Pursuing the Complexity of Alzheimer's Disease: Discovery of Fluoren-9-Amines as Selective Butyrylcholinesterase Inhibitors and N-Methyl-d-Aspartate Receptor Antagonists

. 2020 Dec 22 ; 11 (1) : . [epub] 20201222

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33375115

Grantová podpora
NU20-08-00296 Agentura Pro Zdravotnický Výzkum České Republiky - International
FVZ201803 Faculty of Military Health Sciences, University of Defence - International
Long-term development plan Faculty of Military Health Sciences, University of Defence - International
00179906 MH CZ - DRO - International
CZ.02.1.01/0.0/0.0/16_025/0007444 European Regional Development Fund: Project "PharmaBrain" - International
INFRA LM2018140 "e-Infrastruktura CZ" - International
SVV 260 547 Charles University - International

Alzheimer's disease (AD) is a complex disorder with unknown etiology. Currently, only symptomatic therapy of AD is available, comprising cholinesterase inhibitors and N-methyl-d-aspartate (NMDA) receptor antagonists. Drugs targeting only one pathological condition have generated only limited efficacy. Thus, combining two or more therapeutic interventions into one molecule is believed to provide higher benefit for the treatment of AD. In the presented study, we designed, synthesized, and biologically evaluated 15 novel fluoren-9-amine derivatives. The in silico prediction suggested both the oral availability and permeation through the blood-brain barrier (BBB). An initial assessment of the biological profile included determination of the cholinesterase inhibition and NMDA receptor antagonism at the GluN1/GluN2A and GluN1/GluN2B subunits, along with a low cytotoxicity profile in the CHO-K1 cell line. Interestingly, compounds revealed a selective butyrylcholinesterase (BChE) inhibition pattern with antagonistic activity on the NMDARs. Their interaction with butyrylcholinesterase was elucidated by studying enzyme kinetics for compound 3c in tandem with the in silico docking simulation. The docking study showed the interaction of the tricyclic core of new derivatives with Trp82 within the anionic site of the enzyme in a similar way as the template drug tacrine. From the kinetic analysis, it is apparent that 3c is a competitive inhibitor of BChE.

Zobrazit více v PubMed

Ferri C.P., Prince M., Brayne C., Brodaty H., Fratiglioni L., Ganguli M., Hall K., Hasegawa K., Hendrie H., Huang Y., et al. Global Prevalence of Dementia: A Delphi Consensus Study. Lancet. 2005;366:2112–2117. doi: 10.1016/S0140-6736(05)67889-0. PubMed DOI PMC

Bondi M.W., Edmonds E.C., Salmon D.P. Alzheimer’s Disease: Past, Present, and Future. J. Int. Neuropsychol. Soc. 2017;23:818–831. doi: 10.1017/S135561771700100X. PubMed DOI PMC

Kirova A.-M., Bays R.B., Lagalwar S. Working Memory and Executive Function Decline across Normal Aging, Mild Cognitive Impairment, and Alzheimer’s Disease. Biomed. Res. Int. 2015;2015:748212. doi: 10.1155/2015/748212. PubMed DOI PMC

Lyketsos C.G., Carrillo M.C., Ryan J.M., Khachaturian A.S., Trzepacz P., Amatniek J., Cedarbaum J., Brashear R., Miller D.S. Neuropsychiatric Symptoms in Alzheimer’s Disease. Alzheimers Dement. 2011;7:532–539. doi: 10.1016/j.jalz.2011.05.2410. PubMed DOI PMC

Weller J., Budson A. Current Understanding of Alzheimer’s Disease Diagnosis and Treatment. F1000Res. 2018;7 doi: 10.12688/f1000research.14506.1. PubMed DOI PMC

Schachter A.S., Davis K.L. Alzheimer’s Disease. Dialogues Clin. Neurosci. 2000;2:91–100. doi: 10.1007/s11940-000-0023-0. PubMed DOI PMC

2020 Alzheimer’s Disease Facts and Figures. Alzheimer’s Dement. 2020;16:391–460. doi: 10.1002/alz.12068. PubMed DOI

Vaz M., Silvestre S. Alzheimer’s Disease: Recent Treatment Strategies. Eur. J. Pharm. 2020;887:173554. doi: 10.1016/j.ejphar.2020.173554. PubMed DOI

