Acetylcholinesterase Inhibitors and Drugs Acting on Muscarinic Receptors- Potential Crosstalk of Cholinergic Mechanisms During Pharmacological Treatment
Jazyk angličtina Země Spojené arabské emiráty Médium print
Typ dokumentu časopisecké články, přehledy
PubMed
27281175
PubMed Central
PMC5543679
DOI
10.2174/1570159x14666160607212615
PII: CN-EPUB-76364
Knihovny.cz E-zdroje
- Klíčová slova
- Acetylcholine, acetylcholinesterase, muscarinic receptor subtypes, pharmacotherapy,
- MeSH
- cholinesterasové inhibitory farmakologie MeSH
- interakce mezi receptory a ligandy účinky léků MeSH
- lidé MeSH
- receptory muskarinové účinky léků MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- cholinesterasové inhibitory MeSH
- receptory muskarinové MeSH
BACKGROUND: Pharmaceuticals with targets in the cholinergic transmission have been used for decades and are still fundamental treatments in many diseases and conditions today. Both the transmission and the effects of the somatomotoric and the parasympathetic nervous systems may be targeted by such treatments. Irrespective of the knowledge that the effects of neuronal signalling in the nervous systems may include a number of different receptor subtypes of both the nicotinic and the muscarinic receptors, this complexity is generally overlooked when assessing the mechanisms of action of pharmaceuticals. METHODS: We have search of bibliographic databases for peer-reviewed research literature focused on the cholinergic system. Also, we have taken advantage of our expertise in this field to deduce the conclusions of this study. RESULTS: Presently, the life cycle of acetylcholine, muscarinic receptors and their effects are reviewed in the major organ systems of the body. Neuronal and non-neuronal sources of acetylcholine are elucidated. Examples of pharmaceuticals, in particular cholinesterase inhibitors, affecting these systems are discussed. The review focuses on salivary glands, the respiratory tract and the lower urinary tract, since the complexity of the interplay of different muscarinic receptor subtypes is of significance for physiological, pharmacological and toxicological effects in these organs. CONCLUSION: Most pharmaceuticals targeting muscarinic receptors are employed at such large doses that no selectivity can be expected. However, some differences in the adverse effect profile of muscarinic antagonists may still be explained by the variation of expression of muscarinic receptor subtypes in different organs. However, a complex pattern of interactions between muscarinic receptor subtypes occurs and needs to be considered when searching for selective pharmaceuticals. In the development of new entities for the treatment of for instance pesticide intoxication, the muscarinic receptor selectivity needs to be considered. Reactivators generally have a muscarinic M2 receptor acting profile. Such a blockade may engrave the situation since it may enlarge the effect of the muscarinic M3 receptor effect. This may explain why respiratory arrest is the major cause for deaths by esterase blocking.
Biomedical Research Centre University Hospital Hradec Kralove Czech Republic
Biomedical Research Centre University Hospital Hradec Kralove Hradec Kralove Czech Republic
Zobrazit více v PubMed
Heller B.J., Laiken N. In Goodman Gilman's The Pharmacological Basis of Therapeutics; New York: The McGraw-Hill Companies; 2011. Muscarinic Receptor Agonists and Antagonists. pp. 219–238.
Whitson J.T. Glaucoma: a review of adjunctive therapy and new management strategies. Expert Opin. Pharmacother. 2007;8(18):3237–3249. PubMed
Prat M., GavaldA A., Fonquerna S., Miralpeix M. Inhaled muscarinic antagonists for respiratory diseases: a review of patents and current developments (2006 - 2010). Expert Opin. Ther. Pat. 2011;21(10):1543–1573. PubMed
Holley A.D., Boots R.J. Review article: management of acute severe and nearfatal asthma. Emerg. Med. Australas. 2009;21(4):259–268. PubMed
Dmochowski R.R., Gomelsky A. Update on the treatment of overactive bladder. Curr. Opin. Urol. 2011;21(4):286–290. PubMed
Langmead C.J., Watson J., Reavill C. Muscarinic acetylcholine receptors as CNS drug targets. Pharmacol. Ther. 2008;117(2):232–243. [http://dx.doi.org/10.1016/j.pharmthera.2007.09.009]. [PMID: 18082893]. PubMed
Abrams P., Andersson K.E., Buccafusco J.J., Chapple C., de Groat W.C., Fryer A.D., Kay G., Laties A., Nathanson N.M., Pasricha P.J., Wein A.J. Muscarinic receptors: their distribution and function in body systems, and the implications for treating overactive bladder. Br. J. Pharmacol. 2006;148(5):565–578. PubMed PMC
Eglen R. M. Overview of muscarinic receptor subtypes. Handb Exp. Pharmacol. 2012;208:3–28. PubMed
Marrs T.C. Organophosphate poisoning. Pharmacol. Ther. 1993;58(1):51–66. [http://dx.doi.org/10.1016/0163-7258(93)90066-M]. [PMID: 8415873]. PubMed
Hamilton M.G., Lundy P.M. HI-6 therapy of soman and tabun poisoning in primates and rodents. Arch. Toxicol. 1989;63(2):144–149. PubMed
Tattersall J.E. Ion channel blockade by oximes and recovery of diaphragm muscle from soman poisoning in vitro. Br. J. Pharmacol. 1993;108(4):1006–1015. PubMed PMC
van Helden H.P., Busker R.W., Melchers B.P., Bruijnzeel P.L. Pharmacological effects of oximes: how relevant are they? Arch. Toxicol. 1996;70(12):779–786. PubMed
van Helden H.P., van der Wiel H.J., de Lange J., Busker R.W., Melchers B.P., Wolthuis O.L. Therapeutic efficacy of HI-6 in soman-poisoned marmoset monkeys. Toxicol. Appl. Pharmacol. 1992;115(1):50–56. PubMed
Soukup O., Jun D., Tobin G., Kuca K. The summary on non-reactivation cholinergic properties of oxime reactivators: the interaction with muscarinic and nicotinic receptors. 2013 PubMed
Soukup O., Tobin G., Kumar U.K., Jun D., Fusek J., Kuca K. Characterization of the anticholinergic properties of obidoxime; functional examinations of the rat atria and the urinary bladder. Toxicol. Mech. Methods. 2010;20(7):428–433. [http://dx.doi.org/ 10.3109/15376516.2010.497974]. [PMID: 20602545]. PubMed
Tobin G., Giglio D., Lundgren O. Muscarinic receptor subtypes in the alimentary tract. J. Physiol. Pharmacol. 2009;60(1):3–21. [PMID: 19439804]. PubMed
Horiuchi Y., Kimura R., Kato N., Fujii T., Seki M., Endo T., Kato T., Kawashima K. Evolutional study on acetylcholine expression. Life Sci. 2003;72(15):1745–1756. [http://dx.doi.org/ 10.1016/S0024-3205(02)02478-5]. [PMID: 12559395]. PubMed
Wessler I.K., Kirkpatrick C.J. Activation of muscarinic receptors by non-neuronal acetylcholine. Handbook Exp. Pharmacol. 2012;208:469–491. PubMed
Eglen R.M. Muscarinic receptor subtypes in neuronal and non-neuronal cholinergic function. Auton. Autacoid Pharmacol. 2006;26(3):219–233. [http://dx.doi.org/10.1111/j.1474-8673.2006.00368.x]. [PMID: 16879488]. PubMed
Roy A., Fields W.C., Rocha-Resende C., Resende R.R., Guatimosim S., Prado V.F., Gros R., Prado M.A. Cardiomyocytesecreted acetylcholine is required for maintenance of homeostasis in the heart. FASEB J. 2013;27(12):5072–5082. PubMed PMC
Rocha-Resende C., Roy A., Resende R., Ladeira M.S., Lara A., de Morais Gomes E.R., Prado V.F., Gros R., Guatimosim C., Prado M.A., Guatimosim S. Non-neuronal cholinergic machinery present in cardiomyocytes offsets hypertrophic signals. J. Mol. Cell. Cardiol. 2012;53(2):206–216. PubMed PMC
