Texture analysis of cardiovascular MRI native T1 mapping in patients with Duchenne muscular dystrophy
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LX22NPO5104
Programme EXCELES
MUNI/A/1624/2023
Lékařská fakulta, Masarykova univerzita
PubMed
40108628
PubMed Central
PMC11924673
DOI
10.1186/s13023-025-03662-y
PII: 10.1186/s13023-025-03662-y
Knihovny.cz E-zdroje
- Klíčová slova
- Cardiac MRI, Duchenne muscular dystrophy, Radiomics, Texture analysis,
- MeSH
- dítě MeSH
- Duchennova muskulární dystrofie * diagnostické zobrazování patologie MeSH
- gadolinium MeSH
- kontrastní látky MeSH
- lidé MeSH
- magnetická rezonanční tomografie * metody MeSH
- mladiství MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- gadolinium MeSH
- kontrastní látky MeSH
BACKGROUND: Duchenne muscular dystrophy (DMD) patients are monitored periodically for cardiac involvement, including cardiac MRI with gadolinium-based contrast agents (GBCA). Texture analysis (TA) offers an alternative approach to assess late gadolinium enhancement (LGE) without relying on GBCA administration, impacting DMD patients' care. The study aimed to evaluate the prognostic value of selected TA features in the LGE assessment of DMD patients. RESULTS: We developed a pipeline to extract TA features of native T1 parametric mapping and evaluated their prognostic value in assessing LGE in DMD patients. For this evaluation, five independent TA features were selected using Boruta to identify relevant features based on their importance, least absolute shrinkage and selection operator (LASSO) to reduce the number of features, and hierarchical clustering to target multicollinearity and identify independent features. Afterward, logistic regression was used to determine the features with better discrimination ability. The independent feature inverse difference moment normalized (IDMN), which measures the pixel values homogeneity in the myocardium, achieved the highest accuracy in classifying LGE (0.857 (0.572-0.982)) and also was significantly associated with changes in the likelihood of LGE in a subgroup of patients with three yearly examinations (estimate: 23.35 (8.7), p-value = 0.008). Data are presented as mean (SD) or median (IQR) for normally and non-normally distributed continuous variables and numbers (percentages) for categorical ones. Variables were compared with the Welch t-test, Wilcoxon rank-sum, and Chi-square tests. A P-value < 0.05 was considered statistically significant. CONCLUSION: IDMN leverages the information native T1 parametric mapping provides, as it can detect changes in the pixel values of LGE images of DMD patients that may reflect myocardial alterations, serving as a supporting tool to reduce GBCA use in their cardiac MRI examinations.
Zobrazit více v PubMed
Duan D, Goemans N, Takeda Si, Mercuri E, Aartsma-Rus A. Duchenne muscular dystrophy. Nat Reviews Disease Primers. 2021;7(1):13. PubMed PMC
Birnkrant DJ, Bushby K, Bann CM, Alman BA, Apkon SD, Blackwell A, et al. Diagnosis and management of Duchenne muscular dystrophy, part 2: respiratory, cardiac, bone health, and orthopaedic management. Lancet Neurol. 2018;17(4):347–61. PubMed PMC
Buddhe S, Cripe L, Friedland-Little J, Kertesz N, Eghtesady P, Finder J, et al. Cardiac management of the patient with Duchenne muscular dystrophy. Pediatrics. 2018;142(Suppl 2):S72–81. PubMed PMC
Feingold B, Mahle WT, Auerbach S, Clemens P, Domenighetti AA, Jefferies JL, et al. Management of cardiac involvement associated with neuromuscular diseases: A scientific statement from the American heart association. Circulation. 2017;136(13):e200–31. PubMed
