Synthesis and Decontamination Effect on Chemical and Biological Agents of Benzoxonium-Like Salts

. 2021 Sep 15 ; 9 (9) : . [epub] 20210915

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34564373

Grantová podpora
NV19-09-00198 and NV18-09-00181 Ministerstvo Zdravotnictví Ceské Republiky
Long Term Development Plan" Medical Aspects of Weapons of Mass Destruction of the Faculty of Military Health Sciences, University of Defence. Ministerstvo Obrany České Republiky
SV/FVZ201808 Ministerstvo Školství, Mládeže a Tělovýchovy

Benzoxonium chloride belongs to the group of quaternary ammonium salts, which have been widely used for decades as disinfectants because of their high efficacy, low toxicity, and thermal stability. In this study, we have prepared the C10-C18 set of benzoxonium-like salts to evaluate the effect of their chemical and biological decontamination capabilities. In particular, biocidal activity against a panel of bacterial strains including Staphylococcus aureus in biofilm form was screened. In addition, the most promising compounds were successfully tested against Francisella tularensis as a representative of potential biological warfare agents. From a point of view of chemical warfare protection, the efficiency of BOC-like compounds to degrade the organophosphate simulant fenitrothion was examined. Notwithstanding that no single compound with universal effectiveness was identified, a mixture of only two compounds from this group would be able to satisfactorily cover the proposed decontamination spectrum. In addition, the compounds were evaluated for their cytotoxicity as a basic safety parameter for potential use in practice. In summary, the dual effect on chemical and biological agents of benzoxonium-like salts offer attractive potential as active components of decontamination mixtures in the case of a terrorist threat or chemical or biological accidents.

Zobrazit více v PubMed

EP3061864A1—Textiles Having Antimicrobial Properties—Google Patents. [(accessed on 18 September 2020)]. Available online: https://patents.google.com/patent/EP3061864A1/en.

Weibel M.A., Cortat M., Lebek G., LeCotonnec J.Y., Kitler M.E., Barcherini G. An Approach of the in Vivo Antibacterial Activity of Benzoxonium Chloride and Comparison with Other Buccopharyngeal Disinfectants. Arzneimittelforschung. 1987;37:467–471. PubMed

Benzoxonium Chloride. [(accessed on 18 September 2020)]. Available online: https://www.drugs.com/international/benzoxonium-chloride.html.

Ponzielli G., Taidelli-Palmizi G. Dodecyl-di-beta-oxyethyl-benzylammonium chloride in the topical therapy of burns. Clin. Ter. 1979;90:251–259. PubMed

Firestone A.R., Schmid R., Mühlemann H.R. Topical Effects of a Quaternary Ammonium Compound on Caries Incidence and Bacterial Agglomerate Formation in the Rat. Caries Res. 1981;15:338–340. doi: 10.1159/000260535. PubMed DOI

Daie Parizi M.H., Karvar M., Sharifi I., Bahrampour A., Heshmat Khah A., Rahnama Z., Baziar Z., Amiri R. The Topical Treatment of Anthroponotic Cutaneous Leishmaniasis with the Tincture of Thioxolone plus Benzoxonium Chloride (Thio-Ben) along with Cryotherapy: A Single-Blind Randomized Clinical Trial. Dermatol. Ther. 2015;28:140–146. doi: 10.1111/dth.12229. PubMed DOI

Hakimi Parizi M., Pardakhty A., sharifi I., Farajzadeh S., Daie Parizi M.H., Sharifi H., Keyhani A.R., Mostafavi M., Bamorovat M., Ghaffari D. Antileishmanial Activity and Immune Modulatory Effects of Benzoxonium Chloride and Its Entrapped Forms in Niosome on Leishmania Tropica. J. Parasit. Dis. 2019;43:406–415. doi: 10.1007/s12639-019-01105-7. PubMed DOI PMC

Kis G.L. Antimicrobial Compositions. CA2025728C. [(accessed on 18 September 2020)];2002 February 26; Available online: https://worldwide.espacenet.com/patent/search/family/004256126/publication/CA2025728C?q=CA2025728C.

