Acetylcholinesterase Inhibitors and Drugs Acting on Muscarinic Receptors- Potential Crosstalk of Cholinergic Mechanisms During Pharmacological Treatment

. 2017 ; 15 (4) : 637-653.

Jazyk angličtina Země Spojené arabské emiráty Médium print

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid27281175

BACKGROUND: Pharmaceuticals with targets in the cholinergic transmission have been used for decades and are still fundamental treatments in many diseases and conditions today. Both the transmission and the effects of the somatomotoric and the parasympathetic nervous systems may be targeted by such treatments. Irrespective of the knowledge that the effects of neuronal signalling in the nervous systems may include a number of different receptor subtypes of both the nicotinic and the muscarinic receptors, this complexity is generally overlooked when assessing the mechanisms of action of pharmaceuticals. METHODS: We have search of bibliographic databases for peer-reviewed research literature focused on the cholinergic system. Also, we have taken advantage of our expertise in this field to deduce the conclusions of this study. RESULTS: Presently, the life cycle of acetylcholine, muscarinic receptors and their effects are reviewed in the major organ systems of the body. Neuronal and non-neuronal sources of acetylcholine are elucidated. Examples of pharmaceuticals, in particular cholinesterase inhibitors, affecting these systems are discussed. The review focuses on salivary glands, the respiratory tract and the lower urinary tract, since the complexity of the interplay of different muscarinic receptor subtypes is of significance for physiological, pharmacological and toxicological effects in these organs. CONCLUSION: Most pharmaceuticals targeting muscarinic receptors are employed at such large doses that no selectivity can be expected. However, some differences in the adverse effect profile of muscarinic antagonists may still be explained by the variation of expression of muscarinic receptor subtypes in different organs. However, a complex pattern of interactions between muscarinic receptor subtypes occurs and needs to be considered when searching for selective pharmaceuticals. In the development of new entities for the treatment of for instance pesticide intoxication, the muscarinic receptor selectivity needs to be considered. Reactivators generally have a muscarinic M2 receptor acting profile. Such a blockade may engrave the situation since it may enlarge the effect of the muscarinic M3 receptor effect. This may explain why respiratory arrest is the major cause for deaths by esterase blocking.

Zobrazit více v PubMed

Heller B.J., Laiken N. In Goodman Gilman's The Pharmacological Basis of Therapeutics; New York: The McGraw-Hill Companies; 2011. Muscarinic Receptor Agonists and Antagonists. pp. 219–238.

Whitson J.T. Glaucoma: a review of adjunctive therapy and new management strategies. Expert Opin. Pharmacother. 2007;8(18):3237–3249. PubMed

Prat M., GavaldA A., Fonquerna S., Miralpeix M. Inhaled muscarinic antagonists for respiratory diseases: a review of patents and current developments (2006 - 2010). Expert Opin. Ther. Pat. 2011;21(10):1543–1573. PubMed

Holley A.D., Boots R.J. Review article: management of acute severe and nearfatal asthma. Emerg. Med. Australas. 2009;21(4):259–268. PubMed

Dmochowski R.R., Gomelsky A. Update on the treatment of overactive bladder. Curr. Opin. Urol. 2011;21(4):286–290. PubMed

Langmead C.J., Watson J., Reavill C. Muscarinic acetylcholine receptors as CNS drug targets. Pharmacol. Ther. 2008;117(2):232–243. [http://dx.doi.org/10.1016/j.pharmthera.2007.09.009]. [PMID: 18082893]. PubMed

Abrams P., Andersson K.E., Buccafusco J.J., Chapple C., de Groat W.C., Fryer A.D., Kay G., Laties A., Nathanson N.M., Pasricha P.J., Wein A.J. Muscarinic receptors: their distribution and function in body systems, and the implications for treating overactive bladder. Br. J. Pharmacol. 2006;148(5):565–578. PubMed PMC

Eglen R. M. Overview of muscarinic receptor subtypes. Handb Exp. Pharmacol. 2012;208:3–28. PubMed

Marrs T.C. Organophosphate poisoning. Pharmacol. Ther. 1993;58(1):51–66. [http://dx.doi.org/10.1016/0163-7258(93)90066-M]. [PMID: 8415873]. PubMed

Hamilton M.G., Lundy P.M. HI-6 therapy of soman and tabun poisoning in primates and rodents. Arch. Toxicol. 1989;63(2):144–149. PubMed

Tattersall J.E. Ion channel blockade by oximes and recovery of diaphragm muscle from soman poisoning in vitro. Br. J. Pharmacol. 1993;108(4):1006–1015. PubMed PMC

van Helden H.P., Busker R.W., Melchers B.P., Bruijnzeel P.L. Pharmacological effects of oximes: how relevant are they? Arch. Toxicol. 1996;70(12):779–786. PubMed

van Helden H.P., van der Wiel H.J., de Lange J., Busker R.W., Melchers B.P., Wolthuis O.L. Therapeutic efficacy of HI-6 in soman-poisoned marmoset monkeys. Toxicol. Appl. Pharmacol. 1992;115(1):50–56. PubMed

Soukup O., Jun D., Tobin G., Kuca K. The summary on non-reactivation cholinergic properties of oxime reactivators: the interaction with muscarinic and nicotinic receptors. 2013 PubMed

Soukup O., Tobin G., Kumar U.K., Jun D., Fusek J., Kuca K. Characterization of the anticholinergic properties of obidoxime; functional examinations of the rat atria and the urinary bladder. Toxicol. Mech. Methods. 2010;20(7):428–433. [http://dx.doi.org/ 10.3109/15376516.2010.497974]. [PMID: 20602545]. PubMed

Tobin G., Giglio D., Lundgren O. Muscarinic receptor subtypes in the alimentary tract. J. Physiol. Pharmacol. 2009;60(1):3–21. [PMID: 19439804]. PubMed

Horiuchi Y., Kimura R., Kato N., Fujii T., Seki M., Endo T., Kato T., Kawashima K. Evolutional study on acetylcholine expression. Life Sci. 2003;72(15):1745–1756. [http://dx.doi.org/ 10.1016/S0024-3205(02)02478-5]. [PMID: 12559395]. PubMed

Wessler I.K., Kirkpatrick C.J. Activation of muscarinic receptors by non-neuronal acetylcholine. Handbook Exp. Pharmacol. 2012;208:469–491. PubMed

Eglen R.M. Muscarinic receptor subtypes in neuronal and non-neuronal cholinergic function. Auton. Autacoid Pharmacol. 2006;26(3):219–233. [http://dx.doi.org/10.1111/j.1474-8673.2006.00368.x]. [PMID: 16879488]. PubMed

Roy A., Fields W.C., Rocha-Resende C., Resende R.R., Guatimosim S., Prado V.F., Gros R., Prado M.A. Cardiomyocytesecreted acetylcholine is required for maintenance of homeostasis in the heart. FASEB J. 2013;27(12):5072–5082. PubMed PMC

Rocha-Resende C., Roy A., Resende R., Ladeira M.S., Lara A., de Morais Gomes E.R., Prado V.F., Gros R., Guatimosim C., Prado M.A., Guatimosim S. Non-neuronal cholinergic machinery present in cardiomyocytes offsets hypertrophic signals. J. Mol. Cell. Cardiol. 2012;53(2):206–216. PubMed PMC

Rand J. B. WormBook . 2007. Acetylcholine. pp. 1–21. PubMed PMC

White H.L., Wu J.C. Choline and carnitine acetyltransferases of heart. Biochemistry. 1973;12(5):841–846. [http://dx.doi.org/10. 1021/bi00729a009]. [PMID: 4686801]. PubMed

Tucek S. The synthesis of acetylcholine in skeletal muscles of the rat. J. Physiol. 1982;322:53–69. [http://dx.doi.org/10.1113/ jphysiol.1982.sp014022]. [PMID: 7069630]. PubMed PMC

Hanna-Mitchell A.T., Beckel J.M., Barbadora S., Kanai A.J., de Groat W.C., Birder L.A. Non-neuronal acetylcholine and urinary bladder urothelium. Life Sci. 2007;80(24-25):2298–2302. [http://dx.doi.org/10.1016/j.lfs.2007.02.010]. [PMID: 17363007]. PubMed PMC

Abramochkin D.V., Borodinova A.A., Rosenshtraukh L.V., Nikolsky E.E. Both neuronal and non-neuronal acetylcholine take part in non-quantal acetylcholine release in the rat atrium. Life Sci. 2012;91(21-22):1023–1026. PubMed

Thesleff S. Functional aspects of quantal and non-quantal release of acetylcholine at the neuromuscular junction. Prog. Brain Res. 1990;84:93–99. PubMed

Katz B., Miledi R. Suppression of transmitter release at the neuromuscular junction. Proc. R. Soc. Lond. B Biol. Sci. 1977;196(1125):465–469. PubMed