Rand J. B. WormBook . 2007. Acetylcholine. pp. 1–21. PubMed PMC
White H.L., Wu J.C. Choline and carnitine acetyltransferases of heart. Biochemistry. 1973;12(5):841–846. [http://dx.doi.org/10. 1021/bi00729a009]. [PMID: 4686801]. PubMed
Tucek S. The synthesis of acetylcholine in skeletal muscles of the rat. J. Physiol. 1982;322:53–69. [http://dx.doi.org/10.1113/ jphysiol.1982.sp014022]. [PMID: 7069630]. PubMed PMC
Hanna-Mitchell A.T., Beckel J.M., Barbadora S., Kanai A.J., de Groat W.C., Birder L.A. Non-neuronal acetylcholine and urinary bladder urothelium. Life Sci. 2007;80(24-25):2298–2302. [http://dx.doi.org/10.1016/j.lfs.2007.02.010]. [PMID: 17363007]. PubMed PMC
Abramochkin D.V., Borodinova A.A., Rosenshtraukh L.V., Nikolsky E.E. Both neuronal and non-neuronal acetylcholine take part in non-quantal acetylcholine release in the rat atrium. Life Sci. 2012;91(21-22):1023–1026. PubMed
Thesleff S. Functional aspects of quantal and non-quantal release of acetylcholine at the neuromuscular junction. Prog. Brain Res. 1990;84:93–99. PubMed
Katz B., Miledi R. Suppression of transmitter release at the neuromuscular junction. Proc. R. Soc. Lond. B Biol. Sci. 1977;196(1125):465–469. PubMed
Straughan D.W. The release of acetylcholine from mammalian motor nerve endings. Br. Pharmacol. Chemother. 1960;15(3):417–424. PubMed PMC
Mitchell J.F., Silver A. The spontaneous release of acetylcholine from the denervated hemidiaphragm of the rat. J. Physiol. 1963;165(1):117–129. PubMed PMC
Beaumont M., BatA(c)jat D., Coste O., Doireau P., Chauffard F., Enslen M., Lagarde D., Pierard C. Recovery after prolonged sleep deprivation: residual effects of slow-release caffeine on recovery sleep, sleepiness and cognitive functions. Neuropsychobiology. 2005;51(1):16–27. PubMed
Sabatini B.L., Regehr W.G. Timing of synaptic transmission. Annu. Rev. Physiol. 1999;61:521–542. PubMed
Geppert M., Sudhof T.C. RAB3 and synaptotagmin: the yin and yang of synaptic membrane fusion. Annu. Rev. Neurosci. 1998;21:75–95. [http://dx.doi.org/10.1146/annurev.neuro.21.1.75]. [PMID: 9530492]. PubMed
Whyte J.R., Munro S. Vesicle tethering complexes in membrane traffic. J. Cell Sci. 2002;115(Pt 13):2627–2637. PubMed
Shi L., Shen Q.T., Kiel A., Wang J., Wang H.W., Melia T.J., Rothman J.E., Pincet F. SNARE proteins: one to fuse and three to keep the nascent fusion pore open. Science. 2012;335(6074):1355–1359. PubMed PMC
Dai H., Shen N., AraA D., Rizo J. A quaternary SNARE-synaptotagmin-Ca2+- phospholipid complex in neurotransmitter release. J. Mol. Biol. 2007;367(3):848–863. PubMed PMC
Kuffler S.W., Yoshikami D. The distribution of acetylcholine sensitivity at the post-synaptic membrane of vertebrate skeletal twitch muscles: iontophoretic mapping in the micron range. J. Physiol. 1975;244(3):703–730. PubMed PMC
Kuffler S.W., Yoshikami D. The number of transmitter molecules in a quantum: an estimate from iontophoretic application of acetylcholine at the neuromuscular synapse. J. Physiol. 1975;251(2):465–482. [http://dx.doi.org/10.1113/jphysiol.1975.sp011103]. [PMID: 171380]. PubMed PMC
Vyskocil F., Malomouzh A.I., Nikolsky E.E. Non-quantal acetylcholine release at the neuromuscular junction. Physiol. Res. 2009;58(6):763–784. [PMID: 20059289]. PubMed
Wessler I., Roth E., Deutsch C., Brockerhoff P., Bittinger F., Kirkpatrick C.J., Kilbinger H. Release of non-neuronal acetylcholine from the isolated human placenta is mediated by organic cation transporters. Br. J. Pharmacol. 2001;134(5):951–956. [http://dx.doi.org/10.1038/sj.bjp.0704335]. [PMID: 11682442]. PubMed PMC
Kummer W., Wiegand S., Akinci S., Wessler I., Schinkel A.H., Wess J., Koepsell H., Haberberger R.V., Lips K.S. Role of acetylcholine and polyspecific cation transporters in serotonin-induced bronchoconstriction in the mouse. Respir. Res. 2006;7(1):65. [http://dx.doi.org/10.1186/1465-9921-7-65]. [PMID: 16608531]. PubMed PMC
Girard E., Bernard V., Minic J., Chatonnet A., Krejci E., Molgo J. Butyrylcholinesterase and the control of synaptic responses in acetylcholinesterase knockout mice. Life Sci. 2007;80(24-25):2380–2385. [http://dx.doi.org/10.1016/j.lfs.2007.03.011]. [PMID: 17467011]. PubMed
Greig N.H., Reale M., Tata A.M. New pharmacological approaches to the cholinergic system: an overview on muscarinic receptor ligands and cholinesterase inhibitors. Recent Patents CNS Drug Discov. 2013;8(2):123–141. [http://dx.doi.org/10.2174/ 1574889811308020003]. [PMID: 23597304]. PubMed PMC
Hurst R., Rollema H., Bertrand D. Nicotinic acetylcholine receptors: from basic science to therapeutics. Pharmacol. Ther. 2013;137(1):22–54. [http://dx.doi.org/10.1016/j.pharmthera.2012. 08.012]. [PMID: 22925690]. PubMed
Schecter W.P. Cholinergic symptoms due to nerve agent attack: a strategy for management. Anesthesiol. Clin. North America. 2004;22(3):579–590. [viii.]. PubMed
Namba T. Cholinesterase inhibition by organophosphorus compounds and its clinical effects. Bull. World Health Organ. 1971;44(1-3):289–307. [PMID: 4941660]. PubMed PMC
Perry E., Walker M., Grace J., Perry R. Acetylcholine in mind: a neurotransmitter correlate of consciousness? Trends Neurosci. 1999;22(6):273–280. [http://dx.doi.org/10.1016/S0166-2236(98) 01361-7]. [PMID: 10354606]. PubMed
Scarr E. Muscarinic receptors: their roles in disorders of the central nervous system and potential as therapeutic targets. CNS Neurosci. Ther. 2012;18(5):369–379. [http://dx.doi.org/10.1111/j.1755-5949.2011.00249.x]. [PMID: 22070219]. PubMed PMC
Itier V., Bertrand D. Neuronal nicotinic receptors: from protein structure to function. FEBS Lett. 2001;504(3):118–125. [http://dx.doi.org/10.1016/S0014-5793(01)02702-8]. [PMID: 11532443]. PubMed
Broad L.M., Zwart R., Pearson K.H., Lee M., Wallace L., McPhie G.I., Emkey R., Hollinshead S.P., Dell C.P., Baker S.R., Sher E. Identification and pharmacological profile of a new class of selective nicotinic acetylcholine receptor potentiators. J. Pharmacol. Exp. Ther. 2006;318(3):1108–1117. PubMed
Jürgensen S., Ferreira S.T. Nicotinic receptors, amyloid-beta, and synaptic failure in Alzheimers disease. J. Mol. Neurosci. 2010;40(1-2):221–229. PubMed
Marchi M., Grilli M. Presynaptic nicotinic receptors modulating neurotransmitter release in the central nervous system: functional interactions with other coexisting receptors. Prog. Neurobiol. 2010;92(2):105–111. [http://dx.doi.org/10.1016/j.pneurobio.2010. 06.004]. [PMID: 20558239]. PubMed
Wonnacott S. Presynaptic nicotinic ACh receptors. Trends Neurosci. 1997;20(2):92–98. [http://dx.doi.org/10.1016/S0166-2236(96)10073-4]. [PMID: 9023878]. PubMed
Takada-Takatori Y., Kume T., Izumi Y., Ohgi Y., Niidome T., Fujii T., Sugimoto H., Akaike A. Roles of nicotinic receptors in acetylcholinesterase inhibitor-induced neuroprotection and nicotinic receptor up-regulation. Biol. Pharm. Bull. 2009;32(3):318–324. [http://dx.doi.org/10.1248/bpb.32.318]. [PMID: 19252271]. PubMed
Baum B.J., Wellner R.B. Receptors in salivary glands. In: Neuronal Mechanisms of Salivary Secretion; In: Garrett J.R., Ekstrom J., Anderson L.C., editors. Karger: Basel. Vol. 3. 1999. pp. 44–58.
