Interfacial Covalent Bonds Regulated Electron-Deficient 2D Black Phosphorus for Electrocatalytic Oxygen Reactions
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
417590517
German Research Foundation
China Scholarship Council
H2020 European Research Council
PubMed
33939200
PubMed Central
PMC11469023
DOI
10.1002/adma.202008752
Knihovny.cz E-zdroje
- Klíčová slova
- 2D materials, bifunctional oxygen electrocatalysts, black phosphorus, oxygen evolution reaction, zinc-air batteries,
- Publikační typ
- časopisecké články MeSH
Developing resource-abundant and sustainable metal-free bifunctional oxygen electrocatalysts is essential for the practical application of zinc-air batteries (ZABs). 2D black phosphorus (BP) with fully exposed atoms and active lone pair electrons can be promising for oxygen electrocatalysts, which, however, suffers from low catalytic activity and poor electrochemical stability. Herein, guided by density functional theory (DFT) calculations, an efficient metal-free electrocatalyst is demonstrated via covalently bonding BP nanosheets with graphitic carbon nitride (denoted BP-CN-c). The polarized PN covalent bonds in BP-CN-c can efficiently regulate the electron transfer from BP to graphitic carbon nitride and significantly promote the OOH* adsorption on phosphorus atoms. Impressively, the oxygen evolution reaction performance of BP-CN-c (overpotential of 350 mV at 10 mA cm-2 , 90% retention after 10 h operation) represents the state-of-the-art among the reported BP-based metal-free catalysts. Additionally, BP-CN-c exhibits a small half-wave overpotential of 390 mV for oxygen reduction reaction, representing the first bifunctional BP-based metal-free oxygen catalyst. Moreover, ZABs are assembled incorporating BP-CN-c cathodes, delivering a substantially higher peak power density (168.3 mW cm-2 ) than the Pt/C+RuO2 -based ZABs (101.3 mW cm-2 ). The acquired insights into interfacial covalent bonds pave the way for the rational design of new and affordable metal-free catalysts.
Zobrazit více v PubMed
Zhu Y. P., Guo C., Zheng Y., Qiao S.‐Z., Acc. Chem. Res. 2017, 50, 915. PubMed
a) Yu M., Dong R., Feng X., J. Am. Chem. Soc. 2020, 142, 12903; PubMed
b) Li Y., Dai H., Chem. Soc. Rev. 2014, 43, 5257; PubMed
c) Wang F., Tseng J., Liu Z., Zhang P., Wang G., Chen G., Wu W., Yu M., Wu Y., Feng X., Adv. Mater. 2020, 32, 2000287. PubMed
a) Zhu L., Zheng D., Wang Z., Zheng X., Fang P., Zhu J., Yu M., Tong Y., Lu X., Adv. Mater. 2018, 30, 1805268; PubMed
b) Tang T., Jiang W.‐J., Liu X.‐Z., Deng J., Niu S., Wang B., Jin S.‐F., Zhang Q., Gu L., Hu J.‐S., J. Am. Chem. Soc. 2020, 142, 7116. PubMed
a) Zhao D., Zhuang Z., Cao X., Zhang C., Peng Q., Chen C., Li Y., Chem. Soc. Rev. 2020, 49, 2215; PubMed
b) Göhl D., Garg A., Paciok P., Mayrhofer K. J., Heggen M., Shao‐Horn Y., Dunin‐Borkowski R. E., Román‐Leshkov Y., Ledendecker M., Nat. Mater. 2020, 19, 287. PubMed
Qu L., Liu Y., Baek J.‐B., Dai L., ACS Nano 2010, 4, 1321. PubMed
Yang L., Jiang S., Zhao Y., Zhu L., Chen S., Wang X., Wu Q., Ma J., Ma Y., Hu Z., Angew. Chem., Int. Ed. 2011, 50, 7132. PubMed
Liu Z. W., Peng F., Wang H. J., Yu H., Zheng W. X., Yang J., Angew. Chem., Int. Ed. 2011, 50, 3257. PubMed
Jeon I. Y., Zhang S., Zhang L., Choi H. J., Seo J. M., Xia Z., Dai L., Baek J. B., Adv. Mater. 2013, 25, 6138. PubMed
Liu X., Dai L., Nat. Rev. Mater. 2016, 1, 16064.
a) Giordano N., Antonucci P., Passalacqua E., Pino L., Arico A., Kinoshita K., Electrochim. Acta 1991, 36, 1931;
b) Möller S., Barwe S., Masa J., Wintrich D., Seisel S., Baltruschat H., Schuhmann W., Angew. Chem., Int. Ed. 2020, 59, 1585. PubMed PMC
a) Kang J., Wells S. A., Wood J. D., Lee J.‐H., Liu X., Ryder C. R., Zhu J., Guest J. R., Husko C. A., Hersam M. C., Proc. Natl. Acad. Sci. USA 2016, 113, 11688; PubMed PMC
b) Ling X., Wang H., Huang S., Xia F., Dresselhaus M. S., Proc. Natl. Acad. Sci. USA 2015, 112, 4523; PubMed PMC
c) Rudenko A. N., Katsnelson M. I., Phys. Rev. B 2014, 89, 201408.