Straughan D.W. The release of acetylcholine from mammalian motor nerve endings. Br. Pharmacol. Chemother. 1960;15(3):417–424. PubMed PMC

Mitchell J.F., Silver A. The spontaneous release of acetylcholine from the denervated hemidiaphragm of the rat. J. Physiol. 1963;165(1):117–129. PubMed PMC

Beaumont M., BatA(c)jat D., Coste O., Doireau P., Chauffard F., Enslen M., Lagarde D., Pierard C. Recovery after prolonged sleep deprivation: residual effects of slow-release caffeine on recovery sleep, sleepiness and cognitive functions. Neuropsychobiology. 2005;51(1):16–27. PubMed

Sabatini B.L., Regehr W.G. Timing of synaptic transmission. Annu. Rev. Physiol. 1999;61:521–542. PubMed

Geppert M., Sudhof T.C. RAB3 and synaptotagmin: the yin and yang of synaptic membrane fusion. Annu. Rev. Neurosci. 1998;21:75–95. [http://dx.doi.org/10.1146/annurev.neuro.21.1.75]. [PMID: 9530492]. PubMed

Whyte J.R., Munro S. Vesicle tethering complexes in membrane traffic. J. Cell Sci. 2002;115(Pt 13):2627–2637. PubMed

Shi L., Shen Q.T., Kiel A., Wang J., Wang H.W., Melia T.J., Rothman J.E., Pincet F. SNARE proteins: one to fuse and three to keep the nascent fusion pore open. Science. 2012;335(6074):1355–1359. PubMed PMC

Dai H., Shen N., AraA D., Rizo J. A quaternary SNARE-synaptotagmin-Ca2+- phospholipid complex in neurotransmitter release. J. Mol. Biol. 2007;367(3):848–863. PubMed PMC

Kuffler S.W., Yoshikami D. The distribution of acetylcholine sensitivity at the post-synaptic membrane of vertebrate skeletal twitch muscles: iontophoretic mapping in the micron range. J. Physiol. 1975;244(3):703–730. PubMed PMC

Kuffler S.W., Yoshikami D. The number of transmitter molecules in a quantum: an estimate from iontophoretic application of acetylcholine at the neuromuscular synapse. J. Physiol. 1975;251(2):465–482. [http://dx.doi.org/10.1113/jphysiol.1975.sp011103]. [PMID: 171380]. PubMed PMC

Vyskocil F., Malomouzh A.I., Nikolsky E.E. Non-quantal acetylcholine release at the neuromuscular junction. Physiol. Res. 2009;58(6):763–784. [PMID: 20059289]. PubMed

Wessler I., Roth E., Deutsch C., Brockerhoff P., Bittinger F., Kirkpatrick C.J., Kilbinger H. Release of non-neuronal acetylcholine from the isolated human placenta is mediated by organic cation transporters. Br. J. Pharmacol. 2001;134(5):951–956. [http://dx.doi.org/10.1038/sj.bjp.0704335]. [PMID: 11682442]. PubMed PMC

Kummer W., Wiegand S., Akinci S., Wessler I., Schinkel A.H., Wess J., Koepsell H., Haberberger R.V., Lips K.S. Role of acetylcholine and polyspecific cation transporters in serotonin-induced bronchoconstriction in the mouse. Respir. Res. 2006;7(1):65. [http://dx.doi.org/10.1186/1465-9921-7-65]. [PMID: 16608531]. PubMed PMC

Girard E., Bernard V., Minic J., Chatonnet A., Krejci E., Molgo J. Butyrylcholinesterase and the control of synaptic responses in acetylcholinesterase knockout mice. Life Sci. 2007;80(24-25):2380–2385. [http://dx.doi.org/10.1016/j.lfs.2007.03.011]. [PMID: 17467011]. PubMed

Greig N.H., Reale M., Tata A.M. New pharmacological approaches to the cholinergic system: an overview on muscarinic receptor ligands and cholinesterase inhibitors. Recent Patents CNS Drug Discov. 2013;8(2):123–141. [http://dx.doi.org/10.2174/ 1574889811308020003]. [PMID: 23597304]. PubMed PMC

Hurst R., Rollema H., Bertrand D. Nicotinic acetylcholine receptors: from basic science to therapeutics. Pharmacol. Ther. 2013;137(1):22–54. [http://dx.doi.org/10.1016/j.pharmthera.2012. 08.012]. [PMID: 22925690]. PubMed

Schecter W.P. Cholinergic symptoms due to nerve agent attack: a strategy for management. Anesthesiol. Clin. North America. 2004;22(3):579–590. [viii.]. PubMed

Namba T. Cholinesterase inhibition by organophosphorus compounds and its clinical effects. Bull. World Health Organ. 1971;44(1-3):289–307. [PMID: 4941660]. PubMed PMC

Perry E., Walker M., Grace J., Perry R. Acetylcholine in mind: a neurotransmitter correlate of consciousness? Trends Neurosci. 1999;22(6):273–280. [http://dx.doi.org/10.1016/S0166-2236(98) 01361-7]. [PMID: 10354606]. PubMed

Scarr E. Muscarinic receptors: their roles in disorders of the central nervous system and potential as therapeutic targets. CNS Neurosci. Ther. 2012;18(5):369–379. [http://dx.doi.org/10.1111/j.1755-5949.2011.00249.x]. [PMID: 22070219]. PubMed PMC

Itier V., Bertrand D. Neuronal nicotinic receptors: from protein structure to function. FEBS Lett. 2001;504(3):118–125. [http://dx.doi.org/10.1016/S0014-5793(01)02702-8]. [PMID: 11532443]. PubMed

Broad L.M., Zwart R., Pearson K.H., Lee M., Wallace L., McPhie G.I., Emkey R., Hollinshead S.P., Dell C.P., Baker S.R., Sher E. Identification and pharmacological profile of a new class of selective nicotinic acetylcholine receptor potentiators. J. Pharmacol. Exp. Ther. 2006;318(3):1108–1117. PubMed

Jürgensen S., Ferreira S.T. Nicotinic receptors, amyloid-beta, and synaptic failure in Alzheimers disease. J. Mol. Neurosci. 2010;40(1-2):221–229. PubMed

Marchi M., Grilli M. Presynaptic nicotinic receptors modulating neurotransmitter release in the central nervous system: functional interactions with other coexisting receptors. Prog. Neurobiol. 2010;92(2):105–111. [http://dx.doi.org/10.1016/j.pneurobio.2010. 06.004]. [PMID: 20558239]. PubMed

Wonnacott S. Presynaptic nicotinic ACh receptors. Trends Neurosci. 1997;20(2):92–98. [http://dx.doi.org/10.1016/S0166-2236(96)10073-4]. [PMID: 9023878]. PubMed

Takada-Takatori Y., Kume T., Izumi Y., Ohgi Y., Niidome T., Fujii T., Sugimoto H., Akaike A. Roles of nicotinic receptors in acetylcholinesterase inhibitor-induced neuroprotection and nicotinic receptor up-regulation. Biol. Pharm. Bull. 2009;32(3):318–324. [http://dx.doi.org/10.1248/bpb.32.318]. [PMID: 19252271]. PubMed

Baum B.J., Wellner R.B. Receptors in salivary glands. In: Neuronal Mechanisms of Salivary Secretion; In: Garrett J.R., Ekstrom J., Anderson L.C., editors. Karger: Basel. Vol. 3. 1999. pp. 44–58.

Caulfield M.P. Muscarinic receptorscharacterization, coupling and function. Pharmacol. Ther. 1993;58(3):319–379. PubMed

Dai Y.S., Ambudkar I.S., Horn V.J., Yeh C.K., Kousvelari E.E., Wall S.J., Li M., Yasuda R.P., Wolfe B.B., Baum B.J. Evidence that M3 muscarinic receptors in rat parotid gland couple to two second messenger systems. Am. J. Physiol. 1991;261(6 Pt 1):C1063–C1073. PubMed

Bockman C.S., Bradley M.E., Dang H.K., Zeng W., Scofield M.A., Dowd F.J. Molecular and pharmacological characterization of muscarinic receptor subtypes in a rat parotid gland cell line: comparison with native parotid gland. J. Pharmacol. Exp. Ther. 2001;297(2):718–726. PubMed

Culp D.J., Luo W., Richardson L.A., Watson G.E., Latchney L.R. Both M1 and M3 receptors regulate exocrine secretion by mucous acini. Am. J. Physiol. 1996;271(6 Pt 1):C1963–C1972. PubMed

Gautam D., Heard T.S., Cui Y., Miller G., Bloodworth L., Wess J. Cholinergic stimulation of salivary secretion studied with M1 and M3 muscarinic receptor single- and double-knockout mice. Mol. Pharmacol. 2004;66(2):260–267. PubMed

