Interfacial Covalent Bonds Regulated Electron-Deficient 2D Black Phosphorus for Electrocatalytic Oxygen Reactions

. 2021 May ; 33 (20) : e2008752. [epub] 20210503

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33939200

Grantová podpora
417590517 German Research Foundation
China Scholarship Council
H2020 European Research Council

Developing resource-abundant and sustainable metal-free bifunctional oxygen electrocatalysts is essential for the practical application of zinc-air batteries (ZABs). 2D black phosphorus (BP) with fully exposed atoms and active lone pair electrons can be promising for oxygen electrocatalysts, which, however, suffers from low catalytic activity and poor electrochemical stability. Herein, guided by density functional theory (DFT) calculations, an efficient metal-free electrocatalyst is demonstrated via covalently bonding BP nanosheets with graphitic carbon nitride (denoted BP-CN-c). The polarized PN covalent bonds in BP-CN-c can efficiently regulate the electron transfer from BP to graphitic carbon nitride and significantly promote the OOH* adsorption on phosphorus atoms. Impressively, the oxygen evolution reaction performance of BP-CN-c (overpotential of 350 mV at 10 mA cm-2 , 90% retention after 10 h operation) represents the state-of-the-art among the reported BP-based metal-free catalysts. Additionally, BP-CN-c exhibits a small half-wave overpotential of 390 mV for oxygen reduction reaction, representing the first bifunctional BP-based metal-free oxygen catalyst. Moreover, ZABs are assembled incorporating BP-CN-c cathodes, delivering a substantially higher peak power density (168.3 mW cm-2 ) than the Pt/C+RuO2 -based ZABs (101.3 mW cm-2 ). The acquired insights into interfacial covalent bonds pave the way for the rational design of new and affordable metal-free catalysts.

Zobrazit více v PubMed

Zhu Y. P., Guo C., Zheng Y., Qiao S.‐Z., Acc. Chem. Res. 2017, 50, 915. PubMed

a) Yu M., Dong R., Feng X., J. Am. Chem. Soc. 2020, 142, 12903; PubMed

b) Li Y., Dai H., Chem. Soc. Rev. 2014, 43, 5257; PubMed

c) Wang F., Tseng J., Liu Z., Zhang P., Wang G., Chen G., Wu W., Yu M., Wu Y., Feng X., Adv. Mater. 2020, 32, 2000287. PubMed

a) Zhu L., Zheng D., Wang Z., Zheng X., Fang P., Zhu J., Yu M., Tong Y., Lu X., Adv. Mater. 2018, 30, 1805268; PubMed

b) Tang T., Jiang W.‐J., Liu X.‐Z., Deng J., Niu S., Wang B., Jin S.‐F., Zhang Q., Gu L., Hu J.‐S., J. Am. Chem. Soc. 2020, 142, 7116. PubMed

a) Zhao D., Zhuang Z., Cao X., Zhang C., Peng Q., Chen C., Li Y., Chem. Soc. Rev. 2020, 49, 2215; PubMed

b) Göhl D., Garg A., Paciok P., Mayrhofer K. J., Heggen M., Shao‐Horn Y., Dunin‐Borkowski R. E., Román‐Leshkov Y., Ledendecker M., Nat. Mater. 2020, 19, 287. PubMed

Qu L., Liu Y., Baek J.‐B., Dai L., ACS Nano 2010, 4, 1321. PubMed

Yang L., Jiang S., Zhao Y., Zhu L., Chen S., Wang X., Wu Q., Ma J., Ma Y., Hu Z., Angew. Chem., Int. Ed. 2011, 50, 7132. PubMed

Liu Z. W., Peng F., Wang H. J., Yu H., Zheng W. X., Yang J., Angew. Chem., Int. Ed. 2011, 50, 3257. PubMed

Jeon I. Y., Zhang S., Zhang L., Choi H. J., Seo J. M., Xia Z., Dai L., Baek J. B., Adv. Mater. 2013, 25, 6138. PubMed

Liu X., Dai L., Nat. Rev. Mater. 2016, 1, 16064.

a) Giordano N., Antonucci P., Passalacqua E., Pino L., Arico A., Kinoshita K., Electrochim. Acta 1991, 36, 1931;

b) Möller S., Barwe S., Masa J., Wintrich D., Seisel S., Baltruschat H., Schuhmann W., Angew. Chem., Int. Ed. 2020, 59, 1585. PubMed PMC

a) Kang J., Wells S. A., Wood J. D., Lee J.‐H., Liu X., Ryder C. R., Zhu J., Guest J. R., Husko C. A., Hersam M. C., Proc. Natl. Acad. Sci. USA 2016, 113, 11688; PubMed PMC

b) Ling X., Wang H., Huang S., Xia F., Dresselhaus M. S., Proc. Natl. Acad. Sci. USA 2015, 112, 4523; PubMed PMC

c) Rudenko A. N., Katsnelson M. I., Phys. Rev. B 2014, 89, 201408.