Haaf P, Garg P, Messroghli DR, Broadbent DA, Greenwood JP, Plein S. Cardiac T1 mapping and extracellular volume (ECV) in clinical practice: a comprehensive review. J Cardiovasc Magn Reson. 2016;18(1):89. PubMed PMC
Taylor AJ, Salerno M, Dharmakumar R, Jerosch-Herold M. T1 mapping: basic techniques and clinical applications. JACC: Cardiovasc Imaging. 2016;9(1):67–81. PubMed
Puntmann VO, Valbuena S, Hinojar R, Petersen SE, Greenwood JP, Kramer CM, et al. Society for cardiovascular magnetic resonance (SCMR) expert consensus for CMR imaging endpoints in clinical research: part I - analytical validation and clinical qualification. J Cardiovasc Magn Reson. 2018;20(1):67. PubMed PMC
Flett AS, Hasleton J, Cook C, Hausenloy D, Quarta G, Ariti C, et al. Evaluation of techniques for the quantification of myocardial Scar of differing etiology using cardiac magnetic resonance. JACC: Cardiovasc Imaging. 2011;4(2):150–6. PubMed
Guo BJ, Yang ZL, Zhang LJ. Gadolinium deposition in brain: current scientific evidence and future perspectives. Front Mol Neurosci. 2018;11:335. PubMed PMC
McDonald RJ, McDonald JS, Kallmes DF, Jentoft ME, Murray DL, Thielen KR, et al. Intracranial gadolinium deposition after Contrast-enhanced. MR Imaging. 2015;275(3):772–82. PubMed
Zaki N, Parra D, Wells Q, Chew JD, George-Durrett K, Pruthi S, Soslow J. Assessment of gadolinium deposition in the brain tissue of pediatric and adult congenital heart disease patients after contrast enhanced cardiovascular magnetic resonance. J Cardiovasc Magn Resonance: Official J Soc Cardiovasc Magn Reson. 2020;22(1):82. PubMed PMC
Valsangiacomo Buechel ER, Grosse-Wortmann L, Fratz S, Eichhorn J, Sarikouch S, Greil GF, et al. Indications for cardiovascular magnetic resonance in children with congenital and acquired heart disease: an expert consensus paper of the imaging working group of the AEPC and the cardiovascular magnetic resonance section of the EACVI. Eur Heart J - Cardiovasc Imaging. 2015;16(3):281–97. PubMed
Kali A, Cokic I, Tang RL, Yang HJ, Sharif B, Marbán E, et al. Determination of location, size, and transmurality of chronic myocardial infarction without exogenous contrast media by using cardiac magnetic resonance imaging at 3 T. Circ Cardiovasc Imaging. 2014;7(3):471–81. PubMed PMC
Ozkok SO. Abdullah. Contrast-induced acute kidney injury: A review of practical points. World J Nephrol. 2017;6(3):14. PubMed PMC
Le Fur M, Caravan P. The biological fate of gadolinium-based MRI contrast agents: a call to action for bioinorganic chemists. Metallomics. 2019;11(2):240–54. PubMed PMC
Ramalho J, Semelka RC, Ramalho M, Nunes RH, AlObaidy M, Castillo M. Gadolinium-Based contrast agent accumulation and toxicity: an update. AJNR Am J Neuroradiol. 2016;37(7):1192–8. PubMed PMC
Bruder O, Schneider S, Nothnagel D, Pilz G, Lombardi M, Sinha A, et al. Acute adverse reactions to Gadolinium-Based contrast agents in CMR: multicenter experience with 17,767 patients from the EuroCMR registry. JACC: Cardiovasc Imaging. 2011;4(11):1171–6. PubMed
Raucci FJ, Xu M, George-Durrett K, Crum K, Slaughter JC, Parra DA, et al. Non-contrast cardiovascular magnetic resonance detection of myocardial fibrosis in Duchenne muscular dystrophy. J Cardiovasc Magn Reson. 2021;23(1):48. PubMed PMC
Kutluk MG, Doğan ÇS. Kidney involvement and associated risk factors in children with Duchenne muscular dystrophy. Pediatr Nephrol. 2020;35(10):1953–8. PubMed
Lang SM, Alsaied T, Moore RA, Rattan M, Ryan TD, Taylor MD. Conservative gadolinium administration to patients with Duchenne muscular dystrophy: decreasing exposure, cost, and time, without change in medical management. Int J Cardiovasc Imaging. 2019;35(12):2213–9. PubMed
Motoki T, Shimizu-Motohashi Y, Saito I, Komaki H, Ishiyama A, Aibara K, et al. Renal dysfunction can occur in advanced-stage Duchenne muscular dystrophy. Muscle Nerve. 2020;61(2):192–7. PubMed