Abeysinghe A.A.D.T., Deshapriya R.D.U.S., Udawatte C. Alzheimer’s Disease; a Review of the Pathophysiological Basis and Therapeutic Interventions. Life Sci. 2020;256:117996. doi: 10.1016/j.lfs.2020.117996. PubMed DOI

Goedert M., Crowther R.A. Amyloid Plaques, Neurofibrillary Tangles and Their Relevance for the Study of Alzheimer’s Disease. Neurobiol. Aging. 1989;10 doi: 10.1016/0197-4580(89)90076-6. PubMed DOI

Lewis D.A., Higgins G.A., Young W.G., Goldgaber D., Gajdusek D.C., Wilson M.C., Morrison J.H. Distribution of Precursor Amyloid-Beta-Protein Messenger RNA in Human Cerebral Cortex: Relationship to Neurofibrillary Tangles and Neuritic Plaques. Proc. Natl. Acad. Sci. USA. 1988;85:1691–1695. doi: 10.1073/pnas.85.5.1691. PubMed DOI PMC

Mondragón-Rodríguez S., Basurto-Islas G., Santa-Maria I., Mena R., Binder L.I., Avila J., Smith M.A., Perry G., García-Sierra F. Cleavage and Conformational Changes of Tau Protein Follow Phosphorylation during Alzheimer’s Disease. Int. J. Exp. Pathol. 2008;89:81–90. doi: 10.1111/j.1365-2613.2007.00568.x. PubMed DOI PMC

Mondragón-Rodríguez S., Mena R., Binder L.I., Smith M.A., Perry G., García-Sierra F. Conformational Changes and Cleavage of Tau in Pick Bodies Parallel the Early Processing of Tau Found in Alzheimer Pathology. Neuropathol. Appl. Neurobiol. 2008;34:62–75. doi: 10.1111/j.1365-2990.2007.00853.x. PubMed DOI

Mondragón-Rodríguez S., Perry G., Luna-Muñoz J., Acevedo-Aquino M.C., Williams S. Phosphorylation of Tau Protein at Sites Ser(396-404) Is One of the Earliest Events in Alzheimer’s Disease and Down Syndrome. Neuropathol. Appl. Neurobiol. 2014;40:121–135. doi: 10.1111/nan.12084. PubMed DOI

Davies P., Maloney A.J. Selective Loss of Central Cholinergic Neurons in Alzheimer’s Disease. Lancet. 1976;2:1403. doi: 10.1016/S0140-6736(76)91936-X. PubMed DOI

Sarter M., Bruno J.P. Cognitive Functions of Cortical Acetylcholine: Toward a Unifying Hypothesis. Brain Res. Brain Res. Rev. 1997;23:28–46. doi: 10.1016/S0165-0173(96)00009-4. PubMed DOI

Hasselmo M.E., Anderson B.P., Bower J.M. Cholinergic Modulation of Cortical Associative Memory Function. J. Neurophysiol. 1992;67:1230–1246. doi: 10.1152/jn.1992.67.5.1230. PubMed DOI

Wang R., Reddy P.H. Role of Glutamate and NMDA Receptors in Alzheimer’s Disease. J. Alzheimers Dis. 2017;57:1041–1048. doi: 10.3233/JAD-160763. PubMed DOI PMC

Cheignon C., Tomas M., Bonnefont-Rousselot D., Faller P., Hureau C., Collin F. Oxidative Stress and the Amyloid Beta Peptide in Alzheimer’s Disease. Redox Biol. 2018;14:450–464. doi: 10.1016/j.redox.2017.10.014. PubMed DOI PMC

Butterfield D.A., Lauderback C.M. Lipid Peroxidation and Protein Oxidation in Alzheimer’s Disease Brain: Potential Causes and Consequences Involving Amyloid Beta-Peptide-Associated Free Radical Oxidative Stress. Free Radic. Biol. Med. 2002;32:1050–1060. doi: 10.1016/S0891-5849(02)00794-3. PubMed DOI