Tobin G. Muscarinic receptor subtypes in the submandibular gland and the urinary bladder of the rabbit: in vivo and in vitro functional comparisons of receptor antagonists. J. Auton. Pharmacol. 1995;15(6):451–463. PubMed

EkstrAm J., Godoy T., Riva A. Clozapine: agonistic and antagonistic salivary secretory actions. J. Dent. Res. 2010;89(3):276–280. PubMed

Tobin G., Ryberg A.T., Gentle S., Edwards A.V. Distribution and function of muscarinic receptor subtypes in the ovine submandibular gland. J. Appl. Physiol. 2006;100(4):1215–1223. [http://dx.doi.org/10.1152/japplphysiol.00779.2005]. [PMID: 16322368]. PubMed

Tobin G., Sjogren C. In vivo and in vitro effects of muscarinic receptor antagonists on contractions and release of [3H]acetylcholine in the rabbit urinary bladder. Eur. J. Pharmacol. 1995;281(1):1–8. PubMed

Tobin G. Presynaptic muscarinic M1 and M2 receptor modulation of auriculotemporal nerve transmission in the rat. J. Auton. Nerv. Syst. 1998;72(1):61–71. PubMed

Tobin G. Presynaptic muscarinic receptor mechanisms and submandibular responses to stimulation of the parasympathetic innervation in bursts in rats. Auton. Neurosci. 2002;99(2):111–118. PubMed

EkstrAm J., Garrett J.R., Mansson B., Tobin G. The effects of atropine and chronic sympathectomy on maximal parasympathetic stimulation of parotid saliva in rats. J. Physiol. 1988;403:105–116. [http://dx.doi.org/10.1113/jphysiol.1988.sp017241]. [PMID: 2473192]. PubMed PMC

Tobin G., EkstrAm J., Bloom S.R., Edwards A.V. Atropine-resistant submandibular responses to stimulation of the parasympathetic innervation in the anaesthetized ferret. J. Physiol. 1991;437:327–339. [http://dx.doi.org/10.1113/jphysiol.1991. sp018598]. [PMID: 1890638]. PubMed PMC

Ryberg A.T., Selberg H., Soukup O., Gradin K., Tobin G. Cholinergic submandibular effects and muscarinic receptor expression in blood vessels of the rat. Arch. Oral Biol. 2008;53(7):605–616. [http://dx.doi.org/10.1016/j.archoralbio.2008.01.016]. [PMID: 18329001]. PubMed

Giglio D., Tobin G. Muscarinic receptor subtypes in the lower urinary tract. Pharmacology. 2009;83(5):259–269. [http://dx.doi. org/10.1159/000209255]. [PMID: 19295256]. PubMed

Mansfield K.J., Liu L., Mitchelson F.J., Moore K.H., Millard R.J., Burcher E. Muscarinic receptor subtypes in human bladder detrusor and mucosa, studied by radioligand binding and quantitative competitive RT-PCR: changes in ageing. Br. J. Pharmacol. 2005;144(8):1089–1099. [http://dx.doi.org/10.1038/ sj.bjp.0706147]. [PMID: 15723094]. PubMed PMC

Zarghooni S., Wunsch J., Bodenbenner M., BrA1/4ggmann D., Grando S.A., Schwantes U., Wess J., Kummer W., Lips K.S. Expression of muscarinic and nicotinic acetylcholine receptors in the mouse urothelium. Life Sci. 2007;80(24-25):2308–2313. [http://dx.doi.org/10.1016/j.lfs.2007.01.046]. [PMID: 17337281]. PubMed

Birder L.A. More than just a barrier: urothelium as a drug target for urinary bladder pain. Am. J. Physiol. Renal Physiol. 2005;289(3):F489–F495. [http://dx.doi.org/10.1152/ajprenal.00467. 2004]. [PMID: 16093424]. PubMed

Kanai A.J. Afferent mechanism in the urinary tract. Handbook Exp. Pharmacol. 2011;202:171–205. PubMed

Alberts P. Classification of the presynaptic muscarinic receptor subtype that regulates 3H-acetylcholine secretion in the guinea pig urinary bladder in vitro. J. Pharmacol. Exp. Ther. 1995;274(1):458–468. [PMID: 7616431]. PubMed

Nandigama R., Bonitz M., Papadakis T., Schwantes U., Bschleipfer T., Kummer W. Muscarinic acetylcholine receptor subtypes expressed by mouse bladder afferent neurons. Neuroscience. 2010;168(3):842–850. [http://dx.doi.org/10.1016/j. neuroscience.2010.04.012]. [PMID: 20394802]. PubMed

Kim Y., Yoshimura N., Masuda H., de Miguel F., Chancellor M.B. Antimuscarinic agents exhibit local inhibitory effects on muscarinic receptors in bladder-afferent pathways. Urology. 2005;65(2):238–242. [http://dx.doi.org/10.1016/j.urology.2004.11.021]. [PMID: 15708029]. PubMed

Birder L.A. Urinary bladder urothelium: molecular sensors of chemical/thermal/mechanical stimuli. Vascul. Pharmacol. 2006;45(4):221–226. [http://dx.doi.org/10.1016/j.vph.2005.08.027]. [PMID: 16891158]. PubMed

Sun Y., Keay S., De Deyne P.G., Chai T.C. Augmented stretch activated adenosine triphosphate release from bladder uroepithelial cells in patients with interstitial cystitis. J. Urol. 2001;166(5):1951–1956. PubMed

Buckner S.A., Milicic I., Daza A.V., Coghlan M.J., Gopalakrishnan M. Spontaneous phasic activity of the pig urinary bladder smooth muscle: characteristics and sensitivity to potassium channel modulators. J. Pharmacol. 2002;135(3):639–648. PubMed PMC

Giglio D., Ryberg A.T., To K., Delbro D.S., Tobin G. Altered muscarinic receptor subtype expression and functional responses in cyclophosphamide induced cystitis in rats. Auton. Neurosci. 2005;122(1-2):9–20. PubMed

Andersson M., Aronsson P., Doufish D., Lampert A., Tobin G. Muscarinic receptor subtypes involved in urothelium-derived relaxatory effects in the inflamed rat urinary bladder. Auton. Neurosci.: basic & clinical, 2012, 170, 5 -11.b. Andersson, M.C.; Tobin, G.; Giglio, D. Cholinergic nitric oxide release from the urinary bladder mucosa in cyclophosphamide-induced cystitis of the anaesthetized rat. Br. J. Pharmacol. 2008;153(7):1438–1444. [http://dx.doi.org/10.1038/bjp.2008.6]. [PMID: 18246091]. PubMed

Killi U.K., Wsol V., Soukup O., Kuca K., Winder M., Tobin G. In vitro functional interactions of acetylcholine esterase inhibitors and muscarinic receptor antagonists in the urinary bladder of the rat. Clin. Exp. Pharmacol. Physiol. 2014;41(2):139–146. [http://dx.doi.org/10.1111/1440-1681.12191]. [PMID: 24341923]. PubMed

Giglio D., Delbro D.S., Tobin G. Postjunctional modulation by muscarinic M2 receptors of responses to electrical field stimulation of rat detrusor muscle preparations. Auton. Autacoid Pharmacol. 2005;25(3):113–120. PubMed

Hegde S.S., Choppin A., Bonhaus D., Briaud S., Loeb M., Moy T.M., Loury D., Eglen R.M. Functional role of M2 and M3 muscarinic receptors in the urinary bladder of rats in vitro and in vivo. Br. J. Pharmacol. 1997;120(8):1409–1418. PubMed PMC

DAgostino G., Bolognesi M.L., Lucchelli A., Vicini D., Balestra B., Spelta V., Melchiorre C., Tonini M. Prejunctional muscarinic inhibitory control of acetylcholine release in the human isolated detrusor: involvement of the M4 receptor subtype. Br. J. Pharmacol. 2000;129(3):493–500. [http://dx.doi.org/10.1038/ sj.bjp.0703080]. [PMID: 10711347]. PubMed PMC

Ehlert F.J. Contractile role of M2 and M3 muscarinic receptors in gastrointestinal, airway and urinary bladder smooth muscle. Life Sci. 2003;74(2-3):355–366. PubMed

Hirshman C.A., Lande B., Croxton T.L. Role of M2 muscarinic receptors in airway smooth muscle contraction. Life Sci. 1999;64(6-7):443–448. PubMed

Zaagsma J., Roffel A.F., Meurs H. Muscarinic control of airway function. Life Sci. 1997;60(13-14):1061–1068. [http://dx.doi.org/ 10.1016/S0024-3205(97)00048-9]. [PMID: 9121348]. PubMed