Szekacs A. Mechanism-Related Teratogenic, Hormone Modulant and Other Toxicological Effects of Veterinary and Agricultural Surfactants. Insights Vet. Sci. 2017;1:24–31. doi: 10.29328/journal.hvsr.1001003. DOI

Labranche L.-P., Dumont S.N., Levesque S., Carrier A. Rapid Determination of Total Benzalkonium Chloride Content in Ophthalmic Formulation. J. Pharm. Biomed. Anal. 2007;43:989–993. doi: 10.1016/j.jpba.2006.09.022. PubMed DOI

Horn G. Method and Composition Which Reduces Stimulation of Muscles Which Dilate the Eye. 20060211753A1. U.S. Patent. 2006 September 21;

Ioannou C.J., Hanlon G.W., Denyer S.P. Action of Disinfectant Quaternary Ammonium Compounds against Staphylococcus Aureus. Antimicrob. Agents Chemother. 2007;51:296–306. doi: 10.1128/AAC.00375-06. PubMed DOI PMC

Minbiole K.P.C., Jennings M.C., Ator L.E., Black J.W., Grenier M.C., LaDow J.E., Caran K.L., Seifert K., Wuest W.M. From Antimicrobial Activity to Mechanism of Resistance: The Multifaceted Role of Simple Quaternary Ammonium Compounds in Bacterial Eradication. Tetrahedron. 2016;72:3559–3566. doi: 10.1016/j.tet.2016.01.014. DOI

Dolezal R., Soukup O., Malinak D., Savedra R.M.L., Marek J., Dolezalova M., Pasdiorova M., Salajkova S., Korabecny J., Honegr J., et al. Towards Understanding the Mechanism of Action of Antibacterial N-Alkyl-3-Hydroxypyridinium Salts: Biological Activities, Molecular Modeling and QSAR Studies. Eur. J. Med. Chem. 2016;121:699–711. doi: 10.1016/j.ejmech.2016.05.058. PubMed DOI

Jennings M.C., Minbiole K.P.C., Wuest W.M. Quaternary Ammonium Compounds: An Antimicrobial Mainstay and Platform for Innovation to Address Bacterial Resistance. ACS Infect. Dis. 2015;1:288–303. doi: 10.1021/acsinfecdis.5b00047. PubMed DOI

Tiwari S., Ghosh K., Marek J., Kuca K. Cationic Micellar-Catalyzed Hydrolysis of Pesticide Fenitrothion Using α-Nucleophiles. Lett. Drug Des. Discov. 2010;7:194–199. doi: 10.2174/157018010790596650. DOI

Sharma R., Gupta B., Yadav T., Sinha S., Sahu A.K., Karpichev Y., Gathergood N., Marek J., Kuca K., Ghosh K.K. Degradation of Organophosphate Pesticides Using Pyridinium Based Functional Surfactants. ACS Sustain. Chem. Eng. 2016;4:6962–6973. doi: 10.1021/acssuschemeng.6b01878. DOI

Singh N., Karpichev Y., Gupta B., Satnami M.L., Marek J., Kuca K., Ghosh K.K. Physicochemical Properties and Supernucleophilicity of Oxime-Functionalized Surfactants: Hydrolytic Catalysts toward Dephosphorylation of Di- and Triphosphate Esters. J. Phys. Chem. B. 2013;117:3806–3817. doi: 10.1021/jp310010q. PubMed DOI

Singh N., Ghosh K.K., Marek J., Kuca K. Hydrolysis of Carboxylate and Phosphate Esters Using Monopyridinium Oximes in Cationic Micellar Media. Int. J. Chem. Kinet. 2011;43:569–578. doi: 10.1002/kin.20590. DOI

Banjare M.K., Kurrey R., Yadav T., Sinha S., Satnami M.L., Ghosh K.K. A Comparative Study on the Effect of Imidazolium-Based Ionic Liquid on Self-Aggregation of Cationic, Anionic and Nonionic Surfactants Studied by Surface Tension, Conductivity, Fluorescence and FTIR Spectroscopy. J. Mol. Liq. 2017;241:622–632. doi: 10.1016/j.molliq.2017.06.009. DOI

Domagk G. A Method for Disinfection and Preservation. DE680599C. 1939 September 1;