Bush A.I., Pettingell W.H., Multhaup G., Paradis M.d., Vonsattel J.P., Gusella J.F., Beyreuther K., Masters C.L., Tanzi R.E. Rapid Induction of Alzheimer A Beta Amyloid Formation by Zinc. Science. 1994;265:1464–1467. doi: 10.1126/science.8073293. PubMed DOI

Bolós M., Perea J.R., Avila J. Alzheimer’s Disease as an Inflammatory Disease. Biomol. Concepts. 2017;8:37–43. doi: 10.1515/bmc-2016-0029. PubMed DOI

Cummings J.L., Tong G., Ballard C. Treatment Combinations for Alzheimer’s Disease: Current and Future Pharmacotherapy Options. J. Alzheimers Dis. 2019;67:779–794. doi: 10.3233/JAD-180766. PubMed DOI PMC

Joe E., Ringman J.M. Cognitive Symptoms of Alzheimer’s Disease: Clinical Management and Prevention. BMJ. 2019;367:l6217. doi: 10.1136/bmj.l6217. PubMed DOI

Zemek F., Drtinova L., Nepovimova E., Sepsova V., Korabecny J., Klimes J., Kuca K. Outcomes of Alzheimer’s Disease Therapy with Acetylcholinesterase Inhibitors and Memantine. Expert Opin. Drug Saf. 2014;13:759–774. doi: 10.1517/14740338.2014.914168. PubMed DOI

Owen R.T. Memantine and Donepezil: A Fixed Drug Combination for the Treatment of Moderate to Severe Alzheimer’s Dementia. Drugs Today. 2016;52:239–248. doi: 10.1358/dot.2016.52.4.2479357. PubMed DOI

Calhoun A., King C., Khoury R., Grossberg G.T. An Evaluation of Memantine ER + Donepezil for the Treatment of Alzheimer’s Disease. Expert Opin. Pharm. 2018;19:1711–1717. doi: 10.1080/14656566.2018.1519022. PubMed DOI

Cavalli A., Bolognesi M.L., Minarini A., Rosini M., Tumiatti V., Recanatini M., Melchiorre C. Multi-Target-Directed Ligands to Combat Neurodegenerative Diseases. J. Med. Chem. 2008;51:347–372. doi: 10.1021/jm7009364. PubMed DOI

Benek O., Korabecny J., Soukup O. A Perspective on Multi-Target Drugs for Alzheimer’s Disease. Trends Pharmacol. Sci. 2020;41:434–445. doi: 10.1016/j.tips.2020.04.008. PubMed DOI

Cummings J.L., Morstorf T., Zhong K. Alzheimer’s Disease Drug-Development Pipeline: Few Candidates, Frequent Failures. Alzheimer’s Res. Ther. 2014;6:37. doi: 10.1186/alzrt269. PubMed DOI PMC

Morphy R., Kay C., Rankovic Z. From Magic Bullets to Designed Multiple Ligands. Drug Discov. Today. 2004;9:641–651. doi: 10.1016/S1359-6446(04)03163-0. PubMed DOI

Proschak E., Stark H., Merk D. Polypharmacology by Design: A Medicinal Chemist’s Perspective on Multitargeting Compounds. J. Med. Chem. 2019;62:420–444. doi: 10.1021/acs.jmedchem.8b00760. PubMed DOI

Jack C.R., Knopman D.S., Jagust W.J., Petersen R.C., Weiner M.W., Aisen P.S., Shaw L.M., Vemuri P., Wiste H.J., Weigand S.D., et al. Tracking Pathophysiological Processes in Alzheimer’s Disease: An Updated Hypothetical Model of Dynamic Biomarkers. Lancet Neurol. 2013;12:207–216. doi: 10.1016/S1474-4422(12)70291-0. PubMed DOI PMC

Panza F., Lozupone M., Watling M., Imbimbo B.P. Do BACE Inhibitor Failures in Alzheimer Patients Challenge the Amyloid Hypothesis of the Disease? Expert Rev. Neurother. 2019;19:599–602. doi: 10.1080/14737175.2019.1621751. PubMed DOI