Yang S., Zhang K., Ricciardulli A. G., Zhang P., Liao Z., Lohe M. R., Zschech E., Blom P. W. M., Pisula W., Mullen K., Feng X., Angew. Chem., Int. Ed. 2018, 57, 4677. PubMed

a) Jiang Q., Xu L., Chen N., Zhang H., Dai L., Wang S., Angew. Chem., Int. Ed. 2016, 55, 13849; PubMed

b) Wang H., Yang X., Shao W., Chen S., Xie J., Zhang X., Wang J., Xie Y., J. Am. Chem. Soc. 2015, 137, 11376; PubMed

c) Qiao H., Liu H., Huang Z., Ma Q., Luo S., Li J., Liu Y., Zhong J., Qi X., Adv. Energy Mater. 2020, 10, 2002424;

d) Shi F., Geng Z., Huang K., Liang Q., Zhang Y., Sun Y., Cao J., Feng S., Adv. Sci. 2018, 5, 1800575; PubMed PMC

e) Wang J., Liu D., Huang H., Yang N., Yu B., Wen M., Wang X., Chu P. K., Yu X. F., Angew. Chem., Int. Ed. 2018, 130, 2630. PubMed

Ren X., Zhou J., Qi X., Liu Y., Huang Z., Li Z., Ge Y., Dhanabalan S. C., Ponraj J. S., Wang S., Adv. Energy Mater. 2017, 7, 1700396.

Zhang L., Ding L. X., Chen G. F., Yang X., Wang H., Angew. Chem., Int. Ed. 2019, 58, 2612. PubMed

Yin T., Long L., Tang X., Qiu M., Liang W., Cao R., Zhang Q., Wang D., Zhang H., Adv. Sci. 2020, 7, 2001431. PubMed PMC

a) Hu Z., Li Q., Lei B., Zhou Q., Xiang D., Lyu Z., Hu F., Wang J., Ren Y., Guo R., Angew. Chem., Int. Ed. 2017, 56, 9131; PubMed

b) Zhang S., Zhang X., Lei L., Yu X. F., Chen J., Ma C., Wu F., Zhao Q., Xing B., Angew. Chem., Int. Ed. 2019, 58, 467; PubMed

c) Liu Y., Gao P., Zhang T., Zhu X., Zhang M., Chen M., Du P., Wang G. W., Ji H., Yang J., Yang S., Angew. Chem., Int. Ed. 2019, 58, 1479; PubMed

d) Sofer Z., Luxa J., Bouša D., Sedmidubský D., Lazar P., Hartman T., Hardtdegen H., Pumera M., Angew. Chem., Int. Ed. 2017, 56, 9891. PubMed

Zhu X., Zhang T., Jiang D., Duan H., Sun Z., Zhang M., Jin H., Guan R., Liu Y., Chen M., Ji H., Du P., Yan W., Wei S., Lu Y., Yang S., Nat. Commun. 2018, 9, 4177. PubMed PMC

Ryder C. R., Wood J. D., Wells S. A., Yang Y., Jariwala D., Marks T. J., Schatz G. C., Hersam M. C., Nat. Chem. 2016, 8, 597. PubMed

Holoubek J., Yin Y., Li M., Yu M., Meng Y. S., Liu P., Chen Z., Angew. Chem., Int. Ed. 2019, 58, 18892. PubMed

He R., Hua J., Zhang A., Wang C., Peng J., Chen W., Zeng J., Nano Lett. 2017, 17, 4311. PubMed

Sugai S., Shirotani I., Solid State Commun. 1985, 53, 753.

Nakhanivej P., Yu X., Park S. K., Kim S., Hong J.‐Y., Kim H. J., Lee W., Hwang J. Y., Yang J. E., Wolverton C., Nat. Mater. 2019, 18, 156. PubMed

Zhang Z., Zhang P., Yang S., Zhang T., Loffler M., Shi H., Lohe M. R., Feng X., Proc. Natl. Acad. Sci. USA 2020, 117, 13959. PubMed PMC

a) Nicotra G., Politano A., Mio A., Deretzis I., Hu J., Mao Z., Wei J., La Magna A., Spinella C., Phys. Status Solidi B 2016, 253, 2509;

b) Favron A., Gaufrès E., Fossard F., Phaneuf‐L'Heureux A.‐L., Tang N. Y., Lévesque P. L., Loiseau A., Leonelli R., Francoeur S., Martel R., Nat. Mater. 2015, 14, 826; PubMed

c) Kruse J., Leinweber P., Eckhardt K.‐U., Godlinski F., Hu Y., Zuin L., J. Synchrotron Radiat. 2009, 16, 247. PubMed

Sugai S., Ueda T., Murase K., J. Phys. Soc. Jpn. 1981, 50, 3356.

Zong L., Wu W., Liu S., Yin H., Chen Y., Liu C., Fan K., Zhao X., Chen X., Wang F., Energy Storage Mater. 2020, 27, 514.

Shin J., Guo J., Zhao T., Guo Z., Small 2019, 15, 1900296. PubMed

Gao R., Dai Q., Du F., Yan D., Dai L., J. Am. Chem. Soc. 2019, 141, 11658. PubMed

Jia Y., Zhang L., Du A., Gao G., Chen J., Yan X., Brown C. L., Yao X., Adv. Mater. 2016, 28, 9532. PubMed

Tang C., Wang H. F., Chen X., Li B. Q., Hou T. Z., Zhang B., Zhang Q., Titirici M. M., Wei F., Adv. Mater. 2016, 28, 6845. PubMed

Liu Q., Wang Y., Dai L., Yao J., Adv. Mater. 2016, 28, 3000. PubMed

Zhang J., Zhao Z., Xia Z., Dai L., Nat. Nanotechnol. 2015, 10, 444. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...