Killingsworth C.R., Robinson N.E. The role of muscarinic M1 and M2 receptors in airway constriction in the cat. Eur. J. Pharmacol. 1992;210(3):231–238. [http://dx.doi.org/10.1016/ 0014-2999(92)90409-W]. [PMID: 1612100]. PubMed

Aas P., Maclagan J. Evidence for prejunctional M2 muscarinic receptors in pulmonary cholinergic nerves in the rat. Br. J. Pharmacol. 1990;101(1):73–76. PubMed PMC

DAgostino G., Barbieri A., Chiossa E., Tonini M. M4 muscarinic autoreceptormediated inhibition of -3H-acetylcholine release in the rat isolated urinary bladder. J. Pharmacol. Exp. Ther. 1997;283(2):750–756. PubMed

Pieper M.P. The non-neuronal cholinergic system as novel drug target in the airways. Life Sci. 2012;91(21-22):1113–1118. [http://dx.doi.org/10.1016/j.lfs.2012.08.030]. [PMID: 22982180]. PubMed

van der Velden V.H., Hulsmann A.R. Autonomic innervation of human airways: structure, function, and pathophysiology in asthma. Neuroimmunomodulation, 1999;6(3):145–159. PubMed

Edwards A.V. Garrett J.R., EkstrAm J., Anderson L.C., editors. Autonomic Control of Salivary Blood Flow. In: Glandular Mechanisms of Salivary Secretion; Karger: Basel, . 1998;10:101–117.

Matran R. Neural control of lower airway vasculature. Involvement of classical transmitters and neuropeptides. Acta Physiol. Scand. Suppl. 1991;601:1–54. PubMed

Orii R., Sugawara Y., Sawamura S., Yamada Y. M(3) muscarinic receptors mediate acetylcholine-induced pulmonary vasodilation in pulmonary hypertension. Biosci. Trends. 2010;4(5):260–266. PubMed

Sasaki F., ParA(c) P., Ernest D., Bai T., Verburgt L., March R., Baile E. Endogenous nitric oxide influences acetylcholine-induced bronchovascular dilation in sheep. J. Appl. Physiol. 1995;78(2):539–545. [PMID: 7759423]. PubMed

Peyter A.C., Muehlethaler V., Liaudet L., Marino M., Di Bernardo S., Diaceri G., Tolsa J.F. Muscarinic receptor M1 and phosphodiesterase 1 are key determinants in pulmonary vascular dysfunction following perinatal hypoxia in mice. Am. J. Physiol. Lung Cell. Mol. Physiol. 2008;295(1):L201–L213. [http://dx.doi. org/10.1152/ajplung.00264.2007]. [PMID: 18469116]. PubMed

Kummer W., Lips K.S., Pfeil U. The epithelial cholinergic system of the airways. Histochem. Cell Biol. 2008;130(2):219–234. [http://dx.doi.org/10.1007/s00418-008-0455-2]. [PMID: 18566825]. PubMed PMC

Higgins C.B., Vatner S.F., Braunwald E. Parasympathetic control of the heart. Pharmacol. Rev. 1973;25(1):119–155. [PMID: 4348231]. PubMed

Brodde O.E., Bruck H., Leineweber K., Seyfarth T. Presence, distribution and physiological function of adrenergic and muscarinic receptor subtypes in the human heart. Basic Res. Cardiol. 2001;96(6):528–538. [http://dx.doi.org/10.1007/s003950170003]. [PMID: 11770070]. PubMed

Myslivecek J., Klein M., Novakova M., Ricny J. The detection of the non-M2 muscarinic receptor subtype in the rat heart atria and ventricles. Naunyn Schmiedebergs Arch. Pharmacol. 2008;378(1):103–116. PubMed

Perez C. C., Tobar I. D., Jimenez E., Castaneda D., Rivero M. B., Concepcion J. L., Chiurillo M. A., Bonfante-Cabarcas R. Kinetic and molecular evidences that human cardiac muscle express non-M2 muscarinic receptor subtypes that are able to interact themselves. Pharmacol. Res. Off. J. Ital. Pharmacol. Soc. 2006;54(5):345–55. PubMed

Abramochkin D.V., Tapilina S.V., Sukhova G.S., Nikolsky E.E., Nurullin L.F. Functional M3 cholinoreceptors are present in pacemaker and working myocardium of murine heart. . Pflugers Arch. 2012;463(4):523–529. PubMed

Woo S.H., Lee B.H., Kwon K.I., Lee C.O. Excitatory effect of M1 muscarinic acetylcholine receptor on automaticity of mouse heart. Arch. Pharm. Res. 2005;28(8):930–935. PubMed

Hardouin S.N., Richmond K.N., Zimmerman A., Hamilton S.E., Feigl E.O., Nathanson N.M. Altered cardiovascular responses in mice lacking the M(1) muscarinic acetylcholine receptor. J. Pharmacol. Exp. Ther. 2002;301(1):129–137. PubMed

Krejc A.A., Tucek S. Quantitation of mRNAs for M(1) to M(5) subtypes of muscarinic receptors in rat heart and brain cortex. Mol. Pharmacol. 2002;61(6):1267–1272. [http://dx.doi.org/10.1124/ mol.61.6.1267]. [PMID: 12021386]. PubMed

Dobrzynski H., Marples D.D., Musa H., Yamanushi T.T., Henderson Z., Takagishi Y., Honjo H., Kodama I., Boyett M.R. Distribution of the muscarinic K+ channel proteins Kir3.1 and Kir3.4 in the ventricle, atrium, and sinoatrial node of heart. J. Histochem. Cytochem. Off. Soc. 2001;49(10):1221–1234. PubMed

Sasaki S., Motomura S. Comparison of anti-M2-muscarinic effect of AF-DX 116 on atrioventricular nodal conduction with those of pirenzepine and atropine as antibradyarrhythmic drugs. J. Cardiovasc. Pharmacol. 1999;33(6):912–921. [http://dx.doi.org/ 10.1097/00005344-199906000-00012]. [PMID: 10367595]. PubMed

Nascimento J.H., SallA(c) L., Hoebeke J., Argibay J., Peineau N. cGMP-mediated inhibition of cardiac L-type Ca(2+) current by a monoclonal antibody against the M(2) ACh receptor. Am. J. Physiol. Cell Physiol. 2001;281(4):C1251–C1258. [PMID: 11546662]. PubMed

Harvey R.D., Belevych A.E. Muscarinic regulation of cardiac ion channels. Br. J. Pharmacol. 2003;139(6):1074–1084. [http://dx. doi.org/10.1038/sj.bjp.0705338]. [PMID: 12871825]. PubMed PMC

Gallo M.P., Alloatti G., Eva C., Oberto A., Levi R.C. M1 muscarinic receptors increase calcium current and phosphoinositide turnover in guinea-pig ventricular cardiocytes. J. Physiol. 1993;471:41–60. [http://dx.doi.org/10.1113/jphysiol.1993.sp019890]. [PMID: 8120813]. PubMed PMC

Kitazawa T., Asakawa K., Nakamura T., Teraoka H., Unno T., Komori S., Yamada M., Wess J. M3 muscarinic receptors mediate positive inotropic responses in mouse atria: a study with muscarinic receptor knockout mice. J. Pharmacol. Exp. Ther. 2009;330(2):487–493. [http://dx.doi.org/10.1124/jpet.109.153304]. [PMID: 19429792]. PubMed PMC

Harvey R.D. Muscarinic receptor agonists and antagonists: effects on cardiovascular function. Handbook Exp. Pharmacol. 2012;208:299–316. PubMed

Levey A.I., Edmunds S.M., Heilman C.J., Desmond T.J., Frey K.A. Localization of muscarinic m3 receptor protein and M3 receptor binding in rat brain. Neuroscience. 1994;63(1):207–221. [http://dx.doi.org/10.1016/0306-4522(94)90017-5]. [PMID: 7898649]. PubMed

Flynn D.D., Ferrari-DiLeo G., Mash D.C., Levey A.I. Differential regulation of molecular subtypes of muscarinic receptors in Alzheimers disease. J. Neurochem. 1995;64(4):1888–1891. [http://dx.doi.org/10.1046/j.1471-4159.1995.64041888.x]. [PMID: 7891119]. PubMed

Li M., Yasuda R.P., Wall S.J., Wellstein A., Wolfe B.B. Distribution of m2 muscarinic receptors in rat brain using antisera selective for m2 receptors. Mol. Pharmacol. 1991;40(1):28–35. [PMID: 1857338]. PubMed

Vilaro M.T., Palacios J.M., Mengod G. Localization of m5 muscarinic receptor mRNA in rat brain examined by in situ hybridization histochemistry. Neurosci. Lett. 1990;114(2):154–159. [http://dx.doi.org/10.1016/0304-3940(90)90064-G]. [PMID: 2395528]. PubMed

Ehlert F.J., Pak K.J., Griffin M.T. Muscarinic agonists and antagonists: effects on gastrointestinal function. Handbook Exp. Pharmacol. 2012;208:343–374. PubMed

Buels K.S., Fryer A.D. Muscarinic receptor antagonists: effects on pulmonary function. Handbook Exp. Pharmacol. 2012;208:317–341. PubMed PMC

McEvoy G.K. AHFS Drug information 2008. Bethesda, MD: American Society of Health-System Pharmacists; 2008. Bethanecol. pp. 1240–1241.