Kandimalla R., Reddy P.H. Therapeutics of Neurotransmitters in Alzheimer’s Disease. J. Alzheimers Dis. 2017;57:1049–1069. doi: 10.3233/JAD-161118. PubMed DOI PMC

Fitzpatrick-Lewis D., Warren R., Ali M.U., Sherifali D., Raina P. Treatment for Mild Cognitive Impairment: A Systematic Review and Meta-Analysis. CMAJ Open. 2015;3:E419–E427. doi: 10.9778/cmajo.20150057. PubMed DOI PMC

Watkins P.B., Zimmerman H.J., Knapp M.J., Gracon S.I., Lewis K.W. Hepatotoxic Effects of Tacrine Administration in Patients With Alzheimer’s Disease. JAMA. 1994;271:992–998. doi: 10.1001/jama.1994.03510370044030. PubMed DOI

Horak M., Holubova K., Nepovimova E., Krusek J., Kaniakova M., Korabecny J., Vyklicky L., Kuca K., Stuchlik A., Ricny J., et al. The Pharmacology of Tacrine at N-Methyl-d-Aspartate Receptors. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2017;75:54–62. doi: 10.1016/j.pnpbp.2017.01.003. PubMed DOI

Kaniakova M., Kleteckova L., Lichnerova K., Holubova K., Skrenkova K., Korinek M., Krusek J., Smejkalova T., Korabecny J., Vales K., et al. 7-Methoxyderivative of Tacrine Is a “foot-in-the-Door” Open-Channel Blocker of GluN1/GluN2 and GluN1/GluN3 NMDA Receptors with Neuroprotective Activity in Vivo. Neuropharmacology. 2018;140:217–232. doi: 10.1016/j.neuropharm.2018.08.010. PubMed DOI

Vorobjev V.S., Sharonova I.N. Tetrahydroaminoacridine Blocks and Prolongs NMDA Receptor-Mediated Responses in a Voltage-Dependent Manner. Eur. J. Pharmacol. 1994;253:1–8. doi: 10.1016/0014-2999(94)90750-1. PubMed DOI

Nelson M.E., Albuquerque E.X. 9-Aminoacridines Act at a Site Different from That for Mg2+ in Blockade of the N-Methyl-D-Aspartate Receptor Channel. Mol. Pharmacol. 1994;46:151–160. PubMed

Soukup O., Jun D., Zdarova-Karasova J., Patocka J., Musilek K., Korabecny J., Krusek J., Kaniakova M., Sepsova V., Mandikova J., et al. A Resurrection of 7-MEOTA: A Comparison with Tacrine. Curr. Alzheimer Res. 2013;10:893–906. doi: 10.2174/1567205011310080011. PubMed DOI

Choubdar N., Golshani M., Jalili-Baleh L., Nadri H., Küçükkilinç T.T., Ayazgök B., Moradi A., Moghadam F.H., Abdolahi Z., Ameri A., et al. New Classes of Carbazoles as Potential Multi-Functional Anti-Alzheimer’s Agents. Bioorg. Chem. 2019;91:103164. doi: 10.1016/j.bioorg.2019.103164. PubMed DOI

Zhu D., Chen M., Li M., Luo B., Zhao Y., Huang P., Xue F., Rapposelli S., Pi R., Wen S. Discovery of Novel N-Substituted Carbazoles as Neuroprotective Agents with Potent Anti-Oxidative Activity. Eur. J. Med. Chem. 2013;68:81–88. doi: 10.1016/j.ejmech.2013.07.029. PubMed DOI

Crismon M.L. Tacrine: First Drug Approved for Alzheimer’s Disease. Ann. Pharm. 1994;28:744–751. doi: 10.1177/106002809402800612. PubMed DOI

Ellman G.L., Courtney K.D., Andres V., Feather-Stone R.M. A New and Rapid Colorimetric Determination of Acetylcholinesterase Activity. Biochem. Pharm. 1961;7:88–95. doi: 10.1016/0006-2952(61)90145-9. PubMed DOI

Pohanka M., Jun D., Kuca K. Improvement of Acetylcholinesterase-Based Assay for Organophosphates in Way of Identification by Reactivators. Talanta. 2008;77:451–454. doi: 10.1016/j.talanta.2008.06.007. PubMed DOI