Caulfield M.P. Muscarinic receptorscharacterization, coupling and function. Pharmacol. Ther. 1993;58(3):319–379. PubMed
Dai Y.S., Ambudkar I.S., Horn V.J., Yeh C.K., Kousvelari E.E., Wall S.J., Li M., Yasuda R.P., Wolfe B.B., Baum B.J. Evidence that M3 muscarinic receptors in rat parotid gland couple to two second messenger systems. Am. J. Physiol. 1991;261(6 Pt 1):C1063–C1073. PubMed
Bockman C.S., Bradley M.E., Dang H.K., Zeng W., Scofield M.A., Dowd F.J. Molecular and pharmacological characterization of muscarinic receptor subtypes in a rat parotid gland cell line: comparison with native parotid gland. J. Pharmacol. Exp. Ther. 2001;297(2):718–726. PubMed
Culp D.J., Luo W., Richardson L.A., Watson G.E., Latchney L.R. Both M1 and M3 receptors regulate exocrine secretion by mucous acini. Am. J. Physiol. 1996;271(6 Pt 1):C1963–C1972. PubMed
Gautam D., Heard T.S., Cui Y., Miller G., Bloodworth L., Wess J. Cholinergic stimulation of salivary secretion studied with M1 and M3 muscarinic receptor single- and double-knockout mice. Mol. Pharmacol. 2004;66(2):260–267. PubMed
Tobin G. Muscarinic receptor subtypes in the submandibular gland and the urinary bladder of the rabbit: in vivo and in vitro functional comparisons of receptor antagonists. J. Auton. Pharmacol. 1995;15(6):451–463. PubMed
EkstrAm J., Godoy T., Riva A. Clozapine: agonistic and antagonistic salivary secretory actions. J. Dent. Res. 2010;89(3):276–280. PubMed
Tobin G., Ryberg A.T., Gentle S., Edwards A.V. Distribution and function of muscarinic receptor subtypes in the ovine submandibular gland. J. Appl. Physiol. 2006;100(4):1215–1223. [http://dx.doi.org/10.1152/japplphysiol.00779.2005]. [PMID: 16322368]. PubMed
Tobin G., Sjogren C. In vivo and in vitro effects of muscarinic receptor antagonists on contractions and release of [3H]acetylcholine in the rabbit urinary bladder. Eur. J. Pharmacol. 1995;281(1):1–8. PubMed
Tobin G. Presynaptic muscarinic M1 and M2 receptor modulation of auriculotemporal nerve transmission in the rat. J. Auton. Nerv. Syst. 1998;72(1):61–71. PubMed
Tobin G. Presynaptic muscarinic receptor mechanisms and submandibular responses to stimulation of the parasympathetic innervation in bursts in rats. Auton. Neurosci. 2002;99(2):111–118. PubMed
EkstrAm J., Garrett J.R., Mansson B., Tobin G. The effects of atropine and chronic sympathectomy on maximal parasympathetic stimulation of parotid saliva in rats. J. Physiol. 1988;403:105–116. [http://dx.doi.org/10.1113/jphysiol.1988.sp017241]. [PMID: 2473192]. PubMed PMC
Tobin G., EkstrAm J., Bloom S.R., Edwards A.V. Atropine-resistant submandibular responses to stimulation of the parasympathetic innervation in the anaesthetized ferret. J. Physiol. 1991;437:327–339. [http://dx.doi.org/10.1113/jphysiol.1991. sp018598]. [PMID: 1890638]. PubMed PMC
Ryberg A.T., Selberg H., Soukup O., Gradin K., Tobin G. Cholinergic submandibular effects and muscarinic receptor expression in blood vessels of the rat. Arch. Oral Biol. 2008;53(7):605–616. [http://dx.doi.org/10.1016/j.archoralbio.2008.01.016]. [PMID: 18329001]. PubMed
Giglio D., Tobin G. Muscarinic receptor subtypes in the lower urinary tract. Pharmacology. 2009;83(5):259–269. [http://dx.doi. org/10.1159/000209255]. [PMID: 19295256]. PubMed
Mansfield K.J., Liu L., Mitchelson F.J., Moore K.H., Millard R.J., Burcher E. Muscarinic receptor subtypes in human bladder detrusor and mucosa, studied by radioligand binding and quantitative competitive RT-PCR: changes in ageing. Br. J. Pharmacol. 2005;144(8):1089–1099. [http://dx.doi.org/10.1038/ sj.bjp.0706147]. [PMID: 15723094]. PubMed PMC
Zarghooni S., Wunsch J., Bodenbenner M., BrA1/4ggmann D., Grando S.A., Schwantes U., Wess J., Kummer W., Lips K.S. Expression of muscarinic and nicotinic acetylcholine receptors in the mouse urothelium. Life Sci. 2007;80(24-25):2308–2313. [http://dx.doi.org/10.1016/j.lfs.2007.01.046]. [PMID: 17337281]. PubMed
Birder L.A. More than just a barrier: urothelium as a drug target for urinary bladder pain. Am. J. Physiol. Renal Physiol. 2005;289(3):F489–F495. [http://dx.doi.org/10.1152/ajprenal.00467. 2004]. [PMID: 16093424]. PubMed
Kanai A.J. Afferent mechanism in the urinary tract. Handbook Exp. Pharmacol. 2011;202:171–205. PubMed
Alberts P. Classification of the presynaptic muscarinic receptor subtype that regulates 3H-acetylcholine secretion in the guinea pig urinary bladder in vitro. J. Pharmacol. Exp. Ther. 1995;274(1):458–468. [PMID: 7616431]. PubMed
Nandigama R., Bonitz M., Papadakis T., Schwantes U., Bschleipfer T., Kummer W. Muscarinic acetylcholine receptor subtypes expressed by mouse bladder afferent neurons. Neuroscience. 2010;168(3):842–850. [http://dx.doi.org/10.1016/j. neuroscience.2010.04.012]. [PMID: 20394802]. PubMed
Kim Y., Yoshimura N., Masuda H., de Miguel F., Chancellor M.B. Antimuscarinic agents exhibit local inhibitory effects on muscarinic receptors in bladder-afferent pathways. Urology. 2005;65(2):238–242. [http://dx.doi.org/10.1016/j.urology.2004.11.021]. [PMID: 15708029]. PubMed
Birder L.A. Urinary bladder urothelium: molecular sensors of chemical/thermal/mechanical stimuli. Vascul. Pharmacol. 2006;45(4):221–226. [http://dx.doi.org/10.1016/j.vph.2005.08.027]. [PMID: 16891158]. PubMed
Sun Y., Keay S., De Deyne P.G., Chai T.C. Augmented stretch activated adenosine triphosphate release from bladder uroepithelial cells in patients with interstitial cystitis. J. Urol. 2001;166(5):1951–1956. PubMed
Buckner S.A., Milicic I., Daza A.V., Coghlan M.J., Gopalakrishnan M. Spontaneous phasic activity of the pig urinary bladder smooth muscle: characteristics and sensitivity to potassium channel modulators. J. Pharmacol. 2002;135(3):639–648. PubMed PMC
Giglio D., Ryberg A.T., To K., Delbro D.S., Tobin G. Altered muscarinic receptor subtype expression and functional responses in cyclophosphamide induced cystitis in rats. Auton. Neurosci. 2005;122(1-2):9–20. PubMed
Andersson M., Aronsson P., Doufish D., Lampert A., Tobin G. Muscarinic receptor subtypes involved in urothelium-derived relaxatory effects in the inflamed rat urinary bladder. Auton. Neurosci.: basic & clinical, 2012, 170, 5 -11.b. Andersson, M.C.; Tobin, G.; Giglio, D. Cholinergic nitric oxide release from the urinary bladder mucosa in cyclophosphamide-induced cystitis of the anaesthetized rat. Br. J. Pharmacol. 2008;153(7):1438–1444. [http://dx.doi.org/10.1038/bjp.2008.6]. [PMID: 18246091]. PubMed
Killi U.K., Wsol V., Soukup O., Kuca K., Winder M., Tobin G. In vitro functional interactions of acetylcholine esterase inhibitors and muscarinic receptor antagonists in the urinary bladder of the rat. Clin. Exp. Pharmacol. Physiol. 2014;41(2):139–146. [http://dx.doi.org/10.1111/1440-1681.12191]. [PMID: 24341923]. PubMed
Giglio D., Delbro D.S., Tobin G. Postjunctional modulation by muscarinic M2 receptors of responses to electrical field stimulation of rat detrusor muscle preparations. Auton. Autacoid Pharmacol. 2005;25(3):113–120. PubMed
Hegde S.S., Choppin A., Bonhaus D., Briaud S., Loeb M., Moy T.M., Loury D., Eglen R.M. Functional role of M2 and M3 muscarinic receptors in the urinary bladder of rats in vitro and in vivo. Br. J. Pharmacol. 1997;120(8):1409–1418. PubMed PMC
DAgostino G., Bolognesi M.L., Lucchelli A., Vicini D., Balestra B., Spelta V., Melchiorre C., Tonini M. Prejunctional muscarinic inhibitory control of acetylcholine release in the human isolated detrusor: involvement of the M4 receptor subtype. Br. J. Pharmacol. 2000;129(3):493–500. [http://dx.doi.org/10.1038/ sj.bjp.0703080]. [PMID: 10711347]. PubMed PMC
Ehlert F.J. Contractile role of M2 and M3 muscarinic receptors in gastrointestinal, airway and urinary bladder smooth muscle. Life Sci. 2003;74(2-3):355–366. PubMed
Hirshman C.A., Lande B., Croxton T.L. Role of M2 muscarinic receptors in airway smooth muscle contraction. Life Sci. 1999;64(6-7):443–448. PubMed
Zaagsma J., Roffel A.F., Meurs H. Muscarinic control of airway function. Life Sci. 1997;60(13-14):1061–1068. [http://dx.doi.org/ 10.1016/S0024-3205(97)00048-9]. [PMID: 9121348]. PubMed
Killingsworth C.R., Robinson N.E. The role of muscarinic M1 and M2 receptors in airway constriction in the cat. Eur. J. Pharmacol. 1992;210(3):231–238. [http://dx.doi.org/10.1016/ 0014-2999(92)90409-W]. [PMID: 1612100]. PubMed
Aas P., Maclagan J. Evidence for prejunctional M2 muscarinic receptors in pulmonary cholinergic nerves in the rat. Br. J. Pharmacol. 1990;101(1):73–76. PubMed PMC
DAgostino G., Barbieri A., Chiossa E., Tonini M. M4 muscarinic autoreceptormediated inhibition of -3H-acetylcholine release in the rat isolated urinary bladder. J. Pharmacol. Exp. Ther. 1997;283(2):750–756. PubMed
Pieper M.P. The non-neuronal cholinergic system as novel drug target in the airways. Life Sci. 2012;91(21-22):1113–1118. [http://dx.doi.org/10.1016/j.lfs.2012.08.030]. [PMID: 22982180]. PubMed
van der Velden V.H., Hulsmann A.R. Autonomic innervation of human airways: structure, function, and pathophysiology in asthma. Neuroimmunomodulation, 1999;6(3):145–159. PubMed
Edwards A.V. Garrett J.R., EkstrAm J., Anderson L.C., editors. Autonomic Control of Salivary Blood Flow. In: Glandular Mechanisms of Salivary Secretion; Karger: Basel, . 1998;10:101–117.