Ng M, Mark LKF, Fatimah L. Management of difficult intravenous access: a qualitative review. World J Emerg Med. 2022;13(6):467–78. PubMed PMC
Zhang Q, Burrage MK, Shanmuganathan M, Gonzales RA, Lukaschuk E, Thomas KE, et al. Artificial intelligence for Contrast-Free MRI: Scar assessment in myocardial infarction using deep Learning–Based virtual native enhancement. Circulation. 2022;146(20):1492–503. PubMed PMC
Castellano G, Bonilha L, Li LM, Cendes F. Texture analysis of medical images. Clin Radiol. 2004;59(12):1061–9. PubMed
Hassani C, Saremi F, Varghese BA, Duddalwar V. Myocard Radiomics Cardiac MRI. 2020;214(3):536–45. PubMed
MacKay JW, Murray PJ, Kasmai B, Johnson G, Donell ST, Toms AP. MRI texture analysis of subchondral bone at the tibial plateau. Eur Radiol. 2016;26(9):3034–45. PubMed
Huang S, Shi K, Zhang Y, Yan W-F, Guo Y-K, Li Y, Yang Z-G. Texture analysis of T2-weighted cardiovascular magnetic resonance imaging to discriminate between cardiac amyloidosis and hypertrophic cardiomyopathy. BMC Cardiovasc Disord. 2022;22(1):235. PubMed PMC
Baessler B, Luecke C, Lurz J, Klingel K, Roeder Mv W, Sd et al. Cardiac MRI texture analysis of T1 and T2 maps in patients with infarctlike acute myocarditis. Radiology. 2018;289(2):357–65. PubMed
Antonopoulos AS, Boutsikou M, Simantiris S, Angelopoulos A, Lazaros G, Panagiotopoulos I, et al. Machine learning of native T1 mapping radiomics for classification of hypertrophic cardiomyopathy phenotypes. Sci Rep. 2021;11(1):23596. PubMed PMC
Cheng S, Fang M, Cui C, Chen X, Yin G, Prasad SK, et al. LGE-CMR-derived texture features reflect poor prognosis in hypertrophic cardiomyopathy patients with systolic dysfunction: preliminary results. Eur Radiol. 2018;28(11):4615–24. PubMed
Marfisi D, Tessa C, Marzi C, Del Meglio J, Linsalata S, Borgheresi R, et al. Image resampling and discretization effect on the estimate of myocardial radiomic features from T1 and T2 mapping in hypertrophic cardiomyopathy. Sci Rep. 2022;12(1):10186. PubMed PMC
Neisius U, El-Rewaidy H, Kucukseymen S, Tsao CW, Mancio J, Nakamori S et al. Texture signatures of native myocardial T1 as novel imaging markers for identification of hypertrophic cardiomyopathy patients without scar. J Magn Reson Imaging. 2020;52(3):906–19. PubMed PMC
Shao X-N, Sun Y-J, Xiao K-T, Zhang Y, Zhang W-B, Kou Z-F, Cheng J-L. Texture analysis of magnetic resonance T1 mapping with dilated cardiomyopathy: A machine learning approach. Medicine (Baltimore). 2018;97(37):e12246. PubMed PMC
Baessler B, Luecke C, Lurz J, Klingel K, Das A, von Roeder M et al. Cardiac MRI and texture analysis of myocardial T1 and T2 maps in myocarditis with acute versus chronic symptoms of heart failure. Radiology. 2019;292(3):608–17. PubMed
Peng F, Zheng T, Tang X, Liu Q, Sun Z, Feng Z, et al. Magnetic resonance texture analysis in myocardial infarction. Front Cardiovasc Med. 2021;8:724271. PubMed PMC
Mannil M, Kato K, Manka R, von Spiczak J, Peters B, Cammann VL, et al. Prognostic value of texture analysis from cardiac magnetic resonance imaging in patients with Takotsubo syndrome: a machine learning based proof-of-principle approach. Sci Rep. 2020;10(1):20537. PubMed PMC
Raisi-Estabragh Z, Izquierdo C, Campello VM, Martin-Isla C, Jaggi A, Harvey NC, et al. Cardiac magnetic resonance radiomics: basic principles and clinical perspectives. Eur Heart J Cardiovasc Imaging. 2020;21(4):349–56. PubMed PMC
Ho DE, Imai K, King G, Stuart EA. MatchIt: nonparametric preprocessing for parametric causal inference. J Stat Softw. 2011;42(8):1–28.
Hansen BB. Full matching in an observational study of coaching for the SAT. J Am Stat Assoc. 2004;99(467):609–18.