Sepsova V., Karasova J.Z., Korabecny J., Dolezal R., Zemek F., Bennion B.J., Kuca K. Oximes: Inhibitors of Human Recombinant Acetylcholinesterase. A Structure-Activity Relationship (SAR) Study. Int. J. Mol. Sci. 2013;14:16882–16900. doi: 10.3390/ijms140816882. PubMed DOI PMC

Skrenkova K., Hemelikova K., Kolcheva M., Kortus S., Kaniakova M., Krausova B., Horak M. Structural Features in the Glycine-Binding Sites of the GluN1 and GluN3A Subunits Regulate the Surface Delivery of NMDA Receptors. Sci. Rep. 2019;9:12303. doi: 10.1038/s41598-019-48845-3. PubMed DOI PMC

Kaniakova M., Lichnerova K., Vyklicky L., Horak M. Single Amino Acid Residue in the M4 Domain of GluN1 Subunit Regulates the Surface Delivery of NMDA Receptors. J. Neurochem. 2012;123:385–395. doi: 10.1111/jnc.12002. PubMed DOI

Vyklicky V., Krausova B., Cerny J., Ladislav M., Smejkalova T., Kysilov B., Korinek M., Danacikova S., Horak M., Chodounska H., et al. Surface Expression, Function, and Pharmacology of Disease-Associated Mutations in the Membrane Domain of the Human GluN2B Subunit. Front. Mol. Neurosci. 2018;11:110. doi: 10.3389/fnmol.2018.00110. PubMed DOI PMC

Gazova Z., Soukup O., Sepsova V., Siposova K., Drtinova L., Jost P., Spilovska K., Korabecny J., Nepovimova E., Fedunova D., et al. Multi-Target-Directed Therapeutic Potential of 7-Methoxytacrine-Adamantylamine Heterodimers in the Alzheimer’s Disease Treatment. Biochim. Et Biophys. Acta (BBA) Mol. Basis Dis. 2017;1863:607–619. doi: 10.1016/j.bbadis.2016.11.020. PubMed DOI

Hemelíková K., Kolcheva M., Skrenkova K., Kaniaková M., Horák M. Lectins Modulate the Functional Properties of GluN1/GluN3-Containing NMDA Receptors. Neuropharmacology. 2019 doi: 10.1016/j.neuropharm.2019.107671. PubMed DOI

Kaniakova M., Nepovimova E., Kleteckova L., Skrenkova K., Holubova K., Chrienova Z., Hepnarova V., Kucera T., Kobrlova T., Vales K., et al. Combination of Memantine and 6-Chlorotacrine as Novel Multi-Target Compound against Alzheimer’s Disease. Curr. Alzheimer Res. 2019;16:821–833. doi: 10.2174/1567205016666190228122218. PubMed DOI

Soukup O., Benkova M., Dolezal R., Sleha R., Malinak D., Salajkova S., Markova A., Hympanova M., Prchal L., Ryskova L., et al. The Wide-Spectrum Antimicrobial Effect of Novel N-Alkyl Monoquaternary Ammonium Salts and Their Mixtures; the QSAR Study against Bacteria. Eur. J. Med. Chem. 2020;206:112584. doi: 10.1016/j.ejmech.2020.112584. PubMed DOI

Nachon F., Carletti E., Ronco C., Trovaslet M., Nicolet Y., Jean L., Renard P.-Y. Crystal Structures of Human Cholinesterases in Complex with Huprine W and Tacrine: Elements of Specificity for Anti-Alzheimer’s Drugs Targeting Acetyl- and Butyryl-Cholinesterase. Biochem. J. 2013;453:393–399. doi: 10.1042/BJ20130013. PubMed DOI

Cheung J., Rudolph M.J., Burshteyn F., Cassidy M.S., Gary E.N., Love J., Franklin M.C., Height J.J. Structures of Human Acetylcholinesterase in Complex with Pharmacologically Important Ligands. J. Med. Chem. 2012;55:10282–10286. doi: 10.1021/jm300871x. PubMed DOI

