Synthesis and in vitro evaluation of N-(Bromobut-3-en-2-yl)-7-methoxy-1,2,3,4-tetrahydroacridin-9-amine as a cholinesterase inhibitor with regard to Alzheimer's disease treatment
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
PubMed
21127466
PubMed Central
PMC6259100
DOI
10.3390/molecules15128804
PII: molecules15128804
Knihovny.cz E-zdroje
- MeSH
- akridiny chemická syntéza chemie farmakologie MeSH
- Alzheimerova nemoc farmakoterapie enzymologie MeSH
- butyrylcholinesterasa chemie farmakologie MeSH
- cholinesterasové inhibitory chemická syntéza chemie farmakologie MeSH
- cholinesterasy chemie MeSH
- heterocyklické sloučeniny tricyklické chemická syntéza chemie farmakologie MeSH
- lidé MeSH
- preklinické hodnocení léčiv MeSH
- takrin chemie farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- akridiny MeSH
- butyrylcholinesterasa MeSH
- cholinesterasové inhibitory MeSH
- cholinesterasy MeSH
- heterocyklické sloučeniny tricyklické MeSH
- N-(bromobut-3-en-2-yl)-7-methoxy-1,2,3,4-tetrahydroacridin-9-amine MeSH Prohlížeč
- takrin MeSH
A new tacrine based cholinesterase inhibitor, N-(bromobut-3-en-2-yl)-7-methoxy-1,2,3,4-tetrahydroacridin-9-amine (1), was designed and synthesized to interact with specific regions of human acetylcholinesterase and human butyrylcholinesterase. Its inhibitory ability towards cholinesterases was determined and compared to tacrine (THA) and 9-amino-7-methoxy-1,2,3,4-tetrahydroacridine (7-MEOTA). The assessment of IC50 values revealed 1 as a weak inhibitor of both tested enzymes.
Zobrazit více v PubMed
Selkoe D.J. Alzheimer's disease: Genes, proteins, and therapy. Physiol. Rev. 2001;81:741–766. doi: 10.1152/physrev.2001.81.2.741. PubMed DOI
Walsh D.M., Selkoe D.J. Deciphering the molecular basis of memory failure in Alzheimer's disease. Neuron. 2004;44:181–193. doi: 10.1016/j.neuron.2004.09.010. PubMed DOI
Davies P., Maloney A.J.F. Selective loss of central cholinergic neurons in Alzheimer's disease. Lancet. 1976;2:1403. doi: 10.1016/S0140-6736(76)91936-X. PubMed DOI
Perry E.K., Perry R.H., Blessed G., Tomlinson B.E. Necropsy evidence of central cholinergic deficits in senile dementia. Lancet. 1997;1:189. doi: 10.1016/S0140-6736(77)91780-9. PubMed DOI
Summers W.K., Majowski L.V., Marsh G.M., Tachiki K., Kling A. Oral tetrahydroacridineamine in long term treatment of senile dementia, Alzheimer type. N. Engl. J. Med. 1986;315:1241–1245. doi: 10.1056/NEJM198611133152001. PubMed DOI
Watkins P.B., Zimmerman H.J., Knapp M.J., Gracon S.I., Lewis K.W. Hepatotoxic effects of tacrine administration in patients with Alzheimer-disease. Jama-J. Am. Med. Assoc. 1994;271:992–998. doi: 10.1001/jama.1994.03510370044030. PubMed DOI
Marx J.L. Alzheimer's drug trial put on hold. Science. 1987;238:1041–1042. doi: 10.1126/science.3317822. PubMed DOI
Ames D.J., Bhathal P.S., Davies B.M., Fraser J.R.E. Hepatotoxicity of tetrahydroacridine. Lancet. 1988;1:887. doi: 10.1016/S0140-6736(88)91636-4. PubMed DOI
Patocka J., Jun D., Kuca K. Possible role of hydroxylated metabolites of tacrine in drug toxicity and therapy of Alzheimer's disease. Curr. Drug Met. 2008;9:332–335. doi: 10.2174/138920008784220619. PubMed DOI
Filip V., Vachek J., Albrecht V., Dvorak I., Dvorakova J., Fusek J., Havluj J. Pharmacokinetics and tolerance of 7-methoxytacrine following the single dose administration in healthy-volunteers. Int. J. Clin. Pharm. Ther. Toxicol. 1991;29:431–436. PubMed
Korabecny J., Holas O., Musilek K., Pohanka M., Opletalova V., Dohnal V., Kuca K. Synthesis and In Vitro Evaluation of New Tacrine Derivates-Bis-Alkylene Linked 7-MEOTA. Lett. Org. Chem. 2010;7:327–331. doi: 10.2174/157017810791130540. DOI
Korabecny J., Musilek K., Holas O., Binder J., Zemek F., Marek J., Pohanka M., Opletalova V., Dohnal V., Kuca K. Synthesis and in vitro evaluation of N-alkyl-7-methoxytacrine hydrochlorides as potential cholinesterase inhibitors in Alzheimer disease. Bioorg. Med. Chem. Lett. 2010;20:6093–6095. doi: 10.1016/j.bmcl.2010.08.044. PubMed DOI
McLennan D.J. A revised transition state spectrum for concerted bimolecular β-eliminations. Tetrahedron. 1975;31:2999. doi: 10.1016/0040-4020(75)80137-2. DOI
Harel M., Schalk I., Ehret-Sabatier L., Bouet F., Goeldner M., Hirth C., Axelsen P.H., Silman I., Sussman J.L. Quaternary ligand binding to aromatic residues in the active-site gorge of acetylcholinesterase. Proc. Natl. Acad. Sci. USA. 1993;90:9031–9035. doi: 10.1073/pnas.90.19.9031. PubMed DOI PMC
Patocka J. Anticholinesterase activity of 9-amino-7-methoxy-1,2,3,4-tetrahydroacridine and some derivatives and analogues. Sbornik Ved. Prac. VLVDU Hradec Kralove. 1986;102:123–140.
Pohanka M., Jun D., Kuca K. Improvement of acetylcholinesterase-based assay for organophosphates in way of identification by reactivators. Talanta. 2008;77:451–454. doi: 10.1016/j.talanta.2008.06.007. PubMed DOI
Pang Y.-P., Hong F., Quiram P., Jelacic T., Brimijon S. Synthesis of alkylene linked bis-THA and alkylene linked benzyl- THA as highly potent and selective inhibitors and molecular probes of acetylcholinesterase. J. Chem. Soc., Perkin Trans. 1. 1997:171–176. doi: 10.1039/a601642a. DOI
Trott O., Olson A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J. Comput. Chem. 2010;31:455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC
[Accessed on 1st October 2010]; Potein crystal structures are available online: http://www.pdb.org.
Morris G.M., Goodsell D.S., Halliday R.S., Huey R., Hart W.E., Belew R.K., Olson A.J. Automated docking using a lamarckian genetic algorithm and and empirical binding free energy function. J. Comput. Chem. 1998;19:1639–1662. doi: 10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B. DOI
Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. UCSF Chimera – A visualization system for exploratory research and analysis. J. Comput. Chem. 2004;25:1605–1612. doi: 10.1002/jcc.20084. PubMed DOI
DeLano W.L. The PyMOL Molecular Graphics System (2002) [Accessed on 1 October 2010]; Available online: http://www.pymol.org/
Development of 2-Methoxyhuprine as Novel Lead for Alzheimer's Disease Therapy