Craddock T.J., Fritsch P., Rice M.A., del Rosario R.M., Miller D.B., Fletcher M.A., Klimas N.G., Broderick G. A role for homeostatic drive in the perpetuation of complex chronic illness: Gulf War Illness and chronic fatigue syndrome. PLoS One. 2014;9(1):e84839. PubMed PMC

Mitchelson F. Muscarinic receptor agonists and antagonists: effects on ocular function. Handb. Exp. Pharmacol. 2012;208:263–298. PubMed

Ramos-Casals M., Tzioufas A.G., Stone J.H., SisA3 A., Bosch X. Treatment of primary SjAgren syndrome: a systematic review. JAMA. 2010;304(4):452–460. PubMed

Giacobini E. Cholinesterase inhibitors: new roles and therapeutic alternatives. Pharmacol. Res. Off. J. Ital. Soc. 2004;50(4):433–440. PubMed

Soukup O., Tobin G., Kumar U.K., Binder J., Proska J., Jun D., Fusek J., Kuca K. Interaction of nerve agent antidotes with cholinergic systems. Curr. Med. Chem. 2010;17(16):1708–1718. [http://dx.doi.org/10.2174/092986710791111260]. [PMID: 20345348]. PubMed

Marrs T.C. Organophosphate poisoning. Pharmacol. Ther. 1993;58(1):51–66. [http://dx.doi.org/10.1016/0163-7258(93)90066-M]. [PMID: 8415873]. PubMed

Sellers D.J., Chess-Williams R. Muscarinic agonists and antagonists: effects on the urinary bladder. Handbook Exp. Pharmacol. 2012;208:375–400. PubMed

Yamaguchi O. Antimuscarinics and overactive bladder: other mechanism of action. Neurourol. Urodyn. 2010;29(1):112–115. [PMID: 19693952]. PubMed

Nelson C.P., Gupta P., Napier C.M., Nahorski S.R., Challiss R.A. Functional selectivity of muscarinic receptor antagonists for inhibition of M3-mediated phosphoinositide responses in guinea pig urinary bladder and submandibular salivary gland. J. Pharmacol. Exp. Ther. 2004;310(3):1255–1265. PubMed

Gillberg P.G., Sundquist S., Nilvebrant L. Comparison of the in vitro and in vivo profiles of tolterodine with those of subtype-selective muscarinic receptor antagonists. Eur. J. Pharmacol. 1998;349(2-3):285–292. PubMed

Mansfield K.J., Chandran J.J., Vaux K.J., Millard R.J., Christopoulos A., Mitchelson F.J., Burcher E. Comparison of receptor binding characteristics of commonly used muscarinic antagonists in human bladder detrusor and mucosa. J. Pharmacol. Exp. Ther. 2009;328(3):893–899. PubMed

Yoshida A., Kuraoka S., Ito Y., Okura T., Deguchi Y., Otsuka A., Ozono S., Takeda M., Masuyama K., Araki I., Yamada S. Muscarinic receptor binding of the novel radioligand, [3h]imidafenacin in the human bladder and parotid gland. J. Pharmacol. Sci. 2014;124(1):40–46. PubMed

Masumori N. Long-term safety, efficacy, and tolerability of imidafenacin in the treatment of overactive bladder: a review of the Japanese literature. Patient Prefer. Adherence. 2013;7:111–120. PubMed PMC

Andersson K.E. Advances in the pharmacological control of the bladder. Exp. Physiol. 1999;84(1):195–213. [http://dx.doi.org/ 10.1111/j.1469-445X.1999.tb00083.x]. [PMID: 10081718]. PubMed

Andersson K-E., Yoshida M. Antimuscarinics and the overactive detrusorwhich is the main mechanism of action? Eur. Urol. 2003;43(1):1–5. [http://dx.doi.org/10.1016/S0302-2838(02)00540-7]. [PMID: 12507537]. PubMed

Kobayashi F., Yageta Y., Yamazaki T., Wakabayashi E., Inoue M., Segawa M., Matsuzawa S. Pharmacological effects of imidafenacin (KRP-197/ONO-8025), a new bladder selective anticholinergic agent, in rats. Comparison of effects on urinary bladder capacity and contraction, salivary secretion and performance in the Morris water maze task. Arzneimittelforschung. 2007;57(3):147–154. PubMed

Yamazaki T., Muraki Y., Anraku T. In vivo bladder selectivity of imidafenacin, a novel antimuscarinic agent, assessed by using an effectiveness index for bladder capacity in rats. Naunyn Schmiedebergs Arch. Pharmacol. 2011;384(3):319–329. PubMed

Nilvebrant L., Hallen B., Larsson G. Tolterodinea new bladder selective muscarinic receptor antagonist: preclinical pharmacological and clinical data. Life Sci. 1997;60(13-14):1129–1136. PubMed

Ikeda K., Kobayashi S., Suzuki M., Miyata K., Takeuchi M., Yamada T., Honda K. M(3) receptor antagonism by the novel antimuscarinic agent solifenacin in the urinary bladder and salivary gland. Naunyn Schmiedebergs Arch. Pharmacol. 2002;366(2):97–103. PubMed

Vesela R., Aronsson P., Andersson M., Wsol V., Tobin G. The potential of non-adrenergic, non-cholinergic targets in the treatment of interstitial cystitis/painful bladder syndrome. J. Physiol. Pharmacol. 2012;63(3):209–216. [PMID: 22791634]. PubMed

Burnstock G., Satchell D.G., Smythe A. A comparison of the excitatory and inhibitory effects of non-adrenergic, non-cholinergic nerve stimulation and exogenously applied ATP on a variety of smooth muscle preparations from different vertebrate species. Br. J. Pharmacol. 1972;46(2):234–242. [http://dx.doi.org/10.1111/ j.1476-5381.1972.tb06868.x]. [PMID: 4631338]. PubMed PMC

Ekstrom J., Asztely A., Tobin G. Parasympathetic non-adrenergic, non-cholinergic mechanisms in salivary glands and their role in reflex secretion. Eur. J. Morphol. 1998;36(Suppl.):208–212. [PMID: 9825924]. PubMed

Sokilde B., Mikkelsen I., Stensbol T.B., Andersen B., Ebdrup S., Krogsgaard-Larsen P., Falch E. Analogues of carbacholine: synthesis and relationship between structure and affinity for muscarinic and nicotinic acetylcholine receptors. Arch. Pharm. (Weinheim) 1996;329(2):95–104. [http://dx.doi.org/10.1002/ ardp.19963290207]. [PMID: 8851473]. PubMed

Tobin G., Sjogren C. Prejunctional facilitatory and inhibitory modulation of parasympathetic nerve transmission in the rabbit urinary bladder. J. Auton. Nerv. Syst. 1998;68(3):153–156. [http:// dx.doi.org/10.1016/S0165-1838(97)00128-8]. [PMID: 9626942]. PubMed

Gordon E., Lazarus S.C. Management of chronic obstructive pulmonary disease: moving beyond the asthma algorithm. J. Allergy Clin. Immunol. 2009;124(5):873–880. [http://dx.doi.org/10.1016/ j.jaci.2009.09.040]. [PMID: 19895979]. PubMed

Barnes P.J. The role of anticholinergics in chronic obstructive pulmonary disease. Am. J. Med. 2004;117(Suppl. 12A):24S–32S. PubMed

Gross N.J. The influence of anticholinergic agents on treatment for bronchitis and emphysema. Am. J. Med. 1991;91(4A):11S–12S. PubMed

Rodrigo G.J., Rodrigo C. Triple inhaled drug protocol for the treatment of acute severe asthma. Chest. 2003;123(6):1908–1915. [http://dx.doi.org/10.1378/chest.123.6.1908]. [PMID: 12796167]. PubMed

Cazzola M., Page C.P., Calzetta L., Matera M.G. Pharmacology and therapeutics of bronchodilators. Pharmacol. Rev. 2012;64(3):450–504. [http://dx.doi.org/10.1124/pr.111.004580]. [PMID: 22611179]. PubMed

Alabaster V.A. Discovery & development of selective M3 antagonists for clinical use. Life Sci. 1997;60(13-14):1053–1060. [http://dx. doi.org/10.1016/S0024-3205(97)00047-7]. [PMID: 9121347]. PubMed