Ceri H., Olson M.E., Stremick C., Read R.R., Morck D., Buret A. The Calgary Biofilm Device: New Technology for Rapid Determination of Antibiotic Susceptibilities of Bacterial Biofilms. [(accessed on 8 April 2021)];J. Clin. Microbiol. 2020 37 Available online: https://jcm.asm.org/content/37/6/1771/figures-only. PubMed PMC

Singh S., Singh S.K., Chowdhury I., Singh R. Understanding the Mechanism of Bacterial Biofilms Resistance to Antimicrobial Agents. Open Microbiol. J. 2017;11:53–62. doi: 10.2174/1874285801711010053. PubMed DOI PMC

Azeredo J., Azevedo N.F., Briandet R., Cerca N., Coenye T., Costa A.R., Desvaux M., Di Bonaventura G., Hébraud M., Jaglic Z., et al. Critical Review on Biofilm Methods. Crit. Rev. Microbiol. 2017;43:313–351. doi: 10.1080/1040841X.2016.1208146. PubMed DOI

Guggenheim E.A. XLVI. On the Determination of the Velocity Constant of a Unimolecular Reaction. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1926;2:538–543. doi: 10.1080/14786442608564083. DOI

Zajicek M., Radl Z. Sbornik Vyzkumneho Ustavu 070. Ministry of Defense; Brno, Czech Republic: 1979. Katalyticky Vliv Kationaktivniho Tenzidu Na Hydrolyzu Fosfonatu; pp. 115–129. (In Czech)

Cabal J., Kuča K., Míčová J. Kinetics of Decompositition of Organophosphate Fenitrothion by Decontaminating Foam-Making Blends. J. Appl. Biomed. 2007;5:167–170. doi: 10.32725/jab.2007.022. DOI

Clinical and Laboratory Standards Institute, editor. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically: M07-A10; Approved Standard. 10th ed. Documents/Clinical and Laboratory Standards Institute; Committee for Clinical Laboratory Standards; Wayne, PA, USA: 2015.

Marek J., Malinak D., Dolezal R., Soukup O., Pasdiorova M., Dolezal M., Kuca K. Synthesis and Disinfection Effect of the Pyridine-4-Aldoxime Based Salts. Molecules. 2015;20:3681–3696. doi: 10.3390/molecules20033681. PubMed DOI PMC

Malinak D., Dolezal R., Marek J., Salajkova S., Soukup O., Vejsova M., Korabecny J., Honegr J., Penhaker M., Musilek K., et al. 6-Hydroxyquinolinium Salts Differing in the Length of Alkyl Side-Chain: Synthesis and Antimicrobial Activity. Bioorg. Med. Chem. Lett. 2014;24:5238–5241. doi: 10.1016/j.bmcl.2014.09.060. PubMed DOI

Soukup O., Benkova M., Dolezal R., Sleha R., Malinak D., Salajkova S., Markova A., Hympanova M., Prchal L., Ryskova L., et al. The Wide-Spectrum Antimicrobial Effect of Novel N-Alkyl Monoquaternary Ammonium Salts and Their Mixtures; the QSAR Study against Bacteria. Eur. J. Med. Chem. 2020;206:112584. doi: 10.1016/j.ejmech.2020.112584. PubMed DOI

Spearman C. The Method of ‘Right and Wrong Cases’ (‘Constant Stimuli’) Without Gauss’s Formulae. Br. J. Psychol. 1908;2:227–242. doi: 10.1111/j.2044-8295.1908.tb00176.x. DOI

BS EN 14476:2013+A2:2019—Chemical Disinfectants and Antiseptics. Quantitative Suspension Test for the Evaluation of Virucidal Activity in the Medical Area. Test Method and Requirements (Phase 2/Step 1) Aug 31, 2019. [(accessed on 8 April 2021)]. Available online: https://shop.bsigroup.com/ProductDetail?pid=000000000030401479.

van Meerloo J., Kaspers G.J.L., Cloos J. Cell Sensitivity Assays: The MTT Assay. In: Cree I.A., editor. Cancer Cell Culture: Methods and Protocols. Humana Press; Totowa, NJ, USA: 2011. pp. 237–245. Methods in Molecular Biology. PubMed DOI