Matran R. Neural control of lower airway vasculature. Involvement of classical transmitters and neuropeptides. Acta Physiol. Scand. Suppl. 1991;601:1–54. PubMed
Orii R., Sugawara Y., Sawamura S., Yamada Y. M(3) muscarinic receptors mediate acetylcholine-induced pulmonary vasodilation in pulmonary hypertension. Biosci. Trends. 2010;4(5):260–266. PubMed
Sasaki F., ParA(c) P., Ernest D., Bai T., Verburgt L., March R., Baile E. Endogenous nitric oxide influences acetylcholine-induced bronchovascular dilation in sheep. J. Appl. Physiol. 1995;78(2):539–545. [PMID: 7759423]. PubMed
Peyter A.C., Muehlethaler V., Liaudet L., Marino M., Di Bernardo S., Diaceri G., Tolsa J.F. Muscarinic receptor M1 and phosphodiesterase 1 are key determinants in pulmonary vascular dysfunction following perinatal hypoxia in mice. Am. J. Physiol. Lung Cell. Mol. Physiol. 2008;295(1):L201–L213. [http://dx.doi. org/10.1152/ajplung.00264.2007]. [PMID: 18469116]. PubMed
Kummer W., Lips K.S., Pfeil U. The epithelial cholinergic system of the airways. Histochem. Cell Biol. 2008;130(2):219–234. [http://dx.doi.org/10.1007/s00418-008-0455-2]. [PMID: 18566825]. PubMed PMC
Higgins C.B., Vatner S.F., Braunwald E. Parasympathetic control of the heart. Pharmacol. Rev. 1973;25(1):119–155. [PMID: 4348231]. PubMed
Brodde O.E., Bruck H., Leineweber K., Seyfarth T. Presence, distribution and physiological function of adrenergic and muscarinic receptor subtypes in the human heart. Basic Res. Cardiol. 2001;96(6):528–538. [http://dx.doi.org/10.1007/s003950170003]. [PMID: 11770070]. PubMed
Myslivecek J., Klein M., Novakova M., Ricny J. The detection of the non-M2 muscarinic receptor subtype in the rat heart atria and ventricles. Naunyn Schmiedebergs Arch. Pharmacol. 2008;378(1):103–116. PubMed
Perez C. C., Tobar I. D., Jimenez E., Castaneda D., Rivero M. B., Concepcion J. L., Chiurillo M. A., Bonfante-Cabarcas R. Kinetic and molecular evidences that human cardiac muscle express non-M2 muscarinic receptor subtypes that are able to interact themselves. Pharmacol. Res. Off. J. Ital. Pharmacol. Soc. 2006;54(5):345–55. PubMed
Abramochkin D.V., Tapilina S.V., Sukhova G.S., Nikolsky E.E., Nurullin L.F. Functional M3 cholinoreceptors are present in pacemaker and working myocardium of murine heart. . Pflugers Arch. 2012;463(4):523–529. PubMed
Woo S.H., Lee B.H., Kwon K.I., Lee C.O. Excitatory effect of M1 muscarinic acetylcholine receptor on automaticity of mouse heart. Arch. Pharm. Res. 2005;28(8):930–935. PubMed
Hardouin S.N., Richmond K.N., Zimmerman A., Hamilton S.E., Feigl E.O., Nathanson N.M. Altered cardiovascular responses in mice lacking the M(1) muscarinic acetylcholine receptor. J. Pharmacol. Exp. Ther. 2002;301(1):129–137. PubMed
Krejc A.A., Tucek S. Quantitation of mRNAs for M(1) to M(5) subtypes of muscarinic receptors in rat heart and brain cortex. Mol. Pharmacol. 2002;61(6):1267–1272. [http://dx.doi.org/10.1124/ mol.61.6.1267]. [PMID: 12021386]. PubMed
Dobrzynski H., Marples D.D., Musa H., Yamanushi T.T., Henderson Z., Takagishi Y., Honjo H., Kodama I., Boyett M.R. Distribution of the muscarinic K+ channel proteins Kir3.1 and Kir3.4 in the ventricle, atrium, and sinoatrial node of heart. J. Histochem. Cytochem. Off. Soc. 2001;49(10):1221–1234. PubMed
Sasaki S., Motomura S. Comparison of anti-M2-muscarinic effect of AF-DX 116 on atrioventricular nodal conduction with those of pirenzepine and atropine as antibradyarrhythmic drugs. J. Cardiovasc. Pharmacol. 1999;33(6):912–921. [http://dx.doi.org/ 10.1097/00005344-199906000-00012]. [PMID: 10367595]. PubMed
Nascimento J.H., SallA(c) L., Hoebeke J., Argibay J., Peineau N. cGMP-mediated inhibition of cardiac L-type Ca(2+) current by a monoclonal antibody against the M(2) ACh receptor. Am. J. Physiol. Cell Physiol. 2001;281(4):C1251–C1258. [PMID: 11546662]. PubMed
Harvey R.D., Belevych A.E. Muscarinic regulation of cardiac ion channels. Br. J. Pharmacol. 2003;139(6):1074–1084. [http://dx. doi.org/10.1038/sj.bjp.0705338]. [PMID: 12871825]. PubMed PMC
Gallo M.P., Alloatti G., Eva C., Oberto A., Levi R.C. M1 muscarinic receptors increase calcium current and phosphoinositide turnover in guinea-pig ventricular cardiocytes. J. Physiol. 1993;471:41–60. [http://dx.doi.org/10.1113/jphysiol.1993.sp019890]. [PMID: 8120813]. PubMed PMC
Kitazawa T., Asakawa K., Nakamura T., Teraoka H., Unno T., Komori S., Yamada M., Wess J. M3 muscarinic receptors mediate positive inotropic responses in mouse atria: a study with muscarinic receptor knockout mice. J. Pharmacol. Exp. Ther. 2009;330(2):487–493. [http://dx.doi.org/10.1124/jpet.109.153304]. [PMID: 19429792]. PubMed PMC
Harvey R.D. Muscarinic receptor agonists and antagonists: effects on cardiovascular function. Handbook Exp. Pharmacol. 2012;208:299–316. PubMed
Levey A.I., Edmunds S.M., Heilman C.J., Desmond T.J., Frey K.A. Localization of muscarinic m3 receptor protein and M3 receptor binding in rat brain. Neuroscience. 1994;63(1):207–221. [http://dx.doi.org/10.1016/0306-4522(94)90017-5]. [PMID: 7898649]. PubMed
Flynn D.D., Ferrari-DiLeo G., Mash D.C., Levey A.I. Differential regulation of molecular subtypes of muscarinic receptors in Alzheimers disease. J. Neurochem. 1995;64(4):1888–1891. [http://dx.doi.org/10.1046/j.1471-4159.1995.64041888.x]. [PMID: 7891119]. PubMed
Li M., Yasuda R.P., Wall S.J., Wellstein A., Wolfe B.B. Distribution of m2 muscarinic receptors in rat brain using antisera selective for m2 receptors. Mol. Pharmacol. 1991;40(1):28–35. [PMID: 1857338]. PubMed
Vilaro M.T., Palacios J.M., Mengod G. Localization of m5 muscarinic receptor mRNA in rat brain examined by in situ hybridization histochemistry. Neurosci. Lett. 1990;114(2):154–159. [http://dx.doi.org/10.1016/0304-3940(90)90064-G]. [PMID: 2395528]. PubMed
Ehlert F.J., Pak K.J., Griffin M.T. Muscarinic agonists and antagonists: effects on gastrointestinal function. Handbook Exp. Pharmacol. 2012;208:343–374. PubMed
Buels K.S., Fryer A.D. Muscarinic receptor antagonists: effects on pulmonary function. Handbook Exp. Pharmacol. 2012;208:317–341. PubMed PMC
McEvoy G.K. AHFS Drug information 2008. Bethesda, MD: American Society of Health-System Pharmacists; 2008. Bethanecol. pp. 1240–1241.
