Synthesis and Decontamination Effect on Chemical and Biological Agents of Benzoxonium-Like Salts
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NV19-09-00198 and NV18-09-00181
Ministerstvo Zdravotnictví Ceské Republiky
Long Term Development Plan" Medical Aspects of Weapons of Mass Destruction of the Faculty of Military Health Sciences, University of Defence.
Ministerstvo Obrany České Republiky
SV/FVZ201808
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
34564373
PubMed Central
PMC8469817
DOI
10.3390/toxics9090222
PII: toxics9090222
Knihovny.cz E-zdroje
- Klíčová slova
- benzoxonium, decontamination, disinfection, micellar catalysis, organophosphates, quaternary ammonium salts,
- Publikační typ
- časopisecké články MeSH
Benzoxonium chloride belongs to the group of quaternary ammonium salts, which have been widely used for decades as disinfectants because of their high efficacy, low toxicity, and thermal stability. In this study, we have prepared the C10-C18 set of benzoxonium-like salts to evaluate the effect of their chemical and biological decontamination capabilities. In particular, biocidal activity against a panel of bacterial strains including Staphylococcus aureus in biofilm form was screened. In addition, the most promising compounds were successfully tested against Francisella tularensis as a representative of potential biological warfare agents. From a point of view of chemical warfare protection, the efficiency of BOC-like compounds to degrade the organophosphate simulant fenitrothion was examined. Notwithstanding that no single compound with universal effectiveness was identified, a mixture of only two compounds from this group would be able to satisfactorily cover the proposed decontamination spectrum. In addition, the compounds were evaluated for their cytotoxicity as a basic safety parameter for potential use in practice. In summary, the dual effect on chemical and biological agents of benzoxonium-like salts offer attractive potential as active components of decontamination mixtures in the case of a terrorist threat or chemical or biological accidents.
Zobrazit více v PubMed
EP3061864A1—Textiles Having Antimicrobial Properties—Google Patents. [(accessed on 18 September 2020)]. Available online: https://patents.google.com/patent/EP3061864A1/en.
Weibel M.A., Cortat M., Lebek G., LeCotonnec J.Y., Kitler M.E., Barcherini G. An Approach of the in Vivo Antibacterial Activity of Benzoxonium Chloride and Comparison with Other Buccopharyngeal Disinfectants. Arzneimittelforschung. 1987;37:467–471. PubMed
Benzoxonium Chloride. [(accessed on 18 September 2020)]. Available online: https://www.drugs.com/international/benzoxonium-chloride.html.
Ponzielli G., Taidelli-Palmizi G. Dodecyl-di-beta-oxyethyl-benzylammonium chloride in the topical therapy of burns. Clin. Ter. 1979;90:251–259. PubMed
Firestone A.R., Schmid R., Mühlemann H.R. Topical Effects of a Quaternary Ammonium Compound on Caries Incidence and Bacterial Agglomerate Formation in the Rat. Caries Res. 1981;15:338–340. doi: 10.1159/000260535. PubMed DOI
Daie Parizi M.H., Karvar M., Sharifi I., Bahrampour A., Heshmat Khah A., Rahnama Z., Baziar Z., Amiri R. The Topical Treatment of Anthroponotic Cutaneous Leishmaniasis with the Tincture of Thioxolone plus Benzoxonium Chloride (Thio-Ben) along with Cryotherapy: A Single-Blind Randomized Clinical Trial. Dermatol. Ther. 2015;28:140–146. doi: 10.1111/dth.12229. PubMed DOI
Hakimi Parizi M., Pardakhty A., sharifi I., Farajzadeh S., Daie Parizi M.H., Sharifi H., Keyhani A.R., Mostafavi M., Bamorovat M., Ghaffari D. Antileishmanial Activity and Immune Modulatory Effects of Benzoxonium Chloride and Its Entrapped Forms in Niosome on Leishmania Tropica. J. Parasit. Dis. 2019;43:406–415. doi: 10.1007/s12639-019-01105-7. PubMed DOI PMC
Kis G.L. Antimicrobial Compositions. CA2025728C. [(accessed on 18 September 2020)];2002 February 26; Available online: https://worldwide.espacenet.com/patent/search/family/004256126/publication/CA2025728C?q=CA2025728C.