Parent Project Czech Republic. [ Available from: https://www.parentproject.cz
Stehlíková K, Skálová D, Zídková J, Haberlová J, Voháňka S, Mazanec R et al. Muscular dystrophies and myopathies: the spectrum of mutated genes in the Czech Republic. Clin Genet. 2017;91(3):463–9. PubMed
Vry J, Gramsch K, Rodger S, Thompson R, Steffensen BF, Rahbek J, et al. European Cross-Sectional Survey of Current Care Practices for Duchenne Muscular Dystrophy Reveals Regional and Age-Dependent Differences. Journal of Neuromuscular Diseases. 2016;3:517– 27. PubMed PMC
Panovský R, Pešl M, Holeček T, Máchal J, Feitová V, Mrázová L, et al. Cardiac profile of the Czech population of Duchenne muscular dystrophy patients: a cardiovascular magnetic resonance study with T1 mapping. Orphanet J Rare Dis. 2019;14(1):10. PubMed PMC
Panovský R, Pešl M, Máchal J, Holeček T, Feitová V, Juříková L, et al. Quantitative assessment of left ventricular longitudinal function and myocardial deformation in Duchenne muscular dystrophy patients. Orphanet J Rare Dis. 2021;16(1):57. PubMed PMC
Schulz-Menger J, Bluemke DA, Bremerich J, Flamm SD, Fogel MA, Friedrich MG, et al. Standardized image interpretation and post-processing in cardiovascular magnetic resonance– 2020 update. J Cardiovasc Magn Reson. 2020;22(1):19. PubMed PMC
van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V, et al. Computational radiomics system to Decode the radiographic phenotype. Cancer Res. 2017;77(21):e104–7. PubMed PMC
Collewet G, Strzelecki M, Mariette F. Influence of MRI acquisition protocols and image intensity normalization methods on texture classification. Magn Reson Imaging. 2004;22(1):81–91. PubMed
Baeßler B, Mannil M, Maintz D, Alkadhi H, Manka R. Texture analysis and machine learning of non-contrast T1-weighted MR images in patients with hypertrophic cardiomyopathy—Preliminary results. Eur J Radiol. 2018;102:61–7. PubMed
Kursa MB, Rudnicki WR. Feature selection with the Boruta package. J Stat Softw. 2010;36(11):1–13.
Tibshirani R. Regression shrinkage and selection via the Lasso: A retrospective. J Royal Stat Soc Ser B: Stat Methodol. 2011;73(3):273–82.
Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med. 2016;15(2):155–63. PubMed PMC
R Core Team. R: A Language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2023.
Kosmidis I, Firth D. Jeffreys-prior penalty, finiteness and shrinkage in binomial-response generalized linear models. Biometirka. 2021;108(1):71–82.
Kuhn M. Building predictive models in R using the caret package. J Stat Softw. 2008;28(5):1–26. PubMed
Friedman J, Tibshirani R, Hastie T. Regularization paths for generalized linear models via coordinate descent. J Stat Softw. 2010;33(1):1–22. PubMed PMC
Tay JK, Narasimhan B, Hastie T. Elastic net regularization paths for all generalized linear models. J Stat Softw. 2023;106(1):1–31. PubMed PMC
Wolak ME, Fairbairn DJ, Paulsen YR. Guidelines for estimating repeatability. Methods Ecol Evol. 2012;3(1):129–37.
Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez J-C, Müller M. pROC: an open-source package for R and S + to analyze and compare ROC curves. BMC Bioinformatics. 2011;12:77. PubMed PMC
El-Rewaidy H, Neisius U, Nakamori S, Ngo L, Rodriguez J, Manning WJ, Nezafat R. Characterization of interstitial diffuse fibrosis patterns using texture analysis of myocardial native T1 mapping. PLoS ONE. 2020;15(6):e0233694. PubMed PMC
Maforo NG, Magrath P, Moulin K, Shao J, Kim GH, Prosper A, et al. T1-Mapping and extracellular volume estimates in pediatric subjects with Duchenne muscular dystrophy and healthy controls at 3T. J Cardiovasc Magn Reson. 2020;22(1):85. PubMed PMC
Olivieri LJ, Kellman P, McCarter RJ, Cross RR, Hansen MS, Spurney CF. Native T1 values identify myocardial changes and stratify disease severity in patients with Duchenne muscular dystrophy. J Cardiovasc Magn Reson. 2016;18(1):72. PubMed PMC
Soslow JH, Damon SM, Crum K, Lawson MA, Slaughter JC, Xu M, et al. Increased myocardial native T1 and extracellular volume in patients with Duchenne muscular dystrophy. J Cardiovasc Magn Reson. 2016;18(1):5. PubMed PMC
Xu K, Xu H-y, Xu R, Xie L-j, Yang Z-g, Yu L, et al. Global, segmental and layer specific analysis of myocardial involvement in Duchenne muscular dystrophy by cardiovascular magnetic resonance native T1 mapping. J Cardiovasc Magn Reson. 2021;23(1):110. PubMed PMC
Lang SM, Alsaied T, Khoury PR, Ryan TD, Taylor MD. Variations in native T1 values in patients with Duchenne muscular dystrophy with and without late gadolinium enhancement. Int J Cardiovasc Imaging. 2021;37(2):635–42. PubMed
Hor KN, Taylor MD, Al-Khalidi HR, Cripe LH, Raman SV, Jefferies JL, et al. Prevalence and distribution of late gadolinium enhancement in a large population of patients with Duchenne muscular dystrophy: effect of age and left ventricular systolic function. J Cardiovasc Magn Reson. 2013;15(1):107. PubMed PMC