Craddock T.J., Fritsch P., Rice M.A., del Rosario R.M., Miller D.B., Fletcher M.A., Klimas N.G., Broderick G. A role for homeostatic drive in the perpetuation of complex chronic illness: Gulf War Illness and chronic fatigue syndrome. PLoS One. 2014;9(1):e84839. PubMed PMC
Mitchelson F. Muscarinic receptor agonists and antagonists: effects on ocular function. Handb. Exp. Pharmacol. 2012;208:263–298. PubMed
Ramos-Casals M., Tzioufas A.G., Stone J.H., SisA3 A., Bosch X. Treatment of primary SjAgren syndrome: a systematic review. JAMA. 2010;304(4):452–460. PubMed
Giacobini E. Cholinesterase inhibitors: new roles and therapeutic alternatives. Pharmacol. Res. Off. J. Ital. Soc. 2004;50(4):433–440. PubMed
Soukup O., Tobin G., Kumar U.K., Binder J., Proska J., Jun D., Fusek J., Kuca K. Interaction of nerve agent antidotes with cholinergic systems. Curr. Med. Chem. 2010;17(16):1708–1718. [http://dx.doi.org/10.2174/092986710791111260]. [PMID: 20345348]. PubMed
Marrs T.C. Organophosphate poisoning. Pharmacol. Ther. 1993;58(1):51–66. [http://dx.doi.org/10.1016/0163-7258(93)90066-M]. [PMID: 8415873]. PubMed
Sellers D.J., Chess-Williams R. Muscarinic agonists and antagonists: effects on the urinary bladder. Handbook Exp. Pharmacol. 2012;208:375–400. PubMed
Yamaguchi O. Antimuscarinics and overactive bladder: other mechanism of action. Neurourol. Urodyn. 2010;29(1):112–115. [PMID: 19693952]. PubMed
Nelson C.P., Gupta P., Napier C.M., Nahorski S.R., Challiss R.A. Functional selectivity of muscarinic receptor antagonists for inhibition of M3-mediated phosphoinositide responses in guinea pig urinary bladder and submandibular salivary gland. J. Pharmacol. Exp. Ther. 2004;310(3):1255–1265. PubMed
Gillberg P.G., Sundquist S., Nilvebrant L. Comparison of the in vitro and in vivo profiles of tolterodine with those of subtype-selective muscarinic receptor antagonists. Eur. J. Pharmacol. 1998;349(2-3):285–292. PubMed
Mansfield K.J., Chandran J.J., Vaux K.J., Millard R.J., Christopoulos A., Mitchelson F.J., Burcher E. Comparison of receptor binding characteristics of commonly used muscarinic antagonists in human bladder detrusor and mucosa. J. Pharmacol. Exp. Ther. 2009;328(3):893–899. PubMed
Yoshida A., Kuraoka S., Ito Y., Okura T., Deguchi Y., Otsuka A., Ozono S., Takeda M., Masuyama K., Araki I., Yamada S. Muscarinic receptor binding of the novel radioligand, [3h]imidafenacin in the human bladder and parotid gland. J. Pharmacol. Sci. 2014;124(1):40–46. PubMed
Masumori N. Long-term safety, efficacy, and tolerability of imidafenacin in the treatment of overactive bladder: a review of the Japanese literature. Patient Prefer. Adherence. 2013;7:111–120. PubMed PMC
Andersson K.E. Advances in the pharmacological control of the bladder. Exp. Physiol. 1999;84(1):195–213. [http://dx.doi.org/ 10.1111/j.1469-445X.1999.tb00083.x]. [PMID: 10081718]. PubMed
Andersson K-E., Yoshida M. Antimuscarinics and the overactive detrusorwhich is the main mechanism of action? Eur. Urol. 2003;43(1):1–5. [http://dx.doi.org/10.1016/S0302-2838(02)00540-7]. [PMID: 12507537]. PubMed
Kobayashi F., Yageta Y., Yamazaki T., Wakabayashi E., Inoue M., Segawa M., Matsuzawa S. Pharmacological effects of imidafenacin (KRP-197/ONO-8025), a new bladder selective anticholinergic agent, in rats. Comparison of effects on urinary bladder capacity and contraction, salivary secretion and performance in the Morris water maze task. Arzneimittelforschung. 2007;57(3):147–154. PubMed
Yamazaki T., Muraki Y., Anraku T. In vivo bladder selectivity of imidafenacin, a novel antimuscarinic agent, assessed by using an effectiveness index for bladder capacity in rats. Naunyn Schmiedebergs Arch. Pharmacol. 2011;384(3):319–329. PubMed
Nilvebrant L., Hallen B., Larsson G. Tolterodinea new bladder selective muscarinic receptor antagonist: preclinical pharmacological and clinical data. Life Sci. 1997;60(13-14):1129–1136. PubMed
Ikeda K., Kobayashi S., Suzuki M., Miyata K., Takeuchi M., Yamada T., Honda K. M(3) receptor antagonism by the novel antimuscarinic agent solifenacin in the urinary bladder and salivary gland. Naunyn Schmiedebergs Arch. Pharmacol. 2002;366(2):97–103. PubMed
Vesela R., Aronsson P., Andersson M., Wsol V., Tobin G. The potential of non-adrenergic, non-cholinergic targets in the treatment of interstitial cystitis/painful bladder syndrome. J. Physiol. Pharmacol. 2012;63(3):209–216. [PMID: 22791634]. PubMed
Burnstock G., Satchell D.G., Smythe A. A comparison of the excitatory and inhibitory effects of non-adrenergic, non-cholinergic nerve stimulation and exogenously applied ATP on a variety of smooth muscle preparations from different vertebrate species. Br. J. Pharmacol. 1972;46(2):234–242. [http://dx.doi.org/10.1111/ j.1476-5381.1972.tb06868.x]. [PMID: 4631338]. PubMed PMC
Ekstrom J., Asztely A., Tobin G. Parasympathetic non-adrenergic, non-cholinergic mechanisms in salivary glands and their role in reflex secretion. Eur. J. Morphol. 1998;36(Suppl.):208–212. [PMID: 9825924]. PubMed
Sokilde B., Mikkelsen I., Stensbol T.B., Andersen B., Ebdrup S., Krogsgaard-Larsen P., Falch E. Analogues of carbacholine: synthesis and relationship between structure and affinity for muscarinic and nicotinic acetylcholine receptors. Arch. Pharm. (Weinheim) 1996;329(2):95–104. [http://dx.doi.org/10.1002/ ardp.19963290207]. [PMID: 8851473]. PubMed
Tobin G., Sjogren C. Prejunctional facilitatory and inhibitory modulation of parasympathetic nerve transmission in the rabbit urinary bladder. J. Auton. Nerv. Syst. 1998;68(3):153–156. [http:// dx.doi.org/10.1016/S0165-1838(97)00128-8]. [PMID: 9626942]. PubMed
Gordon E., Lazarus S.C. Management of chronic obstructive pulmonary disease: moving beyond the asthma algorithm. J. Allergy Clin. Immunol. 2009;124(5):873–880. [http://dx.doi.org/10.1016/ j.jaci.2009.09.040]. [PMID: 19895979]. PubMed
Barnes P.J. The role of anticholinergics in chronic obstructive pulmonary disease. Am. J. Med. 2004;117(Suppl. 12A):24S–32S. PubMed
Gross N.J. The influence of anticholinergic agents on treatment for bronchitis and emphysema. Am. J. Med. 1991;91(4A):11S–12S. PubMed
Rodrigo G.J., Rodrigo C. Triple inhaled drug protocol for the treatment of acute severe asthma. Chest. 2003;123(6):1908–1915. [http://dx.doi.org/10.1378/chest.123.6.1908]. [PMID: 12796167]. PubMed
Cazzola M., Page C.P., Calzetta L., Matera M.G. Pharmacology and therapeutics of bronchodilators. Pharmacol. Rev. 2012;64(3):450–504. [http://dx.doi.org/10.1124/pr.111.004580]. [PMID: 22611179]. PubMed
Alabaster V.A. Discovery & development of selective M3 antagonists for clinical use. Life Sci. 1997;60(13-14):1053–1060. [http://dx. doi.org/10.1016/S0024-3205(97)00047-7]. [PMID: 9121347]. PubMed
Anthonisen N.R., Connett J.E., Enright P.L., Manfreda J. Hospitalizations and mortality in the Lung Health Study. Am. J. Respir. Crit. Care Med. 2002;166(3):333–339. [http://dx.doi.org/ 10.1164/rccm.2110093]. [PMID: 12153966]. PubMed