Spilovska K., Korabecny J., Sepsova V., Jun D., Hrabinova M., Jost P., Muckova L., Soukup O., Janockova J., Kucera T., et al. Novel Tacrine-Scutellarin Hybrids as Multipotent Anti-Alzheimer’s Agents: Design, Synthesis and Biological Evaluation. Molecules. 2017;22:1006. doi: 10.3390/molecules22061006. PubMed DOI PMC

Mezeiova E., Korabecny J., Sepsova V., Hrabinova M., Jost P., Muckova L., Kucera T., Dolezal R., Misik J., Spilovska K., et al. Development of 2-Methoxyhuprine as Novel Lead for Alzheimer’s Disease Therapy. Molecules. 2017;22:1265. doi: 10.3390/molecules22081265. PubMed DOI PMC

Trott O., Olson A.J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization and Multithreading. J. Comput. Chem. 2010;31:455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC

Liu B., Wang L., Jin Y.-H. An Effective PSO-Based Memetic Algorithm for Flow Shop Scheduling. IEEE Trans. Syst. ManCybern. Part B (Cybern.) 2007;37:18–27. doi: 10.1109/TSMCB.2006.883272. PubMed DOI

Daina A., Michielin O., Zoete V. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Sci. Rep. 2017;7:42717. doi: 10.1038/srep42717. PubMed DOI PMC

Gupta M., Lee H.J., Barden C.J., Weaver D.F. The Blood-Brain Barrier (BBB) Score. J. Med. Chem. 2019;62:9824–9836. doi: 10.1021/acs.jmedchem.9b01220. PubMed DOI

Daina A., Michielin O., Zoete V. ILOGP: A Simple, Robust, and Efficient Description of n-Octanol/Water Partition Coefficient for Drug Design Using the GB/SA Approach. J. Chem. Inf. Model. 2014;54:3284–3301. doi: 10.1021/ci500467k. PubMed DOI

Naz A., Iqtadar R., Siddiqui F.A., Ul-Haq Z. Degradation Kinetics of Fluvoxamine in Buffer Solutions: In Silico ADMET Profiling and Identification of Degradation Products by LC-MS/ESI. Arab. J. Chem. 2020;13:4134–4146. doi: 10.1016/j.arabjc.2019.06.001. DOI

Madden S., Spaldin V., Park B.K. Clinical Pharmacokinetics of Tacrine. Clin. Pharm. 1995;28:449–457. doi: 10.2165/00003088-199528060-00003. PubMed DOI

Liu M.-Y., Meng S.-N., Wu H.-Z., Wang S., Wei M.-J. Pharmacokinetics of Single-Dose and Multiple-Dose Memantine in Healthy Chinese Volunteers Using an Analytic Method of Liquid Chromatography-Tandem Mass Spectrometry. Clin. Ther. 2008;30:641–653. doi: 10.1016/j.clinthera.2008.04.005. PubMed DOI

Lipinski C.A. Lead- and Drug-like Compounds: The Rule-of-Five Revolution. Drug Discov. Today Technol. 2004;1:337–341. doi: 10.1016/j.ddtec.2004.11.007. PubMed DOI

Martin Y.C. A Bioavailability Score. J. Med. Chem. 2005;48:3164–3170. doi: 10.1021/jm0492002. PubMed DOI

Daina A., Zoete V. A BOILED-Egg to Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules. ChemMedChem. 2016;11:1117–1121. doi: 10.1002/cmdc.201600182. PubMed DOI PMC

Veber D.F., Johnson S.R., Cheng H.-Y., Smith B.R., Ward K.W., Kopple K.D. Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. J. Med. Chem. 2002;45:2615–2623. doi: 10.1021/jm020017n. PubMed DOI

Bade R., Chan H.-F., Reynisson J. Characteristics of Known Drug Space. Natural Products, Their Derivatives and Synthetic Drugs. Eur. J. Med. Chem. 2010;45:5646–5652. doi: 10.1016/j.ejmech.2010.09.018. PubMed DOI

Egan W.J., Merz K.M., Baldwin J.J. Prediction of Drug Absorption Using Multivariate Statistics. J. Med. Chem. 2000;43:3867–3877. doi: 10.1021/jm000292e. PubMed DOI