Yang S., Zhang K., Ricciardulli A. G., Zhang P., Liao Z., Lohe M. R., Zschech E., Blom P. W. M., Pisula W., Mullen K., Feng X., Angew. Chem., Int. Ed. 2018, 57, 4677. PubMed
a) Jiang Q., Xu L., Chen N., Zhang H., Dai L., Wang S., Angew. Chem., Int. Ed. 2016, 55, 13849; PubMed
b) Wang H., Yang X., Shao W., Chen S., Xie J., Zhang X., Wang J., Xie Y., J. Am. Chem. Soc. 2015, 137, 11376; PubMed
c) Qiao H., Liu H., Huang Z., Ma Q., Luo S., Li J., Liu Y., Zhong J., Qi X., Adv. Energy Mater. 2020, 10, 2002424;
d) Shi F., Geng Z., Huang K., Liang Q., Zhang Y., Sun Y., Cao J., Feng S., Adv. Sci. 2018, 5, 1800575; PubMed PMC
e) Wang J., Liu D., Huang H., Yang N., Yu B., Wen M., Wang X., Chu P. K., Yu X. F., Angew. Chem., Int. Ed. 2018, 130, 2630. PubMed
Ren X., Zhou J., Qi X., Liu Y., Huang Z., Li Z., Ge Y., Dhanabalan S. C., Ponraj J. S., Wang S., Adv. Energy Mater. 2017, 7, 1700396.
Zhang L., Ding L. X., Chen G. F., Yang X., Wang H., Angew. Chem., Int. Ed. 2019, 58, 2612. PubMed
Yin T., Long L., Tang X., Qiu M., Liang W., Cao R., Zhang Q., Wang D., Zhang H., Adv. Sci. 2020, 7, 2001431. PubMed PMC
a) Hu Z., Li Q., Lei B., Zhou Q., Xiang D., Lyu Z., Hu F., Wang J., Ren Y., Guo R., Angew. Chem., Int. Ed. 2017, 56, 9131; PubMed
b) Zhang S., Zhang X., Lei L., Yu X. F., Chen J., Ma C., Wu F., Zhao Q., Xing B., Angew. Chem., Int. Ed. 2019, 58, 467; PubMed
c) Liu Y., Gao P., Zhang T., Zhu X., Zhang M., Chen M., Du P., Wang G. W., Ji H., Yang J., Yang S., Angew. Chem., Int. Ed. 2019, 58, 1479; PubMed
d) Sofer Z., Luxa J., Bouša D., Sedmidubský D., Lazar P., Hartman T., Hardtdegen H., Pumera M., Angew. Chem., Int. Ed. 2017, 56, 9891. PubMed
Zhu X., Zhang T., Jiang D., Duan H., Sun Z., Zhang M., Jin H., Guan R., Liu Y., Chen M., Ji H., Du P., Yan W., Wei S., Lu Y., Yang S., Nat. Commun. 2018, 9, 4177. PubMed PMC
Ryder C. R., Wood J. D., Wells S. A., Yang Y., Jariwala D., Marks T. J., Schatz G. C., Hersam M. C., Nat. Chem. 2016, 8, 597. PubMed
Holoubek J., Yin Y., Li M., Yu M., Meng Y. S., Liu P., Chen Z., Angew. Chem., Int. Ed. 2019, 58, 18892. PubMed
He R., Hua J., Zhang A., Wang C., Peng J., Chen W., Zeng J., Nano Lett. 2017, 17, 4311. PubMed
Sugai S., Shirotani I., Solid State Commun. 1985, 53, 753.
Nakhanivej P., Yu X., Park S. K., Kim S., Hong J.‐Y., Kim H. J., Lee W., Hwang J. Y., Yang J. E., Wolverton C., Nat. Mater. 2019, 18, 156. PubMed
Zhang Z., Zhang P., Yang S., Zhang T., Loffler M., Shi H., Lohe M. R., Feng X., Proc. Natl. Acad. Sci. USA 2020, 117, 13959. PubMed PMC
a) Nicotra G., Politano A., Mio A., Deretzis I., Hu J., Mao Z., Wei J., La Magna A., Spinella C., Phys. Status Solidi B 2016, 253, 2509;
b) Favron A., Gaufrès E., Fossard F., Phaneuf‐L'Heureux A.‐L., Tang N. Y., Lévesque P. L., Loiseau A., Leonelli R., Francoeur S., Martel R., Nat. Mater. 2015, 14, 826; PubMed
c) Kruse J., Leinweber P., Eckhardt K.‐U., Godlinski F., Hu Y., Zuin L., J. Synchrotron Radiat. 2009, 16, 247. PubMed
Sugai S., Ueda T., Murase K., J. Phys. Soc. Jpn. 1981, 50, 3356.
Zong L., Wu W., Liu S., Yin H., Chen Y., Liu C., Fan K., Zhao X., Chen X., Wang F., Energy Storage Mater. 2020, 27, 514.
Shin J., Guo J., Zhao T., Guo Z., Small 2019, 15, 1900296. PubMed
Gao R., Dai Q., Du F., Yan D., Dai L., J. Am. Chem. Soc. 2019, 141, 11658. PubMed
Jia Y., Zhang L., Du A., Gao G., Chen J., Yan X., Brown C. L., Yao X., Adv. Mater. 2016, 28, 9532. PubMed
Tang C., Wang H. F., Chen X., Li B. Q., Hou T. Z., Zhang B., Zhang Q., Titirici M. M., Wei F., Adv. Mater. 2016, 28, 6845. PubMed
Liu Q., Wang Y., Dai L., Yao J., Adv. Mater. 2016, 28, 3000. PubMed
Zhang J., Zhao Z., Xia Z., Dai L., Nat. Nanotechnol. 2015, 10, 444. PubMed