Kilbinger H., von Bardeleben R.S., Siefken H., Wolf D. Prejunctional muscarinic receptors regulating neurotransmitter release in airways. Life Sci. 1995;56(11-12):981–987. [http://dx. doi.org/10.1016/0024-3205(95)00037-7]. [PMID: 10188802]. PubMed
Sarria B., Naline E., Zhang Y., Cortijo J., Molimard M., Moreau J., Therond P., Advenier C., Morcillo E.J. Muscarinic M2 receptors in acetylcholine-isoproterenol functional antagonism in human isolated bronchus. Am. J. Physiol. Lung Cell. Mol. Physiol. 2002;283(5):L1125–L1132. [http://dx.doi.org/10.1152/ ajplung.00084.2002]. [PMID: 12376367]. PubMed
Saw L., Shumway J., Ruckart P. Surveillance data on pesticide and agricultural chemical releases and associated public health consequences in selected US states, 20032007. J. Med. Toxicol. 2011;7(2):164–171. PubMed PMC
Patel V., Ramasundarahettige C., Vijayakumar L., Thakur J.S., Gajalakshmi V., Gururaj G., Suraweera W., Jha P. Suicide mortality in India: a nationally representative survey. Lancet. 2012;379(9834):2343–2351. PubMed PMC
Bajgar J. Organophosphates/nerve agent poisoning: mechanism of action, diagnosis, prophylaxis, and treatment. Adv. Clin. Chem. 2004;38:151–216. PubMed
Korabecny J., Soukup O., Dolezal R., Spilovska K., Nepovimova E., Andrs M., Nguyen T.D., Jun D., Musilek K., Kucerova-Chlupacova M., Kuca K. From pyridinium-based to centrally active acetylcholinesterase reactivators. Mini Rev. Med. Chem. 2014;14(3):215–221. PubMed
Kassa J. Review of oximes in the antidotal treatment of poisoning by organophosphorus nerve agents. J. Toxicol. Clin. Toxicol. 2002;40(6):803–816. [http://dx.doi.org/10.1081/CLT-120015840]. [PMID: 12475193]. PubMed
Chandar N.B., Ganguly B. A first principles investigation of aging processes in soman conjugated AChE. Chem. Biol. Interact. 2013;204(3):185–190. [http://dx.doi.org/10.1016/j.cbi.2013.05.013]. [PMID: 23747845]. PubMed
Kuca K., Musilek K., Jun D., Pohanka M., Ghosh K.K., Hrabinova M. Oxime K027: novel low-toxic candidate for the universal reactivator of nerve agent- and pesticide-inhibited acetylcholinesterase. J. Enzyme Inhib. Med. Chem. 2010;25(4):509–512. [http://dx.doi.org/10.3109/14756360903357569]. [PMID: 20192902]. PubMed
Musilek K., Dolezal M., Gunn-Moore F., Kuca K. Design, evaluation and structure-activity relationship studies of the AChE reactivators against organophosphorus pesticides. Med. Res. Rev. 2011;31(4):548–575. [http://dx.doi.org/10.1002/med.20192]. [PMID: 20027669]. PubMed
Liston D.R., Nielsen J.A., Villalobos A., Chapin D., Jones S.B., Hubbard S.T., Shalaby I.A., Ramirez A., Nason D., White W.F. Pharmacology of selective acetylcholinesterase inhibitors: implications for use in Alzheimers disease. Eur. J. Pharmacol. 2004;486(1):9–17. PubMed
Mehndiratta M.M., Pandey S., Kuntzer T. Acetylcholinesterase inhibitor treatment for myasthenia gravis. Cochrane Database Syst. Rev. 2014;10(10):CD006986. PubMed PMC
Mareova P., Mohelska H., Dolejs J., Kuca K. Socio-economic aspects of Alzheimers disease. Curr. Alzheimer Res. 2015;12(9):903–911. [http://dx.doi.org/10.2174/156720501209151019111448]. [PMID: 26510983]. PubMed
Greig N.H., Utsuki T., Yu Q., Zhu X., Holloway H.W., Perry T., Lee B., Ingram D.K., Lahiri D.K. A new therapeutic target in Alzheimers disease treatment: attention to butyrylcholinesterase. Curr. Med. Res. Opin. 2001;17(3):159–165. [http://dx.doi.org/ 10.1185/03007990152673800]. [PMID: 11900310]. PubMed
Bajgar J., Fusek J., Kuca K., Bartosova L., Jun D. Treatment of organophosphate intoxication using cholinesterase reactivators: facts and fiction. Mini Rev. Med. Chem. 2007;7(5):461–466. [http://dx.doi.org/10.2174/138955707780619581]. [PMID: 17504181]. PubMed
Adem A. Putative Mechanisms of Action of Tacrine in Alzheimers-Disease. Acta Neurol. Scand. 1992;85:69–74. PubMed
Adem A., Mohammed A.K., Winblad B. Multiple effects of tetrahydroaminoacridine on the cholinergic system: biochemical and behavioural aspects. J. Neural Transm. Park. Dis. Dement. Sect. 1990;2(2):113–128. PubMed
Bajgar J., Skopec F., Herink J., Patocka J., Kvetina J. Effect of 7-methoxytacrine and L-carnitine on the activity of choline acetyltransferase. Gen. Physiol. Biophys. 1999;18(Spec No):3–6. PubMed
Lahiri D.K., Farlow M.R., Sambamurti K. The secretion of amyloid beta-peptides is inhibited in the tacrine-treated human neuroblastoma cells. Brain Res. Mol. Brain Res. 1998;62(2):131–140. PubMed
Lahiri D.K., Lewis S., Farlow M.R. Tacrine alters the secretion of the beta-amyloid precursor protein in cell lines. J. Neurosci. Res. 1994;37(6):777–787. PubMed
Tumiatti V., Minarini A., Bolognesi M.L., Milelli A., Rosini M., Melchiorre C. Tacrine derivatives and Alzheimers disease. Curr. Med. Chem. 2010;17(17):1825–1838. PubMed
Luo W., Li Y.P., He Y., Huang S.L., Li D., Gu L.Q., Huang Z.S. Synthesis and evaluation of heterobivalent tacrine derivatives as potential multi-functional anti-Alzheimer agents. Eur. J. Med. Chem. 2011;46(6):2609–2616. PubMed
Hamulakova S., Janovec L., Hrabinova M., Spilovska K., Korabecny J., Kristian P., Kuca K., Imrich J. Synthesis and biological evaluation of novel tacrine derivatives and tacrine-coumarin hybrids as cholinesterase inhibitors. J. Med. Chem. 2014;57(16):7073–7084. PubMed
Nepovimova E., Uliassi E., Korabecny J., Pena-Altamira L.E., Samez S., Pesaresi A., Garcia G.E., Bartolini M., Andrisano V., Bergamini C., Fato R., Lamba D., Roberti M., Kuca K., Monti B., Bolognesi M.L. Multitarget drug design strategy: quinone-tacrine hybrids designed to block amyloid-Iβ aggregation and to exert anticholinesterase and antioxidant effects. . J. Med. Chem. 2014;57(20):8576–8589. PubMed
Spilovska K., Korabecny J., Kral J., Horova A., Musilek K., Soukup O., Drtinova L., Gazova Z., Siposova K., Kuca K. Methoxytacrine-adamantylamine heterodimers as cholinesterase inhibitors in Alzheimers disease treatmentsynthesis, biological evaluation and molecular modeling studies. Molecules. 2013;18(2):2397–2418. PubMed PMC
Benchekroun M., Bartolini M., Egea J., Romero A., Soriano E., Pudlo M., Luzet V., Andrisano V., Jimeno M.L., LA3pez M.G., Wehle S., Gharbi T., Refouvelet B., de AndrA(c)s L., Herrera-Arozamena C., Monti B., Bolognesi M.L., Rodriguez-Franco M.I., Decker M., Marco-Contelles J., Ismaili L. Novel tacrine-grafted Ugi adducts as multipotent anti-Alzheimer drugs: a synthetic renewal in tacrineferulic acid hybrids. Chem.Med.Chem. 2015;10(3):523–539. PubMed
Esquivias-Perez M., Maalej E., Romero A., Chabchoub F., Samadi A., Marco-Contelles J., Oset-Gasque M.J. Nontoxic and neuroprotective β-naphthotacrines for Alzheimers disease. Chem. Res. Toxicol. 2013;26(6):986–992. PubMed