Szekacs A. Mechanism-Related Teratogenic, Hormone Modulant and Other Toxicological Effects of Veterinary and Agricultural Surfactants. Insights Vet. Sci. 2017;1:24–31. doi: 10.29328/journal.hvsr.1001003. DOI
Labranche L.-P., Dumont S.N., Levesque S., Carrier A. Rapid Determination of Total Benzalkonium Chloride Content in Ophthalmic Formulation. J. Pharm. Biomed. Anal. 2007;43:989–993. doi: 10.1016/j.jpba.2006.09.022. PubMed DOI
Horn G. Method and Composition Which Reduces Stimulation of Muscles Which Dilate the Eye. 20060211753A1. U.S. Patent. 2006 September 21;
Ioannou C.J., Hanlon G.W., Denyer S.P. Action of Disinfectant Quaternary Ammonium Compounds against Staphylococcus Aureus. Antimicrob. Agents Chemother. 2007;51:296–306. doi: 10.1128/AAC.00375-06. PubMed DOI PMC
Minbiole K.P.C., Jennings M.C., Ator L.E., Black J.W., Grenier M.C., LaDow J.E., Caran K.L., Seifert K., Wuest W.M. From Antimicrobial Activity to Mechanism of Resistance: The Multifaceted Role of Simple Quaternary Ammonium Compounds in Bacterial Eradication. Tetrahedron. 2016;72:3559–3566. doi: 10.1016/j.tet.2016.01.014. DOI
Dolezal R., Soukup O., Malinak D., Savedra R.M.L., Marek J., Dolezalova M., Pasdiorova M., Salajkova S., Korabecny J., Honegr J., et al. Towards Understanding the Mechanism of Action of Antibacterial N-Alkyl-3-Hydroxypyridinium Salts: Biological Activities, Molecular Modeling and QSAR Studies. Eur. J. Med. Chem. 2016;121:699–711. doi: 10.1016/j.ejmech.2016.05.058. PubMed DOI
Jennings M.C., Minbiole K.P.C., Wuest W.M. Quaternary Ammonium Compounds: An Antimicrobial Mainstay and Platform for Innovation to Address Bacterial Resistance. ACS Infect. Dis. 2015;1:288–303. doi: 10.1021/acsinfecdis.5b00047. PubMed DOI
Tiwari S., Ghosh K., Marek J., Kuca K. Cationic Micellar-Catalyzed Hydrolysis of Pesticide Fenitrothion Using α-Nucleophiles. Lett. Drug Des. Discov. 2010;7:194–199. doi: 10.2174/157018010790596650. DOI
Sharma R., Gupta B., Yadav T., Sinha S., Sahu A.K., Karpichev Y., Gathergood N., Marek J., Kuca K., Ghosh K.K. Degradation of Organophosphate Pesticides Using Pyridinium Based Functional Surfactants. ACS Sustain. Chem. Eng. 2016;4:6962–6973. doi: 10.1021/acssuschemeng.6b01878. DOI
Singh N., Karpichev Y., Gupta B., Satnami M.L., Marek J., Kuca K., Ghosh K.K. Physicochemical Properties and Supernucleophilicity of Oxime-Functionalized Surfactants: Hydrolytic Catalysts toward Dephosphorylation of Di- and Triphosphate Esters. J. Phys. Chem. B. 2013;117:3806–3817. doi: 10.1021/jp310010q. PubMed DOI
Singh N., Ghosh K.K., Marek J., Kuca K. Hydrolysis of Carboxylate and Phosphate Esters Using Monopyridinium Oximes in Cationic Micellar Media. Int. J. Chem. Kinet. 2011;43:569–578. doi: 10.1002/kin.20590. DOI
Banjare M.K., Kurrey R., Yadav T., Sinha S., Satnami M.L., Ghosh K.K. A Comparative Study on the Effect of Imidazolium-Based Ionic Liquid on Self-Aggregation of Cationic, Anionic and Nonionic Surfactants Studied by Surface Tension, Conductivity, Fluorescence and FTIR Spectroscopy. J. Mol. Liq. 2017;241:622–632. doi: 10.1016/j.molliq.2017.06.009. DOI