Anthonisen N.R., Connett J.E., Enright P.L., Manfreda J. Hospitalizations and mortality in the Lung Health Study. Am. J. Respir. Crit. Care Med. 2002;166(3):333–339. [http://dx.doi.org/ 10.1164/rccm.2110093]. [PMID: 12153966]. PubMed

Kilbinger H., von Bardeleben R.S., Siefken H., Wolf D. Prejunctional muscarinic receptors regulating neurotransmitter release in airways. Life Sci. 1995;56(11-12):981–987. [http://dx. doi.org/10.1016/0024-3205(95)00037-7]. [PMID: 10188802]. PubMed

Sarria B., Naline E., Zhang Y., Cortijo J., Molimard M., Moreau J., Therond P., Advenier C., Morcillo E.J. Muscarinic M2 receptors in acetylcholine-isoproterenol functional antagonism in human isolated bronchus. Am. J. Physiol. Lung Cell. Mol. Physiol. 2002;283(5):L1125–L1132. [http://dx.doi.org/10.1152/ ajplung.00084.2002]. [PMID: 12376367]. PubMed

Saw L., Shumway J., Ruckart P. Surveillance data on pesticide and agricultural chemical releases and associated public health consequences in selected US states, 20032007. J. Med. Toxicol. 2011;7(2):164–171. PubMed PMC

Patel V., Ramasundarahettige C., Vijayakumar L., Thakur J.S., Gajalakshmi V., Gururaj G., Suraweera W., Jha P. Suicide mortality in India: a nationally representative survey. Lancet. 2012;379(9834):2343–2351. PubMed PMC

Bajgar J. Organophosphates/nerve agent poisoning: mechanism of action, diagnosis, prophylaxis, and treatment. Adv. Clin. Chem. 2004;38:151–216. PubMed

Korabecny J., Soukup O., Dolezal R., Spilovska K., Nepovimova E., Andrs M., Nguyen T.D., Jun D., Musilek K., Kucerova-Chlupacova M., Kuca K. From pyridinium-based to centrally active acetylcholinesterase reactivators. Mini Rev. Med. Chem. 2014;14(3):215–221. PubMed

Kassa J. Review of oximes in the antidotal treatment of poisoning by organophosphorus nerve agents. J. Toxicol. Clin. Toxicol. 2002;40(6):803–816. [http://dx.doi.org/10.1081/CLT-120015840]. [PMID: 12475193]. PubMed

Chandar N.B., Ganguly B. A first principles investigation of aging processes in soman conjugated AChE. Chem. Biol. Interact. 2013;204(3):185–190. [http://dx.doi.org/10.1016/j.cbi.2013.05.013]. [PMID: 23747845]. PubMed

Kuca K., Musilek K., Jun D., Pohanka M., Ghosh K.K., Hrabinova M. Oxime K027: novel low-toxic candidate for the universal reactivator of nerve agent- and pesticide-inhibited acetylcholinesterase. J. Enzyme Inhib. Med. Chem. 2010;25(4):509–512. [http://dx.doi.org/10.3109/14756360903357569]. [PMID: 20192902]. PubMed

Musilek K., Dolezal M., Gunn-Moore F., Kuca K. Design, evaluation and structure-activity relationship studies of the AChE reactivators against organophosphorus pesticides. Med. Res. Rev. 2011;31(4):548–575. [http://dx.doi.org/10.1002/med.20192]. [PMID: 20027669]. PubMed

Liston D.R., Nielsen J.A., Villalobos A., Chapin D., Jones S.B., Hubbard S.T., Shalaby I.A., Ramirez A., Nason D., White W.F. Pharmacology of selective acetylcholinesterase inhibitors: implications for use in Alzheimers disease. Eur. J. Pharmacol. 2004;486(1):9–17. PubMed

Mehndiratta M.M., Pandey S., Kuntzer T. Acetylcholinesterase inhibitor treatment for myasthenia gravis. Cochrane Database Syst. Rev. 2014;10(10):CD006986. PubMed PMC

Mareova P., Mohelska H., Dolejs J., Kuca K. Socio-economic aspects of Alzheimers disease. Curr. Alzheimer Res. 2015;12(9):903–911. [http://dx.doi.org/10.2174/156720501209151019111448]. [PMID: 26510983]. PubMed

Greig N.H., Utsuki T., Yu Q., Zhu X., Holloway H.W., Perry T., Lee B., Ingram D.K., Lahiri D.K. A new therapeutic target in Alzheimers disease treatment: attention to butyrylcholinesterase. Curr. Med. Res. Opin. 2001;17(3):159–165. [http://dx.doi.org/ 10.1185/03007990152673800]. [PMID: 11900310]. PubMed

Bajgar J., Fusek J., Kuca K., Bartosova L., Jun D. Treatment of organophosphate intoxication using cholinesterase reactivators: facts and fiction. Mini Rev. Med. Chem. 2007;7(5):461–466. [http://dx.doi.org/10.2174/138955707780619581]. [PMID: 17504181]. PubMed

Adem A. Putative Mechanisms of Action of Tacrine in Alzheimers-Disease. Acta Neurol. Scand. 1992;85:69–74. PubMed

Adem A., Mohammed A.K., Winblad B. Multiple effects of tetrahydroaminoacridine on the cholinergic system: biochemical and behavioural aspects. J. Neural Transm. Park. Dis. Dement. Sect. 1990;2(2):113–128. PubMed

Bajgar J., Skopec F., Herink J., Patocka J., Kvetina J. Effect of 7-methoxytacrine and L-carnitine on the activity of choline acetyltransferase. Gen. Physiol. Biophys. 1999;18(Spec No):3–6. PubMed

Lahiri D.K., Farlow M.R., Sambamurti K. The secretion of amyloid beta-peptides is inhibited in the tacrine-treated human neuroblastoma cells. Brain Res. Mol. Brain Res. 1998;62(2):131–140. PubMed

Lahiri D.K., Lewis S., Farlow M.R. Tacrine alters the secretion of the beta-amyloid precursor protein in cell lines. J. Neurosci. Res. 1994;37(6):777–787. PubMed

Tumiatti V., Minarini A., Bolognesi M.L., Milelli A., Rosini M., Melchiorre C. Tacrine derivatives and Alzheimers disease. Curr. Med. Chem. 2010;17(17):1825–1838. PubMed

Luo W., Li Y.P., He Y., Huang S.L., Li D., Gu L.Q., Huang Z.S. Synthesis and evaluation of heterobivalent tacrine derivatives as potential multi-functional anti-Alzheimer agents. Eur. J. Med. Chem. 2011;46(6):2609–2616. PubMed

Hamulakova S., Janovec L., Hrabinova M., Spilovska K., Korabecny J., Kristian P., Kuca K., Imrich J. Synthesis and biological evaluation of novel tacrine derivatives and tacrine-coumarin hybrids as cholinesterase inhibitors. J. Med. Chem. 2014;57(16):7073–7084. PubMed

Nepovimova E., Uliassi E., Korabecny J., Pena-Altamira L.E., Samez S., Pesaresi A., Garcia G.E., Bartolini M., Andrisano V., Bergamini C., Fato R., Lamba D., Roberti M., Kuca K., Monti B., Bolognesi M.L. Multitarget drug design strategy: quinone-tacrine hybrids designed to block amyloid-Iβ aggregation and to exert anticholinesterase and antioxidant effects. . J. Med. Chem. 2014;57(20):8576–8589. PubMed

Spilovska K., Korabecny J., Kral J., Horova A., Musilek K., Soukup O., Drtinova L., Gazova Z., Siposova K., Kuca K. Methoxytacrine-adamantylamine heterodimers as cholinesterase inhibitors in Alzheimers disease treatmentsynthesis, biological evaluation and molecular modeling studies. Molecules. 2013;18(2):2397–2418. PubMed PMC

Benchekroun M., Bartolini M., Egea J., Romero A., Soriano E., Pudlo M., Luzet V., Andrisano V., Jimeno M.L., LA3pez M.G., Wehle S., Gharbi T., Refouvelet B., de AndrA(c)s L., Herrera-Arozamena C., Monti B., Bolognesi M.L., Rodriguez-Franco M.I., Decker M., Marco-Contelles J., Ismaili L. Novel tacrine-grafted Ugi adducts as multipotent anti-Alzheimer drugs: a synthetic renewal in tacrineferulic acid hybrids. Chem.Med.Chem. 2015;10(3):523–539. PubMed

Esquivias-Perez M., Maalej E., Romero A., Chabchoub F., Samadi A., Marco-Contelles J., Oset-Gasque M.J. Nontoxic and neuroprotective β-naphthotacrines for Alzheimers disease. Chem. Res. Toxicol. 2013;26(6):986–992. PubMed

