. Pharm. 2021;606:120877. doi: 10.1016/j.ijpharm.2021.120877. PubMed DOI PMC
Lee D.G., Lee M., Go E.B., Chung N. Resveratrol-Loaded Gold Nanoparticles Enhance Caspase-Mediated Apoptosis in PANC-1 Pancreatic Cells via Mitochondrial Intrinsic Apoptotic Pathway. Cancer Nanotechnol. 2022;13:34. doi: 10.1186/s12645-022-00143-w. DOI
Thipe V.C., Amiri K.P., Bloebaum P., Karikachery A.R., Khoobchandani M., Katti K.K., Jurisson S.S., Katti K.V. Development of Resveratrol-Conjugated Gold Nanoparticles: Interrelationship of Increased Resveratrol Corona on Anti-Tumor Efficacy against Breast, Pancreatic and Prostate Cancers. Int. J. Nanomed. 2019;14:4413–4428. doi: 10.2147/IJN.S204443. PubMed DOI PMC
Ioniţă S., Lincu D., Mitran R.-A., Ziko L., Sedky N.K., Deaconu M., Brezoiu A.-M., Matei C., Berger D. Resveratrol Encapsulation and Release from Pristine and Functionalized Mesoporous Silica Carriers. Pharmaceutics. 2022;14:203. doi: 10.3390/pharmaceutics14010203. PubMed DOI PMC
Marinheiro D., Ferreira B.J.M.L., Oskoei P., Oliveira H., Daniel-da-Silva A.L. Encapsulation and Enhanced Release of Resveratrol from Mesoporous Silica Nanoparticles for Melanoma Therapy. Materials. 2021;14:1382. doi: 10.3390/ma14061382. PubMed DOI PMC
Das S., Lin H.-S., Ho P.C., Ng K.-Y. The Impact of Aqueous Solubility and Dose on the Pharmacokinetic Profiles of Resveratrol. Pharm. Res. 2008;25:2593–2600. doi: 10.1007/s11095-008-9677-1. PubMed DOI
Dhakar N.K., Matencio A., Caldera F., Argenziano M., Cavalli R., Dianzani C., Zanetti M., Manuel Lopez-Nicolas J., Trotta F. Comparative Evaluation of Solubility, Cytotoxicity and Photostability Studies of Resveratrol and Oxyresveratrol Loaded Nanosponges. Pharmaceutics. 2019;11:545. doi: 10.3390/pharmaceutics11100545. PubMed DOI PMC
Shi Y., Zhou J., Jiang B., Miao M. Resveratrol and Inflammatory Bowel Disease. Ann. N. Y. Acad. Sci. 2017;1403:38–47. doi: 10.1111/nyas.13426. PubMed DOI
Gruber A., Navarro L., Klinger D. Reactive Precursor Particles as Synthetic Platform for the Generation of Functional Nanoparticles, Nanogels, and Microgels. Adv. Mater. Interfaces. 2020;7:1901676. doi: 10.1002/admi.201901676. DOI
Lee A.L.Z., Venkataraman S., Sirat S.B.M., Gao S., Hedrick J.L., Yang Y.Y. The Use of Cholesterol-Containing Biodegradable Block Copolymers to Exploit Hydrophobic Interactions for the Delivery of Anticancer Drugs. Biomaterials. 2012;33:1921–1928. doi: 10.1016/j.biomaterials.2011.11.032. PubMed DOI
Qin Y., Peng X. Synthesis of Biocompatible Cholesteryl–Carboxymethyl Xylan Micelles for Tumor-Targeting Intracellular DOX Delivery. ACS Biomater. Sci. Eng. 2020;6:1582–1589. doi: 10.1021/acsbiomaterials.0c00090. PubMed DOI
Muddineti O.S., Kumari P., Ray E., Ghosh B., Biswas S. Curcumin-Loaded Chitosan–Cholesterol Micelles: Evaluation in Monolayers and 3D Cancer Spheroid Model. Nanomedicine. 2017;12:1435–1453. doi: 10.2217/nnm-2017-0036. PubMed DOI
Shaikh V.A.E., Lonikar S.V., Dhobale D.A., Pawar G.M. Cholesterol-Linked β-Cyclodextrin—A Thermotropic Liquid-Crystalline Derivative. Bull. Chem. Soc. Jpn. 2007;80:1975–1980. doi: 10.1246/bcsj.80.1975. DOI
Mok Z.H. The Effect of Particle Size on Drug Bioavailability in Various Parts of the Body. Pharm. Sci. Adv. 2024;2:100031. doi: 10.1016/j.pscia.2023.100031. DOI
Bommana M.M., Raut S. Nanostructures for the Engineering of Cells, Tissues and Organs. Elsevier; Amsterdam, The Netherlands: 2018. Brain Targeting of Payload Using Mild Magnetic Field; pp. 167–185.
Tang L., Yang X., Yin Q., Cai K., Wang H., Chaudhury I., Yao C., Zhou Q., Kwon M., Hartman J.A., et al. Investigating the Optimal Size of Anticancer Nanomedicine. Proc. Natl. Acad. Sci. USA. 2014;111:15344–15349. doi: 10.1073/pnas.1411499111. PubMed DOI PMC
Krabicová I., Appleton S.L., Tannous M., Hoti G., Caldera F., Rubin Pedrazzo A., Cecone C., Cavalli R., Trotta F. History of Cyclodextrin Nanosponges. Polymers. 2020;12:1122. doi: 10.3390/polym12051122. PubMed DOI PMC
Hao X., Sun X., Zhu H., Xie L., Wang X., Jiang N., Fu P., Sang M. Hydroxypropyl-β-Cyclodextrin-Complexed Resveratrol Enhanced Antitumor Activity in a Cervical Cancer Model: In Vivo Analysis. Front. Pharmacol. 2021;12:573909. doi: 10.3389/fphar.2021.573909. PubMed DOI PMC
Zhang W., Zhang R., Chang Z., Wang X. Resveratrol Activates CD8+ T Cells through IL-18 Bystander Activation in Lung Adenocarcinoma. Front. Pharmacol. 2022;13:1031438. doi: 10.3389/fphar.2022.1031438. PubMed DOI PMC
Ansari K.A., Vavia P.R., Trotta F., Cavalli R. Cyclodextrin-Based Nanosponges for Delivery of Resveratrol: In Vitro Characterisation, Stability, Cytotoxicity and Permeation Study. AAPS PharmSciTech. 2011;12:279–286. doi: 10.1208/s12249-011-9584-3. PubMed DOI PMC
Misiak P., Markiewicz K.H., Szymczuk D., Wilczewska A.Z. Polymeric Drug Delivery Systems Bearing Cholesterol Moieties: A Review. Polymers. 2020;12:2620. doi: 10.3390/polym12112620. PubMed DOI PMC