Domagk G. A Method for Disinfection and Preservation. DE680599C. 1939 September 1;
Ceri H., Olson M.E., Stremick C., Read R.R., Morck D., Buret A. The Calgary Biofilm Device: New Technology for Rapid Determination of Antibiotic Susceptibilities of Bacterial Biofilms. [(accessed on 8 April 2021)];J. Clin. Microbiol. 2020 37 Available online: https://jcm.asm.org/content/37/6/1771/figures-only. PubMed PMC
Singh S., Singh S.K., Chowdhury I., Singh R. Understanding the Mechanism of Bacterial Biofilms Resistance to Antimicrobial Agents. Open Microbiol. J. 2017;11:53–62. doi: 10.2174/1874285801711010053. PubMed DOI PMC
Azeredo J., Azevedo N.F., Briandet R., Cerca N., Coenye T., Costa A.R., Desvaux M., Di Bonaventura G., Hébraud M., Jaglic Z., et al. Critical Review on Biofilm Methods. Crit. Rev. Microbiol. 2017;43:313–351. doi: 10.1080/1040841X.2016.1208146. PubMed DOI
Guggenheim E.A. XLVI. On the Determination of the Velocity Constant of a Unimolecular Reaction. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1926;2:538–543. doi: 10.1080/14786442608564083. DOI
Zajicek M., Radl Z. Sbornik Vyzkumneho Ustavu 070. Ministry of Defense; Brno, Czech Republic: 1979. Katalyticky Vliv Kationaktivniho Tenzidu Na Hydrolyzu Fosfonatu; pp. 115–129. (In Czech)
Cabal J., Kuča K., Míčová J. Kinetics of Decompositition of Organophosphate Fenitrothion by Decontaminating Foam-Making Blends. J. Appl. Biomed. 2007;5:167–170. doi: 10.32725/jab.2007.022. DOI
Clinical and Laboratory Standards Institute, editor. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically: M07-A10; Approved Standard. 10th ed. Documents/Clinical and Laboratory Standards Institute; Committee for Clinical Laboratory Standards; Wayne, PA, USA: 2015.
Marek J., Malinak D., Dolezal R., Soukup O., Pasdiorova M., Dolezal M., Kuca K. Synthesis and Disinfection Effect of the Pyridine-4-Aldoxime Based Salts. Molecules. 2015;20:3681–3696. doi: 10.3390/molecules20033681. PubMed DOI PMC
Malinak D., Dolezal R., Marek J., Salajkova S., Soukup O., Vejsova M., Korabecny J., Honegr J., Penhaker M., Musilek K., et al. 6-Hydroxyquinolinium Salts Differing in the Length of Alkyl Side-Chain: Synthesis and Antimicrobial Activity. Bioorg. Med. Chem. Lett. 2014;24:5238–5241. doi: 10.1016/j.bmcl.2014.09.060. PubMed DOI
Soukup O., Benkova M., Dolezal R., Sleha R., Malinak D., Salajkova S., Markova A., Hympanova M., Prchal L., Ryskova L., et al. The Wide-Spectrum Antimicrobial Effect of Novel N-Alkyl Monoquaternary Ammonium Salts and Their Mixtures; the QSAR Study against Bacteria. Eur. J. Med. Chem. 2020;206:112584. doi: 10.1016/j.ejmech.2020.112584. PubMed DOI
Spearman C. The Method of ‘Right and Wrong Cases’ (‘Constant Stimuli’) Without Gauss’s Formulae. Br. J. Psychol. 1908;2:227–242. doi: 10.1111/j.2044-8295.1908.tb00176.x. DOI
BS EN 14476:2013+A2:2019—Chemical Disinfectants and Antiseptics. Quantitative Suspension Test for the Evaluation of Virucidal Activity in the Medical Area. Test Method and Requirements (Phase 2/Step 1) Aug 31, 2019. [(accessed on 8 April 2021)]. Available online: https://shop.bsigroup.com/ProductDetail?pid=000000000030401479.
