Nanopaper as an Optical Sensing Platform
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26135050
DOI
10.1021/acsnano.5b03097
Knihovny.cz E-zdroje
- Klíčová slova
- biosensing, composite, nanocellulose, optical sensors, photoluminescent devices, plasmonic devices,
- MeSH
- absorpce radiace MeSH
- biosenzitivní techniky přístrojové vybavení MeSH
- celulosa chemie MeSH
- kovové nanočástice chemie MeSH
- kvantové tečky chemie MeSH
- optické jevy MeSH
- optické prostředky * MeSH
- papír * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- celulosa MeSH
Bacterial cellulose nanopaper (BC) is a multifunctional material known for numerous desirable properties: sustainability, biocompatibility, biodegradability, optical transparency, thermal properties, flexibility, high mechanical strength, hydrophilicity, high porosity, broad chemical-modification capabilities and high surface area. Herein, we report various nanopaper-based optical sensing platforms and describe how they can be tuned, using nanomaterials, to exhibit plasmonic or photoluminescent properties that can be exploited for sensing applications. We also describe several nanopaper configurations, including cuvettes, plates and spots that we printed or punched on BC. The platforms include a colorimetric-based sensor based on nanopaper containing embedded silver and gold nanoparticles; a photoluminescent-based sensor, comprising CdSe@ZnS quantum dots conjugated to nanopaper; and a potential up-conversion sensing platform constructed from nanopaper functionalized with NaYF4:Yb(3+)@Er(3+)&SiO2 nanoparticles. We have explored modulation of the plasmonic or photoluminescent properties of these platforms using various model biologically relevant analytes. Moreover, we prove that BC is and advantageous preconcentration platform that facilitates the analysis of small volumes of optically active materials (∼4 μL). We are confident that these platforms will pave the way to optical (bio)sensors or theranostic devices that are simple, transparent, flexible, disposable, lightweight, miniaturized and perhaps wearable.
‡Department of Chemistry College of Science Shahid Chamran University Ahvaz 6135743337 Iran
∥ICREA Institucio Catalana de Recerca i Estudis Avançats Barcelona 08010 Spain
Citace poskytuje Crossref.org