Ghose A.K., Viswanadhan V.N., Wendoloski J.J. A Knowledge-Based Approach in Designing Combinatorial or Medicinal Chemistry Libraries for Drug Discovery. 1. A Qualitative and Quantitative Characterization of Known Drug Databases. J. Comb. Chem. 1999;1:55–68. doi: 10.1021/cc9800071. PubMed DOI

Muegge I., Heald S.L., Brittelli D. Simple Selection Criteria for Drug-like Chemical Matter. J. Med. Chem. 2001;44:1841–1846. doi: 10.1021/jm015507e. PubMed DOI

Pohanka M., Karasova J.Z., Kuca K., Pikula J., Holas O., Korabecny J., Cabal J. Colorimetric Dipstick for Assay of Organophosphate Pesticides and Nerve Agents Represented by Paraoxon, Sarin and VX. Talanta. 2010;81:621–624. doi: 10.1016/j.talanta.2009.12.052. PubMed DOI

Nordberg A., Ballard C., Bullock R., Darreh-Shori T., Somogyi M. A Review of Butyrylcholinesterase as a Therapeutic Target in the Treatment of Alzheimer’s Disease. Prim. Care Companion CNS Disord. 2013;15 doi: 10.4088/PCC.12r01412. PubMed DOI PMC

Greig N.H., Utsuki T., Ingram D.K., Wang Y., Pepeu G., Scali C., Yu Q.-S., Mamczarz J., Holloway H.W., Giordano T., et al. Selective Butyrylcholinesterase Inhibition Elevates Brain Acetylcholine, Augments Learning and Lowers Alzheimer Beta-Amyloid Peptide in Rodent. Proc. Natl. Acad. Sci. USA. 2005;102:17213–17218. doi: 10.1073/pnas.0508575102. PubMed DOI PMC

Nepovimova E., Korabecny J., Dolezal R., Babkova K., Ondrejicek A., Jun D., Sepsova V., Horova A., Hrabinova M., Soukup O., et al. Tacrine-Trolox Hybrids: A Novel Class of Centrally Active, Nonhepatotoxic Multi-Target-Directed Ligands Exerting Anticholinesterase and Antioxidant Activities with Low In Vivo Toxicity. J. Med. Chem. 2015;58:8985–9003. doi: 10.1021/acs.jmedchem.5b01325. PubMed DOI

Sobolova K., Hrabinova M., Hepnarova V., Kucera T., Kobrlova T., Benkova M., Janockova J., Dolezal R., Prchal L., Benek O., et al. Discovery of Novel Berberine Derivatives with Balanced Cholinesterase and Prolyl Oligopeptidase Inhibition Profile. Eur. J. Med. Chem. 2020;203:112593. doi: 10.1016/j.ejmech.2020.112593. PubMed DOI

Chalupova K., Korabecny J., Bartolini M., Monti B., Lamba D., Caliandro R., Pesaresi A., Brazzolotto X., Gastellier A.-J., Nachon F., et al. Novel Tacrine-Tryptophan Hybrids: Multi-Target Directed Ligands as Potential Treatment for Alzheimer’s Disease. Eur. J. Med. Chem. 2019;168:491–514. doi: 10.1016/j.ejmech.2019.02.021. PubMed DOI

Weksler B., Romero I.A., Couraud P.-O. The HCMEC/D3 Cell Line as a Model of the Human Blood Brain Barrier. Fluids Barriers CNS. 2013;10:16. doi: 10.1186/2045-8118-10-16. PubMed DOI PMC

Wang X., Sun G., Feng T., Zhang J., Huang X., Wang T., Xie Z., Chu X., Yang J., Wang H., et al. Sodium Oligomannate Therapeutically Remodels Gut Microbiota and Suppresses Gut Bacterial Amino Acids-Shaped Neuroinflammation to Inhibit Alzheimer’s Disease Progression. Cell Res. 2019;29:787–803. doi: 10.1038/s41422-019-0216-x. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Cholinesterase Research

. 2021 Jul 30 ; 11 (8) : . [epub] 20210730

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...