van Meerloo J., Kaspers G.J.L., Cloos J. Cell Sensitivity Assays: The MTT Assay. In: Cree I.A., editor. Cancer Cell Culture: Methods and Protocols. Humana Press; Totowa, NJ, USA: 2011. pp. 237–245. Methods in Molecular Biology. PubMed DOI
Limanov V.E., Épshtein A.E., Skvortsova E.K., Aref’eva L.I., Gleiberman S.E., Volkova A.P. Synthesis and Antibacterial Action of Surface-Active Quaternary Ammonium Salts Containing Hydroxyethyl Radicals. Pharm. Chem. J. 1976;10:55–58. doi: 10.1007/BF00764289. DOI
Chernyavskaya M.A., Stefanovich V.V., Sergeeva I.A., Belova A.S. Antimicrobial and Surface-Active Properties of Cationic Surfactants Based on Chloroalkanes and Alkylbenzenes. Pharm. Chem. J. 1984;18:784–787. doi: 10.1007/BF00779905. DOI
Stefanović G., Ćirić J. Synthese und bacterizide Wirkung einiger quaternärer, höherer Alkyl- und Alkenyl-bis-(2-oxyäthyl)-Ammoniumsalze. Recl. Trav. Chim. Pays-Bas. 1954;73:401–409. doi: 10.1002/recl.19540730508. DOI
Benkova M., Soukup O., Prchal L., Sleha R., Eleršek T., Novak M., Sepčić K., Gunde-Cimerman N., Dolezal R., Bostik V., et al. Synthesis, Antimicrobial Effect and Lipophilicity-Activity Dependence of Three Series of Dichained N -Alkylammonium Salts. ChemistrySelect. 2019;4:12076–12084. doi: 10.1002/slct.201902357. DOI
Traube I. Über Die Kapillaritätskonstanten Organischer Stoffe in Wässriger Lösung. Annu. Chem. 1891;265:27–55. doi: 10.1002/jlac.18912650103. DOI
Han X., Balakrishnan V.K., VanLoon G.W., Buncel E. Degradation of the Pesticide Fenitrothion as Mediated by Cationic Surfactants and Alpha-Nucleophilic Reagents. Langmuir ACS J. Surf. Colloids. 2006;22:9009–9017. doi: 10.1021/la060641t. PubMed DOI
Balakrishnan V.K., Han X., VanLoon G.W., Dust J.M., Toullec J., Buncel E. Acceleration of Nucleophilic Attack on an Organophosphorothioate Neurotoxin, Fenitrothion, by Reactive Counterion Cationic Micelles. Regioselectivity as a Probe of Substrate Orientation within the Micelle. Langmuir. 2004;20:6586–6593. doi: 10.1021/la049572d. PubMed DOI
Bunton C.A. Micellar Catalysis and Inhibition. Prog. Solid State Chem. 1973;8:239–281. doi: 10.1016/0079-6786(73)90008-3. DOI
Tischer M., Pradel G., Ohlsen K., Holzgrabe U. Quaternary Ammonium Salts and Their Antimicrobial Potential: Targets or Nonspecific Interactions? ChemMedChem. 2012;7:22–31. doi: 10.1002/cmdc.201100404. PubMed DOI
Shtyrlin N.V., Sapozhnikov S.V., Galiullina A.S., Kayumov A.R., Bondar O.V., Mirchink E.P., Isakova E.B., Firsov A.A., Balakin K.V., Shtyrlin Y.G. Synthesis and Antibacterial Activity of Quaternary Ammonium 4-Deoxypyridoxine Derivatives. BioMed Res. Int. 2016;2016:3864193. doi: 10.1155/2016/3864193. PubMed DOI PMC
CDC/Bioterrorism Agents/Diseases (by category)/Emergency Preparedness & Response. [(accessed on 9 April 2021)]; Available online: https://emergency.cdc.gov/agent/agentlist-category.asp.
Kuca K., Marek J., Stodulka P., Musilek K., Hanusova P., Hrabinova M., Jun D. Preparation of Benzalkonium Salts Differing in the Length of a Side Alkyl Chain. Mol. J. Synth. Chem. Nat. Prod. Chem. 2007;12:2341–2347. doi: 10.3390/12102341. PubMed DOI PMC