Limanov V.E., Épshtein A.E., Skvortsova E.K., Aref’eva L.I., Gleiberman S.E., Volkova A.P. Synthesis and Antibacterial Action of Surface-Active Quaternary Ammonium Salts Containing Hydroxyethyl Radicals. Pharm. Chem. J. 1976;10:55–58. doi: 10.1007/BF00764289. DOI

Chernyavskaya M.A., Stefanovich V.V., Sergeeva I.A., Belova A.S. Antimicrobial and Surface-Active Properties of Cationic Surfactants Based on Chloroalkanes and Alkylbenzenes. Pharm. Chem. J. 1984;18:784–787. doi: 10.1007/BF00779905. DOI

Stefanović G., Ćirić J. Synthese und bacterizide Wirkung einiger quaternärer, höherer Alkyl- und Alkenyl-bis-(2-oxyäthyl)-Ammoniumsalze. Recl. Trav. Chim. Pays-Bas. 1954;73:401–409. doi: 10.1002/recl.19540730508. DOI

Benkova M., Soukup O., Prchal L., Sleha R., Eleršek T., Novak M., Sepčić K., Gunde-Cimerman N., Dolezal R., Bostik V., et al. Synthesis, Antimicrobial Effect and Lipophilicity-Activity Dependence of Three Series of Dichained N -Alkylammonium Salts. ChemistrySelect. 2019;4:12076–12084. doi: 10.1002/slct.201902357. DOI

Traube I. Über Die Kapillaritätskonstanten Organischer Stoffe in Wässriger Lösung. Annu. Chem. 1891;265:27–55. doi: 10.1002/jlac.18912650103. DOI

Han X., Balakrishnan V.K., VanLoon G.W., Buncel E. Degradation of the Pesticide Fenitrothion as Mediated by Cationic Surfactants and Alpha-Nucleophilic Reagents. Langmuir ACS J. Surf. Colloids. 2006;22:9009–9017. doi: 10.1021/la060641t. PubMed DOI

Balakrishnan V.K., Han X., VanLoon G.W., Dust J.M., Toullec J., Buncel E. Acceleration of Nucleophilic Attack on an Organophosphorothioate Neurotoxin, Fenitrothion, by Reactive Counterion Cationic Micelles. Regioselectivity as a Probe of Substrate Orientation within the Micelle. Langmuir. 2004;20:6586–6593. doi: 10.1021/la049572d. PubMed DOI

Bunton C.A. Micellar Catalysis and Inhibition. Prog. Solid State Chem. 1973;8:239–281. doi: 10.1016/0079-6786(73)90008-3. DOI

Tischer M., Pradel G., Ohlsen K., Holzgrabe U. Quaternary Ammonium Salts and Their Antimicrobial Potential: Targets or Nonspecific Interactions? ChemMedChem. 2012;7:22–31. doi: 10.1002/cmdc.201100404. PubMed DOI

Shtyrlin N.V., Sapozhnikov S.V., Galiullina A.S., Kayumov A.R., Bondar O.V., Mirchink E.P., Isakova E.B., Firsov A.A., Balakin K.V., Shtyrlin Y.G. Synthesis and Antibacterial Activity of Quaternary Ammonium 4-Deoxypyridoxine Derivatives. BioMed Res. Int. 2016;2016:3864193. doi: 10.1155/2016/3864193. PubMed DOI PMC

CDC/Bioterrorism Agents/Diseases (by category)/Emergency Preparedness & Response. [(accessed on 9 April 2021)]; Available online: https://emergency.cdc.gov/agent/agentlist-category.asp.

Kuca K., Marek J., Stodulka P., Musilek K., Hanusova P., Hrabinova M., Jun D. Preparation of Benzalkonium Salts Differing in the Length of a Side Alkyl Chain. Mol. J. Synth. Chem. Nat. Prod. Chem. 2007;12:2341–2347. doi: 10.3390/12102341. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Chemical and Biological Threats, Hazard Potential and Countermeasures

. 2022 Aug 02 ; 10 (8) : . [epub] 20220802

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...