Gottwald M.D., Rozanski R.I. Rivastigmine, a brain-region selective acetylcholinesterase inhibitor for treating Alzheimers disease: review and current status. Expert Opin. Investig. Drugs. 1999;8(10):1673–1682. [http://dx.doi.org/10.1517/13543784.8. 10.1673]. [PMID: 11139819]. PubMed
Onor M.L., Trevisiol M., Aguglia E. Rivastigmine in the treatment of Alzheimers disease: an update. Clin. Interv. Aging. 2007;2(1):17–32. [http://dx.doi.org/10.2147/ciia.2007.2.1.17]. [PMID: 18044073]. PubMed PMC
Andin J., Enz A., Gentsch C., Marcusson J. Rivastigmine as a modulator of the neuronal glutamate transporter rEAAC1 mRNA expression. Dement. Geriatr. Cogn. Disord. 2005;19(1):18–23. [http://dx.doi.org/10.1159/000080966]. [PMID: 15383741]. PubMed
Bailey J.A., Ray B., Greig N.H., Lahiri D.K. Rivastigmine lowers AI and increases sAPPI± levels, which parallel elevated synaptic markers and metabolic activity in degenerating primary rat neurons. PLoS One. 2011;6(7):e21954. [EP -.]. [http://dx.doi.org/ 10.1371/journal.pone.0021954]. [PMID: 21799757]. PubMed PMC
Albuquerque E.X., Alkondon M., Pereira E.F., Castro N.G., Schrattenholz A., Barbosa C.T., Bonfante-Cabarcas R., Aracava Y., Eisenberg H.M., Maelicke A. Properties of neuronal nicotinic acetylcholine receptors: pharmacological characterization and modulation of synaptic function. J. Pharmacol. Exp. Ther. . 1997;280(3):1117–1136. PubMed
Schrattenholz A., Pereira E.F., Roth U., Weber K.H., Albuquerque E.X., Maelicke A. Agonist responses of neuronal nicotinic acetylcholine receptors are potentiated by a novel class of allosterically acting ligands. Mol. Pharmacol. 1996;49(1):1–6. PubMed
Coyle J., Kershaw P. Galantamine, a cholinesterase inhibitor that allosterically modulates nicotinic receptors: effects on the course of Alzheimers disease. Biol. Psychiatry. 2001;49(3):289–299. [http://dx.doi.org/10.1016/S0006-3223(00)01101-X]. [PMID: 11230880]. PubMed
Kryger G., Silman I., Sussman J.L. Structure of acetylcholinesterase complexed with E2020 (Aricept): implications for the design of new anti-Alzheimer drugs. Structure. 1999;7(3):297–307. [http://dx.doi.org/10.1016/S0969-2126(99)80040-9]. [PMID: 10368299]. PubMed
Inestrosa N.C., Alvarez A., PA(c)rez C.A., Moreno R.D., Vicente M., Linker C., Casanueva O.I., Soto C., Garrido J. Acetylcholinesterase accelerates assembly of amyloid-beta-peptides into Alzheimers fibrils: possible role of the peripheral site of the enzyme. Neuron. 1996;16(4):881–891. [http://dx.doi.org/10. 1016/S0896-6273(00)80108-7]. [PMID: 8608006]. PubMed
Birks J. Cholinesterase inhibitors for Alzheimers disease. Cochrane Database Syst. Rev. 2006;(1):CD005593. [PMID: 16437532]. PubMed PMC
Anand R., Gill K.D., Mahdi A.A. Therapeutics of Alzheimer's disease: Past, present and future. Neuropharmacology. 2014. pp. 27–50. PubMed
Phillips L.H., II The epidemiology of myasthenia gravis. Ann. N. Y. Acad. Sci. 2003;998:407–412. [http://dx.doi.org/10.1196/ annals.1254.053]. [PMID: 14592908]. PubMed
GarcA-a-Carrasco M., Escarcega R.O., Fuentes-Alexandro S., Riebeling C., Cervera R. Therapeutic options in autoimmune myasthenia gravis. Autoimmun. Rev. 2007;6(6):373–378. [http:// dx.doi.org/10.1016/j.autrev.2007.01.001]. [PMID: 17537383]. PubMed
Thanvi B.R., Lo T.C. Update on myasthenia gravis. Postgrad. Med. J. 2004;80(950):690–700. [http://dx.doi.org/10.1136/ pgmj.2004.018903]. [PMID: 15579606]. PubMed PMC
Hoch W., McConville J., Helms S., Newsom-Davis J., Melms A., Vincent A. Auto-antibodies to the receptor tyrosine kinase MuSK in patients with myasthenia gravis without acetylcholine receptor antibodies. Nat. Med. 2001;7(3):365–368. [http://dx.doi.org/10.1038/85520]. [PMID: 11231638]. PubMed
Punga A.R., Stalberg E. Acetylcholinesterase inhibitors in MG: to be or not to be? Muscle Nerve. 2009;39(6):724–728. [http://dx. doi.org/10.1002/mus.21319]. [PMID: 19260048]. PubMed
Richman D.P., Agius M.A. Treatment principles in the management of autoimmune myasthenia gravis. Ann. N. Y. Acad. Sci. 2003;998:457–472. [http://dx.doi.org/10.1196/annals.1254. 060]. [PMID: 14592915]. PubMed
Mehndiratta M.M., Pandey S., Kuntzer T. Acetylcholinesterase inhibitor treatment for myasthenia gravis. Cochrane Database Syst. Rev. 2011;(2):CD006986. [PMID: 21328290]. PubMed
Garcia-Carrasco M., Escarcega R.O., Fuentes-Alexandro S., Riebeling C., Cervera R. Therapeutic options in autoimmune myasthenia gravis. Autoimmun. Rev. 2007;6(6):373–378. [http:// dx.doi.org/10.1016/j.autrev.2007.01.001]. [PMID: 17537383]. PubMed
McNamara R., Mihalakis M.J. Acute colonic pseudo-obstruction: rapid correction with neostigmine in the emergency department. J. Emerg. Med. 2008;35(2):167–170. [http://dx.doi.org/10.1016/ j.jemermed.2007.06.043]. [PMID: 18242923]. PubMed
Hodge A.S., Humphrey D.R., Rosenberry T.L. Ambenonium is a rapidly reversible noncovalent inhibitor of acetylcholinesterase, with one of the highest known affinities. Mol. Pharmacol. 1992;41(5):937–942. [PMID: 1588924]. PubMed
Bolognesi M.L., Cavalli A., Andrisano V., Bartolini M., Banzi R., Antonello A., Rosini M., Melchiorre C. Design, synthesis and biological evaluation of ambenonium derivatives as AChE inhibitors. FARMACO. 2003;58(9):917–928. [http://dx.doi.org/ 10.1016/S0014-827X(03)00150-2]. [PMID: 13679187]. PubMed
Harada T., Fushimi K., Kato A., Ito Y., Nishijima S., Sugaya K., Yamada S. Demonstration of muscarinic and nicotinic receptor binding activities of distigmine to treat detrusor underactivity. Biol. Pharm. Bull. 2010;33(4):653–658. [http://dx.doi.org/10.1248/ bpb.33.653]. [PMID: 20410601]. PubMed
Komloova M., Musilek K., Dolezal M., Gunn-Moore F., Kuca K. Structure-activity relationship of quaternary acetylcholinesterase inhibitors - outlook for early myasthenia gravis treatment. Curr. Med. Chem. 2010;17(17):1810–1824. [http://dx.doi.org/10.2174/ 092986710791111198]. [PMID: 20345342]. PubMed
Maruyama S., Oki T., Otsuka A., Shinbo H., Ozono S., Kageyama S., Mikami Y., Araki I., Takeda M., Masuyama K., Yamada S. Human muscarinic receptor binding characteristics of antimuscarinic agents to treat overactive bladder. J. Urol. 2006;175(1):365–369. [http://dx.doi.org/10.1016/S0022-5347(05)00017-0]. [PMID: 16406943]. PubMed
Kobayashi S., Ikeda K., Miyata K. Comparison of in vitro selectivity profiles of solifenacin succinate (YM905) and current antimuscarinic drugs in bladder and salivary glands: a Ca2+ mobilization study in monkey cells. Life Sci. 2004;74(7):843–853. [http://dx.doi.org/10.1016/j.lfs.2003.07.019]. [PMID: 14659973]. PubMed
Kiwamoto H., Ma F.H., Higashira H., Park Y.C., Kurita T. Identification of muscarinic receptor subtypes of cultured smooth muscle cells and tissue of human bladder body. Int. J. Urol. 2001;8(10):557–563. [http://dx.doi.org/10.1046/j.1442-2042.2001.00370.x]. [PMID: 11737484]. PubMed