Gottwald M.D., Rozanski R.I. Rivastigmine, a brain-region selective acetylcholinesterase inhibitor for treating Alzheimers disease: review and current status. Expert Opin. Investig. Drugs. 1999;8(10):1673–1682. [http://dx.doi.org/10.1517/13543784.8. 10.1673]. [PMID: 11139819]. PubMed

Onor M.L., Trevisiol M., Aguglia E. Rivastigmine in the treatment of Alzheimers disease: an update. Clin. Interv. Aging. 2007;2(1):17–32. [http://dx.doi.org/10.2147/ciia.2007.2.1.17]. [PMID: 18044073]. PubMed PMC

Andin J., Enz A., Gentsch C., Marcusson J. Rivastigmine as a modulator of the neuronal glutamate transporter rEAAC1 mRNA expression. Dement. Geriatr. Cogn. Disord. 2005;19(1):18–23. [http://dx.doi.org/10.1159/000080966]. [PMID: 15383741]. PubMed

Bailey J.A., Ray B., Greig N.H., Lahiri D.K. Rivastigmine lowers AI and increases sAPPI± levels, which parallel elevated synaptic markers and metabolic activity in degenerating primary rat neurons. PLoS One. 2011;6(7):e21954. [EP -.]. [http://dx.doi.org/ 10.1371/journal.pone.0021954]. [PMID: 21799757]. PubMed PMC

Albuquerque E.X., Alkondon M., Pereira E.F., Castro N.G., Schrattenholz A., Barbosa C.T., Bonfante-Cabarcas R., Aracava Y., Eisenberg H.M., Maelicke A. Properties of neuronal nicotinic acetylcholine receptors: pharmacological characterization and modulation of synaptic function. J. Pharmacol. Exp. Ther. . 1997;280(3):1117–1136. PubMed

Schrattenholz A., Pereira E.F., Roth U., Weber K.H., Albuquerque E.X., Maelicke A. Agonist responses of neuronal nicotinic acetylcholine receptors are potentiated by a novel class of allosterically acting ligands. Mol. Pharmacol. 1996;49(1):1–6. PubMed

Coyle J., Kershaw P. Galantamine, a cholinesterase inhibitor that allosterically modulates nicotinic receptors: effects on the course of Alzheimers disease. Biol. Psychiatry. 2001;49(3):289–299. [http://dx.doi.org/10.1016/S0006-3223(00)01101-X]. [PMID: 11230880]. PubMed

Kryger G., Silman I., Sussman J.L. Structure of acetylcholinesterase complexed with E2020 (Aricept): implications for the design of new anti-Alzheimer drugs. Structure. 1999;7(3):297–307. [http://dx.doi.org/10.1016/S0969-2126(99)80040-9]. [PMID: 10368299]. PubMed

Inestrosa N.C., Alvarez A., PA(c)rez C.A., Moreno R.D., Vicente M., Linker C., Casanueva O.I., Soto C., Garrido J. Acetylcholinesterase accelerates assembly of amyloid-beta-peptides into Alzheimers fibrils: possible role of the peripheral site of the enzyme. Neuron. 1996;16(4):881–891. [http://dx.doi.org/10. 1016/S0896-6273(00)80108-7]. [PMID: 8608006]. PubMed

Birks J. Cholinesterase inhibitors for Alzheimers disease. Cochrane Database Syst. Rev. 2006;(1):CD005593. [PMID: 16437532]. PubMed PMC

Anand R., Gill K.D., Mahdi A.A. Therapeutics of Alzheimer's disease: Past, present and future. Neuropharmacology. 2014. pp. 27–50. PubMed

Phillips L.H., II The epidemiology of myasthenia gravis. Ann. N. Y. Acad. Sci. 2003;998:407–412. [http://dx.doi.org/10.1196/ annals.1254.053]. [PMID: 14592908]. PubMed

GarcA-a-Carrasco M., Escarcega R.O., Fuentes-Alexandro S., Riebeling C., Cervera R. Therapeutic options in autoimmune myasthenia gravis. Autoimmun. Rev. 2007;6(6):373–378. [http:// dx.doi.org/10.1016/j.autrev.2007.01.001]. [PMID: 17537383]. PubMed

Thanvi B.R., Lo T.C. Update on myasthenia gravis. Postgrad. Med. J. 2004;80(950):690–700. [http://dx.doi.org/10.1136/ pgmj.2004.018903]. [PMID: 15579606]. PubMed PMC

Hoch W., McConville J., Helms S., Newsom-Davis J., Melms A., Vincent A. Auto-antibodies to the receptor tyrosine kinase MuSK in patients with myasthenia gravis without acetylcholine receptor antibodies. Nat. Med. 2001;7(3):365–368. [http://dx.doi.org/10.1038/85520]. [PMID: 11231638]. PubMed

Punga A.R., Stalberg E. Acetylcholinesterase inhibitors in MG: to be or not to be? Muscle Nerve. 2009;39(6):724–728. [http://dx. doi.org/10.1002/mus.21319]. [PMID: 19260048]. PubMed

Richman D.P., Agius M.A. Treatment principles in the management of autoimmune myasthenia gravis. Ann. N. Y. Acad. Sci. 2003;998:457–472. [http://dx.doi.org/10.1196/annals.1254. 060]. [PMID: 14592915]. PubMed

Mehndiratta M.M., Pandey S., Kuntzer T. Acetylcholinesterase inhibitor treatment for myasthenia gravis. Cochrane Database Syst. Rev. 2011;(2):CD006986. [PMID: 21328290]. PubMed

Garcia-Carrasco M., Escarcega R.O., Fuentes-Alexandro S., Riebeling C., Cervera R. Therapeutic options in autoimmune myasthenia gravis. Autoimmun. Rev. 2007;6(6):373–378. [http:// dx.doi.org/10.1016/j.autrev.2007.01.001]. [PMID: 17537383]. PubMed

McNamara R., Mihalakis M.J. Acute colonic pseudo-obstruction: rapid correction with neostigmine in the emergency department. J. Emerg. Med. 2008;35(2):167–170. [http://dx.doi.org/10.1016/ j.jemermed.2007.06.043]. [PMID: 18242923]. PubMed

Hodge A.S., Humphrey D.R., Rosenberry T.L. Ambenonium is a rapidly reversible noncovalent inhibitor of acetylcholinesterase, with one of the highest known affinities. Mol. Pharmacol. 1992;41(5):937–942. [PMID: 1588924]. PubMed

Bolognesi M.L., Cavalli A., Andrisano V., Bartolini M., Banzi R., Antonello A., Rosini M., Melchiorre C. Design, synthesis and biological evaluation of ambenonium derivatives as AChE inhibitors. FARMACO. 2003;58(9):917–928. [http://dx.doi.org/ 10.1016/S0014-827X(03)00150-2]. [PMID: 13679187]. PubMed

Harada T., Fushimi K., Kato A., Ito Y., Nishijima S., Sugaya K., Yamada S. Demonstration of muscarinic and nicotinic receptor binding activities of distigmine to treat detrusor underactivity. Biol. Pharm. Bull. 2010;33(4):653–658. [http://dx.doi.org/10.1248/ bpb.33.653]. [PMID: 20410601]. PubMed

Komloova M., Musilek K., Dolezal M., Gunn-Moore F., Kuca K. Structure-activity relationship of quaternary acetylcholinesterase inhibitors - outlook for early myasthenia gravis treatment. Curr. Med. Chem. 2010;17(17):1810–1824. [http://dx.doi.org/10.2174/ 092986710791111198]. [PMID: 20345342]. PubMed

Maruyama S., Oki T., Otsuka A., Shinbo H., Ozono S., Kageyama S., Mikami Y., Araki I., Takeda M., Masuyama K., Yamada S. Human muscarinic receptor binding characteristics of antimuscarinic agents to treat overactive bladder. J. Urol. 2006;175(1):365–369. [http://dx.doi.org/10.1016/S0022-5347(05)00017-0]. [PMID: 16406943]. PubMed

Kobayashi S., Ikeda K., Miyata K. Comparison of in vitro selectivity profiles of solifenacin succinate (YM905) and current antimuscarinic drugs in bladder and salivary glands: a Ca2+ mobilization study in monkey cells. Life Sci. 2004;74(7):843–853. [http://dx.doi.org/10.1016/j.lfs.2003.07.019]. [PMID: 14659973]. PubMed

Kiwamoto H., Ma F.H., Higashira H., Park Y.C., Kurita T. Identification of muscarinic receptor subtypes of cultured smooth muscle cells and tissue of human bladder body. Int. J. Urol. 2001;8(10):557–563. [http://dx.doi.org/10.1046/j.1442-2042.2001.00370.x]. [PMID: 11737484]. PubMed