Mansfield K.J., Chandran J.J., Vaux K.J., Millard R.J., Christopoulos A., Mitchelson F.J., Burcher E. Comparison of receptor binding characteristics of commonly used muscarinic antagonists in human bladder detrusor and mucosa. J. Pharmacol. Exp. Ther. 2009;328(3):893–899. [http://dx.doi.org/10.1124/ jpet.108.145508]. [PMID: 19029429]. PubMed
Sinha S., Gupta S., Malhotra S., Krishna N.S., Meru A.V., Babu V., Bansal V., Garg M., Kumar N., Chugh A., Ray A. AE9C90CB: a novel, bladder-selective muscarinic receptor antagonist for the treatment of overactive bladder. Br. J. Pharmacol. 2010;160(5):1119–1127. [http://dx.doi.org/10.1111/ j.1476-5381.2010.00752.x]. [PMID: 20590605]. PubMed PMC
Winter M., Wille T., Musilek K., Kuca K., Thiermann H., Worek F. Investigation of the reactivation kinetics of a large series of bispyridinium oximes with organophosphate-inhibited human acetylcholinesterase. Toxicol. Lett. 2015;244:136–142. [PMID: 26210933]. PubMed
Horn G., Wille T., Musilek K., Kuca K., Thiermann H. PubMed
Worek F. Reactivation kinetics of 31 structurally different bispyridinium oximes with organophosphate-inhibited human butyrylcholinesterase. Arch. Toxicol. 2015;89(3):405–414. [http://dx.doi.org/10.1007/s00204-014-1288-5]. [PMID: 24912784]. PubMed
Musilek K., Komloova M., Holas O., Hrabinova M., Pohanka M., Dohnal V., Nachon F., Dolezal M., Kuca K. Preparation and in vitro screening of symmetrical bis-isoquinolinium cholinesterase inhibitors bearing various connecting linkageimplications for early Myasthenia gravis treatment. Eur. J. Med. Chem. 2011;46(2):811–818. [http://dx.doi.org/10.1016/j.ejmech.2010.12.011]. [PMID: 21236521]. PubMed
Soukup O., Jun D., Zdarova-Karasova J., Patocka J., Musilek K., Korabecny J., Krusek J., Kaniakova M., Sepsova V., Mandikova J., Trejtnar F., Pohanka M., Drtinova L., Pavlik M., Tobin G., Kuca K. A resurrection of 7-MEOTA: a comparison with tacrine. Curr. Alzheimer Res. 2013;10(8):893–906. [http://dx. doi.org/10.2174/1567205011310080011]. [PMID: 24093535]. PubMed
Zemek F., Drtinova L., Nepovimova E., Sepsova V., Korabecny J., Klimes J., Kuca K. Outcomes of Alzheimers disease therapy with acetylcholinesterase inhibitors and memantine. Expert Opin. Drug Saf. 2014;13(6):759–774. [PMID: 24845946]. PubMed
Luo W., Yu Q.S., Kulkarni S.S., Parrish D.A., Holloway H.W., Tweedie D., Shafferman A., Lahiri D.K., Brossi A., Greig N.H. Inhibition of human acetyl- and butyrylcholinesterase by novel carbamates of (-)- and (+)-tetrahydrofurobenzofuran and methanobenzodioxepine. J. Med. Chem. 2006;49(7):2174–2185. [http://dx.doi.org/10.1021/jm050578p]. [PMID: 16570913]. PubMed PMC
Triggle D.J., Filler R. The pharmacology of physostigmine. CNS Drug Rev. 1998;4:87–136. [http://dx.doi.org/10.1111/j.1527-3458.1998.tb00059.x].
Nakayama K., Katsu H., Kitazumi K. Effect of distigmine bromide on the central cholinergic system. J. Psychopharmacol. (Oxford) 2009;23(2):190–193. [http://dx.doi.org/10.1177/ 0269881108089817]. [PMID: 18515453]. PubMed
Soukup O., Kumar U.K., Proska J., Bratova L., Adem A., Jun D., Fusek J., Kuca K., Tobin G. The effect of oxime reactivators on muscarinic receptors: functional and binding examinations. Environ. Toxicol. Pharmacol. 2011;31(3):364–370. [http://dx. doi.org/10.1016/j.etap.2011.01.003]. [PMID: 21787706]. PubMed
Soukup O., Krusek J., Kaniakova M., Kumar U.K., Oz M., Jun D., Fusek J., Kuca K., Tobin G. Oxime reactivators and their in vivo and in vitro effects on nicotinic receptors. Physiol. Res. 2011;60(4):679–686. [PMID: 21574759]. PubMed
Sepsova V., Krusek J., Zdarova K.J., Zemek F., Musilek K., Kuca K., Soukup O. The interaction of quaternary reversible acetylcholinesterase inhibitors with the nicotinic receptor. Physiol. Res. 2014;63(6):771–777. [PMID: 25157661]. PubMed
Woodruff-Pak D.S., Lander C., Geerts H. Nicotinic cholinergic modulation: galantamine as a prototype. CNS Drug Rev. 2002;8(4):405–426. [http://dx.doi.org/10.1111/j.1527-3458.2002.tb00237. x]. [PMID: 12481195]. PubMed PMC
Ago Y., Koda K., Ota Y., Kita Y., Fukada A., Takuma K., Matsuda T. Donepezil, but not galantamine, blocks muscarinic receptor-mediated in vitro and in vivo responses. Synapse. 2011;65(12):1373–1377. [http://dx.doi.org/10.1002/syn.20969]. [PMID: 21780184]. PubMed
Di Angelantonio S., Bernardi G., Mercuri N.B. Donepezil modulates nicotinic receptors of substantia nigra dopaminergic neurones. Br. J. Pharmacol. 2004;141(4):644–652. [http://dx.doi. org/10.1038/sj.bjp.0705660]. [PMID: 14744806]. PubMed PMC
Moretti R., Torre P., Vilotti C., Antonello R.M., Pizzolato G. Rivastigmine and Parkinson dementia complex. Expert Opin. Pharmacother. 2007;8(6):817–829. [http://dx.doi.org/10.1517/ 14656566.8.6.817]. [PMID: 17425477]. PubMed
Smulders C.J., Zwart R., Bermudez I., van Kleef R.G., Groot-Kormelink P.J., Vijverberg H.P. Cholinergic drugs potentiate human nicotinic alpha4beta2 acetylcholine receptors by a competitive mechanism. Eur. J. Pharmacol. 2005;509(2-3):97–108. [http:// dx.doi.org/10.1016/j.ejphar.2004.12.037]. [PMID: 15733544]. PubMed
Perry E.K., Smith C.J., Court J.A., Bonham J.R., Rodway M., Atack J.R. Interaction of 9-amino-1,2,3,4-tetrahydroaminoacridine (THA) with human cortical nicotinic and muscarinic receptor binding in vitro. Neurosci. Lett. 1988;91(2):211–216. [http://dx. doi.org/10.1016/0304-3940(88)90770-7]. [PMID: 3185960]. PubMed
Volpe L.S., Biagioni T.M., Marquis J.K. In vitro modulation of bovine caudate muscarinic receptor number by organophosphates and carbamates. Toxicol. Appl. Pharmacol. 1985;78(2):226–234. [http://dx.doi.org/10.1016/0041-008X(85)90286-8]. [PMID: 4035678]. PubMed
Svobodova L., Krusek J., Hendrych T., Vyskocil F. Physostigmine modulation of acetylcholine currents in COS cells transfected with mouse muscle nicotinic receptor. Neurosci. Lett. 2006;401(1-2):20–24. [http://dx.doi.org/10.1016/j.neulet.2006.02. 065]. [PMID: 16530961]. PubMed
Clarke P.B., Reuben M., el-Bizri H. Blockade of nicotinic responses by physostigmine, tacrine and other cholinesterase inhibitors in rat striatum. Br. J. Pharmacol. 1994;111(3):695–702. [http://dx.doi.org/10.1111/j.1476-5381.1994.tb14793.x]. [PMID: 8019748]. PubMed PMC
Lockhart B., Closier M., Howard K., Steward C., Lestage P. Differential inhibition of [3H]-oxotremorine-M and [3H]-quinuclinidyl benzilate binding to muscarinic receptors in rat brain membranes with acetylcholinesterase inhibitors. Naunyn Schmiedebergs Arch. Pharmacol. 2001;363(4):429–438. [http:// dx.doi.org/10.1007/s002100000382]. [PMID: 11330337]. PubMed
Craig C.R., Stitzel R.E. Modern pharmacology with clinical applications. Lippincott Williams & Wilkins; 2004.
Pascuzzo G.J., Akaike A., Maleque M.A., Shaw K.P., Aronstam R.S., Rickett D.L., Albuquerque E.X. The nature of the inter- actions of pyridostigmine with the nicotinic acetylcholine receptor-ionic channel complex. I. Agonist, desensitizing, and binding properties. Mol. Pharmacol. 1984;25(1):92–101. [PMID: 6323955]. PubMed