Mansfield K.J., Chandran J.J., Vaux K.J., Millard R.J., Christopoulos A., Mitchelson F.J., Burcher E. Comparison of receptor binding characteristics of commonly used muscarinic antagonists in human bladder detrusor and mucosa. J. Pharmacol. Exp. Ther. 2009;328(3):893–899. [http://dx.doi.org/10.1124/ jpet.108.145508]. [PMID: 19029429]. PubMed

Sinha S., Gupta S., Malhotra S., Krishna N.S., Meru A.V., Babu V., Bansal V., Garg M., Kumar N., Chugh A., Ray A. AE9C90CB: a novel, bladder-selective muscarinic receptor antagonist for the treatment of overactive bladder. Br. J. Pharmacol. 2010;160(5):1119–1127. [http://dx.doi.org/10.1111/ j.1476-5381.2010.00752.x]. [PMID: 20590605]. PubMed PMC

Winter M., Wille T., Musilek K., Kuca K., Thiermann H., Worek F. Investigation of the reactivation kinetics of a large series of bispyridinium oximes with organophosphate-inhibited human acetylcholinesterase. Toxicol. Lett. 2015;244:136–142. [PMID: 26210933]. PubMed

Horn G., Wille T., Musilek K., Kuca K., Thiermann H. PubMed

Worek F. Reactivation kinetics of 31 structurally different bispyridinium oximes with organophosphate-inhibited human butyrylcholinesterase. Arch. Toxicol. 2015;89(3):405–414. [http://dx.doi.org/10.1007/s00204-014-1288-5]. [PMID: 24912784]. PubMed

Musilek K., Komloova M., Holas O., Hrabinova M., Pohanka M., Dohnal V., Nachon F., Dolezal M., Kuca K. Preparation and in vitro screening of symmetrical bis-isoquinolinium cholinesterase inhibitors bearing various connecting linkageimplications for early Myasthenia gravis treatment. Eur. J. Med. Chem. 2011;46(2):811–818. [http://dx.doi.org/10.1016/j.ejmech.2010.12.011]. [PMID: 21236521]. PubMed

Soukup O., Jun D., Zdarova-Karasova J., Patocka J., Musilek K., Korabecny J., Krusek J., Kaniakova M., Sepsova V., Mandikova J., Trejtnar F., Pohanka M., Drtinova L., Pavlik M., Tobin G., Kuca K. A resurrection of 7-MEOTA: a comparison with tacrine. Curr. Alzheimer Res. 2013;10(8):893–906. [http://dx. doi.org/10.2174/1567205011310080011]. [PMID: 24093535]. PubMed

Zemek F., Drtinova L., Nepovimova E., Sepsova V., Korabecny J., Klimes J., Kuca K. Outcomes of Alzheimers disease therapy with acetylcholinesterase inhibitors and memantine. Expert Opin. Drug Saf. 2014;13(6):759–774. [PMID: 24845946]. PubMed

Luo W., Yu Q.S., Kulkarni S.S., Parrish D.A., Holloway H.W., Tweedie D., Shafferman A., Lahiri D.K., Brossi A., Greig N.H. Inhibition of human acetyl- and butyrylcholinesterase by novel carbamates of (-)- and (+)-tetrahydrofurobenzofuran and methanobenzodioxepine. J. Med. Chem. 2006;49(7):2174–2185. [http://dx.doi.org/10.1021/jm050578p]. [PMID: 16570913]. PubMed PMC

Triggle D.J., Filler R. The pharmacology of physostigmine. CNS Drug Rev. 1998;4:87–136. [http://dx.doi.org/10.1111/j.1527-3458.1998.tb00059.x].

Nakayama K., Katsu H., Kitazumi K. Effect of distigmine bromide on the central cholinergic system. J. Psychopharmacol. (Oxford) 2009;23(2):190–193. [http://dx.doi.org/10.1177/ 0269881108089817]. [PMID: 18515453]. PubMed

Soukup O., Kumar U.K., Proska J., Bratova L., Adem A., Jun D., Fusek J., Kuca K., Tobin G. The effect of oxime reactivators on muscarinic receptors: functional and binding examinations. Environ. Toxicol. Pharmacol. 2011;31(3):364–370. [http://dx. doi.org/10.1016/j.etap.2011.01.003]. [PMID: 21787706]. PubMed

Soukup O., Krusek J., Kaniakova M., Kumar U.K., Oz M., Jun D., Fusek J., Kuca K., Tobin G. Oxime reactivators and their in vivo and in vitro effects on nicotinic receptors. Physiol. Res. 2011;60(4):679–686. [PMID: 21574759]. PubMed

Sepsova V., Krusek J., Zdarova K.J., Zemek F., Musilek K., Kuca K., Soukup O. The interaction of quaternary reversible acetylcholinesterase inhibitors with the nicotinic receptor. Physiol. Res. 2014;63(6):771–777. [PMID: 25157661]. PubMed

Woodruff-Pak D.S., Lander C., Geerts H. Nicotinic cholinergic modulation: galantamine as a prototype. CNS Drug Rev. 2002;8(4):405–426. [http://dx.doi.org/10.1111/j.1527-3458.2002.tb00237. x]. [PMID: 12481195]. PubMed PMC

Ago Y., Koda K., Ota Y., Kita Y., Fukada A., Takuma K., Matsuda T. Donepezil, but not galantamine, blocks muscarinic receptor-mediated in vitro and in vivo responses. Synapse. 2011;65(12):1373–1377. [http://dx.doi.org/10.1002/syn.20969]. [PMID: 21780184]. PubMed

Di Angelantonio S., Bernardi G., Mercuri N.B. Donepezil modulates nicotinic receptors of substantia nigra dopaminergic neurones. Br. J. Pharmacol. 2004;141(4):644–652. [http://dx.doi. org/10.1038/sj.bjp.0705660]. [PMID: 14744806]. PubMed PMC

Moretti R., Torre P., Vilotti C., Antonello R.M., Pizzolato G. Rivastigmine and Parkinson dementia complex. Expert Opin. Pharmacother. 2007;8(6):817–829. [http://dx.doi.org/10.1517/ 14656566.8.6.817]. [PMID: 17425477]. PubMed

Smulders C.J., Zwart R., Bermudez I., van Kleef R.G., Groot-Kormelink P.J., Vijverberg H.P. Cholinergic drugs potentiate human nicotinic alpha4beta2 acetylcholine receptors by a competitive mechanism. Eur. J. Pharmacol. 2005;509(2-3):97–108. [http:// dx.doi.org/10.1016/j.ejphar.2004.12.037]. [PMID: 15733544]. PubMed

Perry E.K., Smith C.J., Court J.A., Bonham J.R., Rodway M., Atack J.R. Interaction of 9-amino-1,2,3,4-tetrahydroaminoacridine (THA) with human cortical nicotinic and muscarinic receptor binding in vitro. Neurosci. Lett. 1988;91(2):211–216. [http://dx. doi.org/10.1016/0304-3940(88)90770-7]. [PMID: 3185960]. PubMed

Volpe L.S., Biagioni T.M., Marquis J.K. In vitro modulation of bovine caudate muscarinic receptor number by organophosphates and carbamates. Toxicol. Appl. Pharmacol. 1985;78(2):226–234. [http://dx.doi.org/10.1016/0041-008X(85)90286-8]. [PMID: 4035678]. PubMed

Svobodova L., Krusek J., Hendrych T., Vyskocil F. Physostigmine modulation of acetylcholine currents in COS cells transfected with mouse muscle nicotinic receptor. Neurosci. Lett. 2006;401(1-2):20–24. [http://dx.doi.org/10.1016/j.neulet.2006.02. 065]. [PMID: 16530961]. PubMed

Clarke P.B., Reuben M., el-Bizri H. Blockade of nicotinic responses by physostigmine, tacrine and other cholinesterase inhibitors in rat striatum. Br. J. Pharmacol. 1994;111(3):695–702. [http://dx.doi.org/10.1111/j.1476-5381.1994.tb14793.x]. [PMID: 8019748]. PubMed PMC

Lockhart B., Closier M., Howard K., Steward C., Lestage P. Differential inhibition of [3H]-oxotremorine-M and [3H]-quinuclinidyl benzilate binding to muscarinic receptors in rat brain membranes with acetylcholinesterase inhibitors. Naunyn Schmiedebergs Arch. Pharmacol. 2001;363(4):429–438. [http:// dx.doi.org/10.1007/s002100000382]. [PMID: 11330337]. PubMed

Craig C.R., Stitzel R.E. Modern pharmacology with clinical applications. Lippincott Williams & Wilkins; 2004.

Pascuzzo G.J., Akaike A., Maleque M.A., Shaw K.P., Aronstam R.S., Rickett D.L., Albuquerque E.X. The nature of the inter- actions of pyridostigmine with the nicotinic acetylcholine receptor-ionic channel complex. I. Agonist, desensitizing, and binding properties. Mol. Pharmacol. 1984;25(1):92–101. [PMID: 6323955]. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...